IncluMove 1.0: software educativo inclusivo para el desarrollo de la motricidad gruesa de estudiantes con TEA en la educación física
Contenido principal del artículo
Resumen
Introducción. El desarrollo de la motricidad gruesa en estudiantes con TEA es un desafío en la educación, crucial para su autonomía. El software educativo emerge como una solución para mejorar estas habilidades y promover la inclusión. Objetivo. Analizar la efectividad del software educativo IncluMove 1.0 diseñado como herramienta inclusiva para el desarrollo de la motricidad gruesa en estudiantes con TEA. Metodología. El estudio se desarrolló utilizando un enfoque cuantitativo de diseño pre-experimental, con un alcance aplicativo-explicativo. Se seleccionó una muestra de 10 estudiantes, uno de ellos con diagnóstico de TEA. Se aplicó el "Test of Gross Motor Development" (TGMD-2) para evaluar el desarrollo motriz antes y después de una intervención de 16 semanas utilizando el software IncluMove 1.0. Los datos obtenidos fueron analizados mediante pruebas estadísticas en el paquete estadístico SPSS 26. Resultados. Mejoras significativas en el desarrollo de la motricidad gruesa en los estudiantes, tanto en aquellos con TEA como en sus pares sin TEA. En particular, el estudiante con TEA mostró un avance en el coeficiente motor grueso (CMG), pasando de un nivel pobre a un nivel promedio tras la intervención. En el grupo general, se observaron mejoras en todos los parámetros evaluados, con diferencias estadísticamente significativas en un nivel de P≤0,05 que evidencian la efectividad del software IncluMove 1.0. Conclusión. El software educativo IncluMove 1.0 demostró ser una herramienta efectiva para mejorar el desarrollo de la motricidad gruesa en estudiantes con TEA, contribuyendo a su inclusión en el entorno escolar. Área de estudio general: Educación. Área de estudio específica: Educación inclusiva. Tipo de estudio: Artículos originales.
Descargas
Detalles del artículo
dssfdsf
dsfdsf
Citas
Alshammary FM, Alhalafawy WS. Digital platforms and the improvement of learning outcomes: evidence extracted from meta-analysis. Sustainability. 2023; 15(2):1305. https://doi.org/10.3390/su15021305
Ayán, C., Cancela, J.M., Sánchez-Lastra, M.A., Carballo-Roales, A.I., Domínguez-Meis, F., & Redondo-Gutiérrez, L. (2019). Reliability and validity of the TGMD-2 battery in a Spanish population. Revista Iberoamericana de Diagnóstico y Evaluación Psicológica, 50(1), 21–33. https://doi.org/10.21865/RIDEP50.1.02
Bäckström, A., Johansson, A., Rudolfsson, T., Rönnqvist, L., Hofsten, C., Rosander, K., & Domellöf, E. (2021). Motor planning and movement execution during goal-directed sequential manual movements in 6-year-old children with autism spectrum disorder: A kinematic analysis. Research in Developmental Disabilities, 115, 104014. https://doi.org/10.1016/j.ridd.2021.104014.
Bhat, A. (2022). Multidimensional motor performance in children with autism mostly remains stable with age and predicts social communication delay, language delay, functional delay, and repetitive behavior severity after accounting for intellectual disability or cognitive delay: A SPARK dataset analysis. Autism Research, 16(1), 208 - 229. https://doi.org/10.1002/aur.2870
Brito-Suárez, J., Camacho-Juárez, F., Sánchez-Medina, C., Hernández-Pliego, G., & Gutiérrez-Camacho, C. (2022). Gross motor disorders in pediatric patients with acute lymphoblastic leukemia and survivors: a systematic review. Pediatric Hematology and Oncology, 39(7), 658 - 671. https://doi.org/10.1080/08880018.2022.2045409
Copetti, F., Valentini, N., Deslandes, A., & Webster, E. (2021). Pedagogical support for the test of gross motor development – 3 for children with neurotypical development and with autism spectrum disorder: validity for an animated mobile application. Physical Education and Sport Pedagogy, 27(5), 483 - 501. https://doi.org/10.1080/17408989.2021.1906218.
Costa, A., Steffgen, G., & Vögele, C. (2019). The role of alexithymia in parent–child interaction and in the emotional ability of children with autism spectrum disorder. Autism Research, 12(3), 458 - 468. https://doi.org/10.1002/aur.2061.
Don, G., Erofeeva, Y., Salimova, K., Davydova, E., & Khaustov, A. (2021). Comprehensive assessment of the progress of «skoroshkolnik» technology implementation. the individualization of the adapted basic education program for preschoolers with ASD. Autism and Developmental Disorders, 19(4), 70 – 85. https://doi.org/10.17759/autdd.2021190408
Eliassy, M., Khajavi, D., Shahrjerdi, S., & Mirmoezzi, M. (2021). Associations between physical activity and gross motor skills with social development in children with learning disabilities. International Journal of Sport Studies for Health, 4(1). https://doi.org/10.5812/intjssh.120844
Esposito, M., Sloan, J., Tancredi, A., Gerardi, G., Postiglione, P., Fotia, F., Napoli, E., Mazzone, L., Valeri, G., & Vicari, S. (2017). Using tablet applications for children with autism to increase their cognitive and social skills. Journal of Special Education Technology, 32(4), 199 - 209. https://doi.org/10.1177/0162643417719751
De Assis Freire de Melo, F., Soares, K. P., De Barros, E. M., Cabral, E. L. D. S., Da Costa Júnior, J. F., Da Silva Burlamaqui, A. A. R. S., & Burlamaqui, A. M. F. (2022). Inclusive digital technologies in the classroom: a case study focused on students with autism spectrum disorder (ASD) in the final years of elementary school. Research Society and Development, 11(6), e10211628759. https://doi.org/10.33448/rsd-v11i6.28759
Fernandes, A. C., Souto, D. O., De Sousa, R. R., Junior, Clutterbuck, G. L., Wright, F. V., De Souza, M. G., Ferreira, L. F. B., Rodrigues, A. A. C., Camargos, A. C. R., & Leite, H. R. (2023). Sports Stars Brazil in children with autism spectrum disorder: a feasibility randomized controlled trial protocol. PLoS ONE, 18(11), e0291488. https://doi.org/10.1371/journal.pone.0291488
Gargot, T. (2022). Sensory and motor difficulties in autism. European Psychiatry, 65(S1), S64. https://doi.org/10.1192/j.eurpsy.2022.208
González, S., Alvarez, V., & Nelson, E. (2019). Do gross and fine motor skills differentially contribute to language outcomes? A systematic review. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02670.
Jagielska-Zwierz, N., Matysiak, N., Zając, J., & Gąsior, J. S. (2023). Effects of hippotherapy on gross motor function in children and adolescents with cerebral palsy – a scoping review. Aktualności Neurologiczne, 22(3), 130-140. https://doi.org/10.15557/an.2022.0016
Holloway, J. M., Tomlinson, S. M., & Hardwick, D. D. (2022). Strategies to support learning of gross motor tasks in children with autism spectrum disorder: a scoping review. Physical & Occupational Therapy in Pediatrics, 43(1), 17-33. https://doi.org/10.1080/01942638.2022.2073800
Hudson, K. N., Ballou, H. M., & Willoughby, M. T. (2020). Short report: Improving motor competence skills in early childhood has corollary benefits for executive function and numeracy skills. Developmental Science, 24(4). https://doi.org/10.1111/desc.13071
Kaplánová, A., Šišková, N., Grznárová, T., & Vanderka, M. (2022). Physical education and development of locomotion and gross motor skills of children with autism spectrum disorder. Sustainability, 15(1), 28. https://doi.org/10.3390/su15010028
Ketcheson, L. R., Pitchford, E. A., & Wentz, C. F. (2021). The relationship between developmental coordination disorder and concurrent deficits in social communication and repetitive behaviors among children with autism spectrum disorder. Autism Research, 14(4), 804-816. https://doi.org/10.1002/aur.2469
Khazanchi, P., & Khazanchi, R. (2019). Integration of educational software in teaching gifted students in K-12 Classrooms. Advances in early childhood and K-12 education (pp. 43-64). https://doi.org/10.4018/978-1-7998-1400-9.ch003
Lord, C. (2019). Taking sleep difficulties seriously in children with neurodevelopmental disorders and ASD. Pediatrics, 143(3). https://doi.org/10.1542/peds.2018-2629
Riglin, L., Wootton, R. E., Thapar, A. K., Livingston, L. A., Langley, K., Collishaw, S., Tagg, J., Smith, G. D., Stergiakouli, E., Tilling, K., & Thapar, A. (2021). Variable emergence of autism spectrum disorder symptoms from childhood to early adulthood. American Journal of Psychiatry, 178(8), 752-760. https://doi.org/10.1176/appi.ajp.2020.20071119
Shumilova, E. A., Prano, K. L., & Makuha, L. S. (2022). Digital tools for assessing educational achievements by students with disabilities in an inclusive educational environment. Perspectives of Science and Education, 60(6), 337-351. https://doi.org/10.32744/pse.2022.6.19
Valencia, K., Rusu, C., Quiñones, D., & Jamet, E. (2019). The impact of technology on people with autism spectrum disorder: a systematic literature review. Sensors, 19(20), 4485. https://doi.org/10.3390/s19204485
Vukićević, S., Đorđević, M., Glumbić, N., Bogdanović, Z., & Jovičić, M. Đ. (2019). A demonstration project for the utility of kinect-based educational games to benefit motor skills of children with ASD. Perceptual And Motor Skills, 126(6), 1117-1144. https://doi.org/10.1177/0031512519867521
Wang, L. A. L., Petrulla, V., Zampella, C. J., Waller, R., & Schultz, R. T. (2022). Gross motor impairment and its relation to social skills in autism spectrum disorder: A systematic review and two meta-analyses. Psychological Bulletin, 148(3-4), 273-300. https://doi.org/10.1037/bul0000358