MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01D6E90A.D60BA340" ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html

Recibido: 05-04-2019 / Revisado: 07-05-2019 / Aceptado: 09-06-2019 = / Publicado: 05-07-2019

Importancia del vínculo entre las matemáticas y e= l Turismo

DOI: https://doi.org/= 10.33262/ap.v1i2.9

 

 

Importance of the link between mathematics and Tour= ism

 <= /o:p>

Armstrong Zulueta. = [1]  

Abstract.                   =               

Currently, tourism development is supported by a wh= ole network of studies and technologies that are based on mathematical tools and models applied to the dissimilar contexts that are generated in the sector. From the shadows they have been a key factor for interpretation, understandi= ng and decision making in all the phenomena that can occur in tourism. The objective of this research is to demonstrate the importance of mathematics i= n the tourist management of a destination, from the characterization of the to= ols with application in tourism and their implementation, and the evaluation of = the incidence of these tools in the development of the tourism management. It focuses fundamentally on the application of statistics, optimization and Information and Communication Technologies (ICT). Within ICT, he briefly characterizes the application of Big Datas and i= ts importance for the generation of reliable information in real time. Finally,= it makes a brief diagnosis of the application of databases in Cuba and its possible evolution to Big Datas.

The objectives of the research are achieved from th= e bibliographic consultation of different sources, where theoretical and practical cases of applications of mathematical tools are analyzed in differ= ent aspects of economic, social, financial, marketing analysis, among others.

= Keywords: Tools, mathematics, tourism, statistics, optimization, ICT, Big Data.

Resumen.=

En la actualidad el desarrollo turístico es soport= ado por toda una red de estudios y tecnologías que tienen su basamento en herramientas y modelos matemáticos aplicados a los disimiles contextos que = se generan en el sector. Desde las sombras han sido un factor clave para la interpretación, comprensión y toma de decisiones en todos los fenómenos q= ue pueden darse en el turismo. La presente investigación tiene como objetivo demostrar la importancia de las matemáticas en la gestión turística de un destino, a partir de la caracterización las herramientas con aplicación en= el turismo y su implementación, y la evaluación de la incidencia de dichas herramientas en el desarrollo de la gestión turística. Se enfoca fundamentalmente en la aplicación de la estadística, la optimización y la= s Tecnologías de la Información y las Comunicaciones (TIC). Dentro de las TI= C caracteriza brevemente aplicación de las Big Datas y su importancia para la generación de información confiable y en tiempo real. Por último, realiza= un breve diagnóstico de la aplicación de las bases de datos en Cuba y su posi= ble evolución a las Big Datas.

Los objetivos de la investigación son logrados a partir de la consulta bibliográfica de diferentes fuentes, en donde se anal= izan casos teóricos y prácticos de aplicaciones de herramientas matemáticas en diferentes aspectos de análisis económicos, sociales, financieros, de marketing, entre otros.

Palabras claves: Herramientas, matemáticas, turismo, estadística, optimización, TIC, Big Data.Introducción.

El turismo se h= a vuelto un factor clave en la economía de muchos países, principalmente en = los que están en vías de desarrollo y ven en él una forma fundamental para incrementar su PIV. Los estudios referentes al tema lo ubican como un fenóm= eno social, cultural y económico, según el punto de vista desde el cual es tra= tado. Todos los enfoques son certeros a pesar de la variabilidad de puntos de vist= as ya que fundamentalmente es un fenómeno social inherente a la voluntad human= a, y por ende va con la percepción de cada región, sociedad, país, o persona q= ue lo practica, lo estudia o lo gestiona. La claridad de la conciencia en los acto= res que intervienen en el fenómeno, y del rol que desempeñan durante el mismo,= es lo que posibilita su correcto desarrollo ascendente en la sociedad.

La evolución q= ue ha marcado el turismo desde su surgimiento ha seguido la velocidad de desarrollo de la humanidad misma, llevándolo a escala global y facilitando = los servicios brindados para el cliente o consumidor final, que ya puede conocer todo el mundo; pero al mismo tiempo complejizando y perfeccionando todos los procesos que dan como resultado la correcta gestión del sistema. La diferenciación entre estos actores: cliente o consumidor y gestor, es lo qu= e determina el nivel de complejidad percibido por la sociedad con relación al turismo.

Siguiendo este enfoque es común encontrar personas que hacen referencia al sector como el = de mayor facilidad para su gestión, viéndolo desde la perspectiva del cliente= el cual en menos de 30 minutos se puede gestionar unas vacaciones de excelencia del otro lado del mundo. Pero se debe tener en cuenta que detrás de esta si= mple acción que no depende más que del poder adquisitivo y del deseo del consum= idor, se desarrolla todo un sistema turístico.

El desarrollo económico a partir de la gestión turística en cada país está ligado al = nivel de competitividad que alcanza la mismo, y esto se logra no solo con la experien= cia de los directivos y la confianza en el poder de atracti= vidad de los productos turísticos; sino con estudios certeros y confiables que determinen necesidades reales de los turistas, oportunidades de desarrollo y= la aplicación de las Tecnologías de la Información y las Comunicaciones (TIC= ).

La seriedad y confianza de estos estudios es basada en la matemática y su sinfín de aplicaciones para el desarrollo, por lo tanto, la presente investigación ti= ene por objetivo:

Objetivo general:

Demostrar la importancia de las matemáticas en la gestión turística de un destino.

Objetivos específicos:

·      Caracterizar las herra= mientas matemáticas con aplicación en el turismo.

·      Evaluar la incidencia = de las herramientas en el desarrollo de la gestión turística.

Metodología:

  “busca identificar característica= s del universo de investigación, señala formas y actitudes del universo . (Méndez Álvares, 2001)

 Los documentos fueron parte principal desde el inicio de esta investi= gación, basados en ellos se pudo evaluar la incidencia real de las matemáticas en e= l turismo a partir de ejemplos prácticos reales o docentes en los que se realizaban distintos estudios sobre el tema.

Resultados:=

La estadística descriptiva:<= /p>

La estadística descriptiva ha venido siendo utilizada como una herramienta fundamental a la hora de llevar a cabo investigaciones en el área del turis= mo, dado que permite conocer lascaracterísticas de poblaciones concretas, y además r= ealizar predicciones sobre la evolución de estas características. (Organización Mundial del T= urismo (OMT), 2017)

En = el caso del turismo, la estadística permite estudiar y sistematizar la evoluci= ón de la realidad turística, por ejemplo, la estacionalidad, el crecimiento, l= os ciclos, los impactos de laactividad, etc. También permite conocer la evolución= de un determinado destino turístico valorando = su gestión a corto y largo plazo. Por último, la estadística descriptiva per= mite analizar los errores y logros observados = en el pasado con el fin de establecer políticas correctoras o potenciar las estrategias de futuro. (Organización Mundial del Turismo (OMT), 2017)

 Para el empresario turístico:

·   &nb= sp;  Proporciona más y mej= or información sobre el sistema turístico.

·&nb= sp;     Aumenta la competitivi= dad al permitir un mayor conocimiento del mercado y del entorno en el que se desarrolla la actividad turística.

·   &nb= sp;  Reduce la incertidumbr= e y el tiempo de reacción ante los cambios en los requerimientos de los clientes.

·   &nb= sp;  Reduce los costes generados por los errores.

  Para el sector público:<= span lang=3DES-MX style=3D'font-size:12.0pt;line-height:115%;font-family:"Times N= ew Roman",serif; mso-ansi-language:ES-MX'>

·   &nb= sp;  Actúa de forma más competitiva al tener mayor información.

·   &nb= sp;  Es una fuente de información importante.

·   &nb= sp;  Detecta la importancia del sector sobre el resto de la economía.

·   &nb= sp;  Permite realizar planificaciones estratégicas.

Los datos empleados en las investigaciones turísticas tienen distintas clasificacione= s en dependencia de su uso y finalidad. Principalmente se agrupan en datos de cor= te transversal, de series temporales y de panel.

son los que se obtienen cuando, en un momento determinado del tiempo= , se analizan los distintos valores de una misma variable según una serie de criterios (por ejemplo: gasto en turismo per cápita en el año 1999 para la= s cinco nacionalidades con mayor afluencia de turismo; pernoctaciones en el me= s de agosto según categorías hoteleras; entradas vendidas en un fin de seman= a en un parque temático según grupos de edad; etc.).

Una misma variable puede ser medida según diversos criterios: la evolución en = el tiempo, subgrupos humanos, regiones geográficas, etc. Según el criterio qu= e se ha establecido se pueden establecer posteriormente unas comparaciones u otra= s. Cuando se escoge el primer criterio (evolución temporal) se obtiene un tipo= de datos conocidos como datos de serie= s temporales, que reciben un tratamiento diferenciado del resto. (Organización Mundial del Turismo (OMT), 2017)<= /span>

es el conjunto de medidas de una variable de interés tomadas = a lo largo del tiempo. El empleo de datos de series temporales tiene gran importancia dado que permite:

·&nb= sp;     Estudiar el comportamiento de una variable en el tiempo, es decir, si ha habido crecimie= nto o decrecimiento. 

·&nb= sp;     Conocer la existencia = de efectos estacionales.

·&nb= sp;     Distinguir si un determinado movimiento es ocasional o cíclico (y por lo tanto, es de espera= r que se repita).

·&nb= sp;     Comparar la evolución= de variables del turismo (pernoctaciones, gasto en turismo,

·&nb= sp;     etc.) con la de otro t= ipo de variables económicas (inflación, tipo de cambio, etc.), sociales (pobla= ción, nivel de vida, etc.), medioambientales, etc.

Datos de panel cuando se observa la evolución de una variable en el tiempo y adem= ás  se incluye algún otro tipo de criterio de comparació= n dentro del mismo período de tiempo, combinando, por lo tanto, la información temporal y de corte transversal.

Ent= re los análisis más comunes desarrollados en el turismo se encuentran los an= álisis de distribuciones bidimensionales.<= /b>

favorece el entendimiento de la realidad turística y = ayuda a la toma de decisiones, tanto a nivel p= úblico como en el contexto de las empresas turísticas. Igualmente, este análisis favorece la previsión futura y la evoluc= ión de dichas variables en el tiempo. 

Muc= has investigaciones realizadas en el campo del turismo han presentado estudios donde  se han estab= lecido relaciones entre variables atendiendo a la experiencia y al conocimiento teórico de la realidad turística. =

 modelos dond= e se ha relacionado  la variable demanda, b= ien medida de una forma cuantitativita (núme= ro de turistas) o de una forma economicista (gasto turístico), con un conjunto de variables que han permitido explicar sus movimientos y dinamismo (Organización Mundial del Turismo (OMT), 2017). De esta forma = se pueden desarrollar estrategias enfocadas al aprovechamiento de estas variabl= es incidentes para favorecer el crecimiento de la demanda turística.

La optimización en el turismo a partir= de la programación lineal:

Como parte del proceso de planificación de cualqui= er empresa resulta de vital importancia una organización que permita hacer un = uso óptimo de los recursos. La optimización, implica determinar la asignación= más eficiente, en el que el principal objetivo es minimizar costos y tiempo, as= í como maximizar las utilidades.

La programación lineal trata sobre la planeación de las actividades para obtener un resultado óptimo, esto es, el resultado que mej= or alcance la meta especificada (según el modelo matemático) entre las alternativas de solución. En este caso la palabra “programación” no se refiere a programación en computadoras; sino que = se le utiliza como sinónimo de planeación (Alvarado Boirivant, 2009), y es una herramienta de investigación operativa que se define como un algoritmo matemático con una función objetivo y restricciones que son formuladas a t= ravés de ecuaciones lineales que determina la asignación óptima de recursos escasos (Osorio Cuellar, 2016).=

Generalmente la utilización de esta herramienta está basada en dos objetivos fundamentales= a partir del modelo matemático a emplear:

1.     Maximización.

2.      Minimización.

En forma resumi= da se afirma que la programación lineal es un método matemático de resoluci= ón de problemas donde el objetivo es optimizar (maximizar o minimizar) un resultad= o a partir de seleccionar los valores de un conjunto de variables de decisión, respetando restricciones correspondientes a disponibilidad de recursos, espe= cificaciones técnicas, u otras condicionantes que limiten la libertad de elección. Medi= ante la programación lineal se puede representar un sistema de producción a par= tir de un modelo o matriz en el que se incluyen (Fernández, 2015):

·      Costos e ingresos gene= rados por unidad de actividad (función objetivo).

·      Aportes y requerimient= os de insumos y productos por unidad de cada actividad considerada (coeficientes insumo/producto).

·      Disponibilidad de recu= rsos, especificaciones técnicas y empresariales a respetar (valores del lado dere= cho de las restricciones).

En concreto, permite analizar y elegir la mejor entre muchas alternativas. En términos generales se puede pensar en la programación lineal como un medio= para determinar la mejor manera de distribuir una cantidad de recursos limitados = en procura de lograr un objetivo expresable en maximizar o minimizar una determinada cantidad (Fernández, 2015).

La aplicación = de esta herramienta matemática se hace cada vez más necesaria en la planifica= ción de las disímiles actividades dentro del sector turístico, entre ellas se p= ueden citar:

1.     Aplicación en el mark= eting:

Conociendo todas las características de los clientes a los que está enfocada la campaña de mar= keting se generan una serie de restricciones referentes a la forma de llegar a cada consumidor del producto o servicio brindado, considerando, por ejemplo: variabilidad de edades, regiones geográficas, idiomas, costumbres, status social, etc. Con ellas se determina la campaña = de marketing más idónea para la reducción de costos.

2.     Aplicación en la restauración:

En esta parte de la prestación de servicios hoteleros y extra-hoteleros es muy variada la aplicación de este tipo de herramienta; ejemplo:

En la investigación d= el doctor José Fernández García, de la facultad de economía de la universid= ad de la habana, cuyo objetivo era el de maximizar la ganancia del restaurant sin aumentar el número de platos vendidos y  manteniendo o disminuyendo el costo directo del mismo, se determinó optimización de las ganancias a part= ir de aplicar un modelo de programación lineal determinando como variables independientes cada uno de los alimentos de la carta menú y como restriccio= nes el máximo número de paltos que pueden vender de cada uno. Al final el mode= lo determino los platos que más insidian en la rentabilidad del restaurante y = los que por su resultado nulo era conveniente retirar de la misma. Estos resulta= dos fueron comparados con otros estudios como los de ingeniería de menú y la observación del comportamiento los platos en un mes y arrojaron resultados = de alta similitud, demostrando la veracidad del modelo utilizado.

3.     Aplicación en el tran= sporte aéreo:

Podemos hablar de opti= mización del espacio de pista consumido por cada aeronave. Esta está ligada a restricciones de tiempo en cuanto a: tiempo de revisión de la aeronave, car= ga de combustible, monta de pasajeros y equipaje, etc. A partir de este método= se determina el uso óptimo del tiempo de cada aeronave en la pista para una me= jor gestión.  

4.     Aplicación en el tran= sporte terrestre (ómnibus):

La reducción de costo= s a partir de la optimización de combustible. Considerando como restricciones p= ara su huso, el consumo de cada ómnibus, la cantidad de viajes, el consumo por viajes, la cantidad de ómnibus, la cantidad disponible de combustible, entr= e otras.

5.     Aplicaciones en la ges= tión de servicios:

Se pude tomar por ejem= plo la optimización de la cantidad de dependientes que operan en uno de los salone= s de un restaurante, como restricciones se tienen en cuenta la cantidad de mesas = a atender por dependiente, la cantidad de mesas del salón, etc.

6.     Aplicaciones a la log= ística:

Este es posiblemente l= a parte donde la programación lineal se utilice, o se deba utilizar con mayor frecuencia y eficiencia puesto que las actividades logísticas buscan constantemente la reducción de costos, adema de tener incorporadas otras actividades de necesaria optimización como el transporte, el almacenaje, la= compra y distribución de recursos.

La informática y las comunicaciones.

Hasta el momento en esta investigación= se han mencionado herramientas y modelos matemáticos que facilitan la gestión= de las actividades que se desarrollan en el turismo, pero en la actualidad su u= so o aplicación no se realiza de forma manual. Para el desarrollo de estas actividades se ha implementado todo un mundo tecnológico basado en la informática y las comunicaciones.  

Las tendencias actuales de las Tecnologías de la Información, que se manifiestan en el desarrollo prioritario de las comunicaciones y de la multimedia, vienen a satisfacerlas necesidades de información del sector turístico de una forma= muy adecuada. Hablar de turismo y tecnologías de la información es referirse a= las dos áreas económicas de mayor proyección para el siglo XXI. La utilizaci= ón de la Tecnología de la Información y las Comunicaciones (TIC) incide en la me= jora de la calidad en sus dos vertientes, por un lado, produciendo ahorro de cost= es y optimizando los procesos, lo que redunda en la mejora de la gestión. Por = otro lado, la aplicación de estas tecnologías posibilita la prestación del ser= vicio en mejores condiciones y la incorporación de nuevos servicios, lo que redun= da en la mayor satisfacción del cliente=  (Instituto de Estudios Turis= ticos, 2012).

U= na relevancia creciente ante los avances tecnológicos y su rápida adopción p= or la demanda que han configurado un nuevo escenario turístico observaba que el <= i>e-tourism constituía el reflejo de la digitalización de todos los procesos de la cad= ena de valor turística, una revolución digital que ha modificado sustancialmen= te la gestión turística. Incluso, la omnipresencia actual de las TIC desde el la= do de la oferta (gestión y marketing, fundamentalmente) y de la demanda (informac= ión, reserva, compra y experiencia turística) diluye la diferenciación entre lo= s procesos en línea (online) y fuera de línea (offline) (Ivars= Baidal, Solsona Monzonís, & Giner Sánchez, 2016).

L= as fuerzas motrices que han provocado este cambio pueden sintetizarse en tres apartados fundamentales: la rápida evolución tecnológica, los cambios en = la demanda y la búsqueda de una mayor competitividad. En una actividad intensi= va en el uso de información, la generalización de Internet ha supuesto una re= volución en el consumo, la producción y la comercialización turística (Ivars= Baidal, Solsona Monzonís, & Giner Sánchez, 2016).

L= a adopción de Internet y el desarrollo del e-commerce fueron más ráp= ida en el turismo que en otros sectores económicos y, a pesar de la estructura de pequeñas y medianas empresas, los niveles de utilización de las TIC en est= e ámbito son elevados (Ivars Baidal, Solsona Monzo= nís, & Giner Sánchez, 2016).

La aplicación = de la informática marca un crecimiento exponencial en el desarrollo del turism= o y de su gestión. Como ejemplo se pueden tomar la implementación de software = para las gestiones de recepción de un hotel, los sistemas de reservas en las agencias de viajes, los Sistemas Globales de Distribución (GDS), el desarro= llo de internet y sus muchos usos como son los servicios online, las pasarelas d= e pago, los correos electrónicos, las redes sociales, el surgimiento de las Agencias de Viajes Online (OTA), las Big Datas y los Sistemas de Inteligenci= a Turística, etc. Podrían ser innumerables las aplicaciones informáticas qu= e tributan de una forma u otra a la gestión del turismo.

 Como ejemplo se tomará el uso de las Bi= g Datas como herramienta informática para la gestión de empresas y destinos turís= ticos.

Cuando se habla de Big Data el termino es referido a conjunto= s de datos o combinaciones de conjuntos de datos cuyo tamaño (volumen), complejidad (variabilidad) y velocidad de crecimiento (velocidad) dificultan= su captura, gestión, procesamiento o análisis mediante tecnologías y herrami= entas convencionales, tales como bases de datos relacionales y estadísticas convencionales o paquetes de visualización, de= ntro del tiempo necesario para que sean útiles (Power Data, 2020).

La naturaleza compleja del Big Data se debe principalmente a la naturaleza no estructurada de gran parte de los datos generados por las tecnologías moder= nas, como los web logs, la identific= ación por radiofrecuencia (RFID), los sensores incorporados en dispositivos, la maquinaria, los vehículos, las búsquedas en Internet, las redes sociales c= omo Facebook, computadoras portátiles, teléfonos inteligentes y otros teléfon= os móviles, dispositivos GPS y registros de centros de llamadas.

El análisi= s de toda la amplia red de datos que se genera en una ciudad, en un país o en un= a región determinada es lo que le da la verdadera vida funcional a las big datas. El desarrollo de algoritmos de análisis determina información crucial en el estudio del turismo.

Todo lo anteriormente hablado en esta investigación se recoge y se lleva a la actualidad a través de softwares que se encargan del procesamiento y análi= sis de toda la información que pueda ser obtenida en un destino turístico.

Lo importan= te no es que la empresa o destino disponga de estos datos, sino que los trabaje para obtener información de valor. <= b style=3D'mso-bidi-font-weight:normal'> La informaci= ón obtenida facilitará la toma de decisiones predictivas, y, por ende, generar= á un impacto positivo en los resultados de = la compañía o destino gracias a la puesta en = marcha de acciones adaptadas a las necesidades reales del público objetivo.=

Aplicación de las Big Datas en Cuba:

 En Cuba a partir de 1997 se realizan las primeras instalaciones de un software = de origen portugués NewHotel. Con un diseño noved= oso fue el primer sistema instalado que usaba a plenitud las bondades y facilidades = del entorno Microsoft Windows y una poderosa base de datos en Oracle. Est= e llegó a emplearse en alrededor de 30 hoteles y unos 15 restaurantes. Sin du= da NewHotel fue el sistema que más mostró avances en su= época, por el amplio diapasón de sus soluciones y la novedad que incorporó a las mismas (Vázquez Alfonso, 2018).

Posteriormente surgió Zun, un desarrollo más moderno, con una concepción totalmente nacional, además de pasar a un ambiente moderno y co= n MySQL como gestor de base de datos. Zun mejoró significativamente su apariencia y funcionalidad respecto a NewHotel, llegando a ser el Sistema de Gestión Hotele= ra (SGH) de mayor presencia en las instalaciones hoteleras de Cuba. Los SGH son sistemas estratégicos para las cadenas cubanas y el MINTUR, pues la informa= ción que registran constituye la fuente de gran parte de la estadística general sobre los arribos de turistas, sus gustos, los aspectos de calidad, estudios= de segmentación, satisfacción, repitencia, reacci= ones a las rebajas, comportamiento de las Agencias del MINTUR, Cuentas por Cobrar i= nternacionales; aspectos de los que se ocupa el MINTUR (Vázquez Alfonso, 2018).

En la actualidad la demanda de servicio= s turísticos se encuentra creciendo y de ahí que las organizaciones turísti= cas cubanas tengan un papel fundamental en la gestión de la información turís= tica ofrecida al usuario final con el objetivo de aumentar la calidad del sector turístico de nuestro país. La información que se gestiona en estas entida= des es de suma importancia para la organización, sin embargo, se observa que no se realiza un correcto manejo de la misma, ya no se apoyan en las ventajas que ofrecen las nuevas tecnologías (Vázquez Alfonso, 2018).

A pesar de que el país cuenta con sist= emas informáticos para la captación de la información generada en los hoteles,= en las agencias de viajes, y alguno de los restaurantes, esta no basta para hab= lar de Big Data en Cuba. Estos sistemas generan bases de datos de carácter loca= l, para su uso en el establecimiento al que pertenezca. Las mismas son aprovechadas por las instituciones que monitorean el turismo en la zona o el destino al que pertenezcan, arribando a generalidades a partir de estos caso= s particulares.

Para poder implementar sistemas de información Big Data es necesario:

·      Extender la implementación de estos sistemas locales a todas= las entidades vinculadas al sector turístico.

·      Modernizar constantemente los softwares empleados en la generación de las informaciones en tiempo real.

·      Capacitar profesionales para que se desempeñen como científ= icos de datos.

·&nb= sp;     Diseñar una = base de datos multidimensional que logre vincular toda la información de los servicios turísticos.

·&nb= sp;     Implementar e= l banco de datos para el monitorio y toma de decisiones en el sector turístic= o.

El desarrollo de esta base de datos se debe realizar de manera gradual; monitoreando los resultados que genera para poder corregir los errores que puedan ser visualizados. La implementación debe hacer inicialmente por zona= s y destinos turísticos, con el objetivo de ir vinculando todos los servicios d= ados, y las opiniones generadas en cada uno de ellos, hasta lograr integraciones d= e Big Data a niveles provinciales, y nacional.

Conclusiones.

·      La presente investigac= ión permitió arribar a las siguientes conclusiones:

·      Las herramientas permi= ten conocer las características de poblaciones concretas, y además realizar predicciones sobre la evolución de estas características.

·      La aplicación de mode= los matemático es extensiva a todas las actividades dentro del sector turístic= o.

·      El uso de las TIC marc= a el desarrollo de los destinos turísticos elevando su competitividad.

·      Es necesaria la aplica= ción de sistemas de análisis de grandes volúmenes de información en tiempo real e= n el destino Cuba para la mejor gestión turística.

 

Referencias bibliográficas.<= /p>

Alvarado Boirivant, J. (29 de enero de 2009). La Programacion Lineal, aplicacion de = las pequeñas y medianas empresas. Obtenido de Reflexiones: http://www.redalyc.org/articulo.oa?id=3D72912559007

Fernández, G. (2015). Un Modelo de programacion lineal para la optimizacion de la ganancia en un estaurant y s= u comparacion con otras tecnicas utilizadas de perfeccionamiento del menu. La Habana: Univercidad de la Habana.

Guevara, A., Aguayo, M., Aguayo, A., & Araque, F. (2013). Informática aplicada al turismo. Ediciones Pirám= ide, 312.

Instituto de Estudios Turisticos. (201= 2). Tegnologia de la informacion en el turismo. Madrid, España: Secretaría de Estado de Comercio, Turismo y Pymes.

Ivars Baidal, J., Solsona Monzonís, J= ., & Giner Sánchez, D. (2016). Gestión turística y tecnologías de la información. Documents d’Anàlisi Geogràfica 2016, 327-346.<= /span>

Méndez Álvares, C. E. (2001). Metodología. Diseño y desarrollo del proceso de investigación., 137.

Millán Gasca, A. (2006). La aplicaci= ón de las Matematicas a los problemas de administración y control: Antecedentes Históricos. ILUIL, vol.26, 929-961.

Organización Mundial del Turismo (OMT= ). (26 de mayo de 2017). Apuntes de Metodología de la Investigación en el Turismo. Obtenido de e-unwto.org: http://www.e-unwto.org/doi/book/10.18111/= 9789284404889 - Friday, May 26, 2017 7:39:52 PM - Secretaría de Turismo IP Address:189.204.93.100

Osorio Cuellar, P. B. (2016). Programación lineal para la distribución de viajes en. Lima: Universidad Nacional de San Marcos, Facultad de Ciencias Matemáticas.

Power Data. (29 de enero de 2020). Pow= er data. Obtenido de Power data: https://www.powerdata.es/big-data<= /span>

Vázquez Alfonso, Y. (2018). Banco de datos turísticos para el monitoreo y toma de decisiones en entidades del T= urismo. La Habana: Facultad de Turismo.

 

 

 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif; background:yellow;mso-highlight:yellow'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif; background:yellow;mso-highlight:yellow'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif; background:yellow;mso-highlight:yellow'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif; background:yellow;mso-highlight:yellow'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif; background:yellow;mso-highlight:yellow'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif; background:yellow;mso-highlight:yellow'> 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif'>Para citar el artículo indexado

 

 

Armstrong Zulueta, D. (2020). Importancia del vínculo entre las matemáticas y el Tur= ismo. AlfaPublicaciones, 1(2), 17–29. https://doi.org/10.33262/ap.v1i2= .9

 

 


 

 

 

El artículo que se publica es de exclusiva responsabilidad de los autores y no necesariamente reflejan el pensamiento de la Revis= ta Alpha Publicaciones.

 

El artículo queda en propiedad de la revista y, por tanto, su publicación par= cial y/o total en otro medio tiene que ser autorizado por el director de la Revista Alpha Publicaciones.

 

 

 

 



= [1]= Universidad de La H= abana. Facultad de Turismo. La Habana, Cuba. darielarmstrong@gmail.com

------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Wul13JournalArticle{85036D1D-B423-4696-A9F8-74A5479186CA}The effec= t of polymer surfactant on the rheological properties of nanoemulsions.Colloid and Polymer Science 2013= 709–716291Wulff-Pérez MiguelMartín-RodriguezAnton= ioGálvez-RuizMarí= a J.de VicenteJuan<= /b:First>11Zam15JournalArticle<= /b:SourceType>{FB40766B-903F-463C-A57E-3F34CA9E5021}Composite chitosan/Agarose ferrogels for potential applications in magneti= c hyperethermiaGels.201569-801Zamora MoraVanessaSoaresPaula I.P.EcheverriaCoro<= b:Person>Hernández RebecaMijangosCarmen5Bha10JournalArticle{3EC2A2= EA-5A35-480A-9A1D-C11383B455BF}Supermacroprous chitosan-ag= arose-gelatin cryogels. in vitro characterization and in vivo assesment for = cartilage tissue engineering.Journal of the Royal S= ociety Interface20101-15= BhatSmur= itaTripathiAnujKumarAshok4Rui04Report{289ADC54-049A-4459-B615-36603B0D1B08}Desarrollo de un Si= stema de liberación de fármacos basado en nanopartículas magnéticas recu= biertas con Polietilénglicol para el tratamiento de diferentes enfermedades= .2004Universidad Autónoma de Madrid= . Departamento de Física Aplicada.MadridRuiz Estrada= Gladys Amalia9Cor11Jo= urnalArticle{2CE82786-F4F8-40AE-B743-82C4554E5E89}Hidrogeles nanoestructurados termosensibles sintetizados medi= ante polimerización en microemulsión inversa.Revi= sta Mexicana de Ingeniería Química.2011513-520103CortésJ. A.PuigJ. E.Morales J. A.= MendizábalE.13MarcadorDePosición1JournalArticle{819DA773-947B-4BC2-855C-003DB219D8AF}Enhanced = spinnability of narbon nanotube fibers by surfactant additionFiberes and Polymers2014= 762-766154Song Junyoung<= /b:Person>KingSoyo ungYoon SoraChoDaehwanJeongYoungjin12Ilg13JournalArticle{752C8BEE-7C38-4885-= 8859-F65068501C9B}Stimuli-responsive hydrogels cross-linke= d by magnetic nanoparticles.Soft Matter20133465-34689<= b:Author>IlgPatric= k14Bos15JournalArticl= e{8726F6AC-1312-4A0D-94FD-908B651CD5BC}Functionalized microfibers for field-responsive materials and biological= applications.2015BossisGeorgesMarinsJéssica A.KuzhirPavelVolkovaOlgaZubar= evAndreyJournal of Intelligent Material Systems and Structures<= /b:JournalName>1-915<= b:Source>Lin12JournalArticle{CABBB6F0-E9CB-4C6D-BB4E-88B488FEA5A4}Microfluidic syn= thesis of microfibers for magnetic-responsive controlled drug release and ce= ll culture.PLoS ONE20121-873LinYung-ShengHuangKeng-ShiangYangChih-HuiWangChih-YuYangYuh-ShyrongHsuHsiang-ChenLiaoYu-Ju= TsaiChia-Wen<= /b:Author>3Tar05JournalArticle{8A89917D-A7C1-4E7C-9FB6= -ED9C063087E3}Advances in magnetic nanoparticles for biote= chnology applications.Journal of Magnetism and Magn= etic Materials200528-34<= b:Volume>290Tar= tajP.MoralesM. P.González-CarreñoT.Veintemillas-Verdagu= erS.Serna<= b:First>C. J.1Gar03Jo= urnalArticle{9B65BBFA-A814-4A04-9249-A6A47D160DAB}Síntesis y propiedades de ferrofluidos de magnetita2003Superficies y Vacío.28-31161<= b:Author>García-CerdaL.A.Rodríguez-Fernández= O.S.Betancourt-GalindoR.Saldívar-GuerreroR.Torres-Torres= M.A.2Dia11JournalArti= cle{7FD6F7BB-B6BD-4D3D-AC43-1AF5FDBD6366}A biotechnological perspective on the application of iron oxide magnet= ic colloids modified with polysaccharides.2011DiasA.M.G.C= .HussainA.MarcosA.SRoqueA.C.A.142–155Biot= echnology Advances 29 296Lew11JournalArt= icle{69BACEF5-DDAD-42EE-BC36-71ACEA6223A9}Biohybrid carbon nanotube/agarose fibers for neural tissue engineerin= g.2011Advanced Functional Material= s2624-263221LewitusDan Y.BranchJonathan R.SmithKaren L.<= /b:Person>CallegariGerardoKohnJoachim<= b:Person>NeimarkAlexander V.<= /b:NameList>7Est10JournalArticle= {AD2B1400-8746-4FD6-8914-4CA8F67548A7}Hidrogeles poliméri= cos potencialmente aplicables en Agricultura.2010= Revista Iberoamericana de Polímeros= 76-87122Estrada GuerreroRodolfo F.= Lemus TorresDafneMendoza AnayaDemetrio= Rodriguez LugoVentu= ra8Ald16JournalArticl= e{D12368F2-04FB-475B-B3C1-20843943EEEC}Facile synthesis of magnetic agarose microfibers by directed selfassembl= yPolymer201661-6493AldanaSamuel= VeredaFernandoHidalgo-AlvarezRoquede VicenteJuan10Sch04= Book{B590303F-AB7B-4692-9264-89= F4323A4D6E}Schnei= derBenOutsourcing, la herramienta de gestión que revoluciona el mund= o de los negocios.2004Grupo Editoria= l Norma1T= om18BookSection{B1BEB230-B3B2-4= 98B-ACB3-CEB2529A9EB6}Ramírez-FierroTomásF. Espino-Ro= dríguez y Juan CarlosLA INTENSIDAD DE LA EXTERNALIZACIÓN HOTELERA Y SUS BENEFICIOS Y= RIESGOS PERCIBIDOS 2018161-186Gran CanariaISSN 1139-786141Universidad de Murcia/ Universida= d de Las Palmas de Gran CanariaDigitalhttp://dx.doi.org/10.6018/turismo.41.326991.2Laf08R= eport{1CAC14A3-83BC-4C8B-BF82-76329D73FF36}<= b:Author>LaffontJe= an-JacquesT= he New Palgrave Dictionary of Economics. Second Edition.20= 08http://www.dictionaryofeconomics.com/article?id=3Dpde2008_= E000200>The New Palgrave Dictionary of Economics On= line.Digital 2018Noviembre2010.1057/9780230226203.05373Ame16ConferenceProceedin= gs{D08CC112-FD95-4A79-BF36-F491D5809771}American Managment Association (AMA) Economics Fundaments 20= 164Mén01JournalArticle{6EE3CA85-E5B6-49BB-8F= DF-4FEBAD2B3830}MetodologíaDise= ño y desarrollo del proceso de investigación.2001<= /b:Year>137Méndez ÁlvaresCarlosEduardo1Org17DocumentFromInterne= tSite{56DF4DA3-2AE0-41CC-879F-105614ED99DC}<= b:Author>Organización Mundial del Turismo (OMT)Apuntes de Metodología de la Invest= igación en el Turismo2017e-= unwto.orgmayo26http://www.e-unwto.org/doi/book/10.18111/9789284404889 - Friday, May 26, 2= 017 7:39:52 PM - Secretaría de Turismo IP Address:189.204.93.1002Alv19DocumentFromInternetSite{52F81B45-26BC-445C-95A1-5C= 12F985B81E}La Programacion Lineal, aplicacion de las peque= ñas y medianas empresas2009= Reflexionesenero29http://www.redalyc.org/articulo.oa?id=3D72912559007Alvarado BoirivantJo= rge3Oso16Book{9094F92C-B3EC-4C79-AB45-6EA21AAF6974}Osorio CuellarPaulaBeatrizProgramación lineal para la distribución de viajes en2016LimaUniversidad Nacion= al de San Marcos, Facultad de Ciencias Matemáticas4Fer15Book{7C2336BF-80DE-42BA-AF81-3DA704267C1A}FernándezGarcí= aJoséUn Mo= delo de programacion lineal para la optimizacion de la ganancia en un estau= rant y su comparacion con otras tecnicas utilizadas de perfeccionamiento del= menu.2015La Habana= Univercidad de la Habana5<= b:Source>Ins12Book{12E62= B78-B588-42A5-A901-52F5EE585A52}In= stituto de Estudios TuristicosT= egnologia de la informacion en el turismo2012Madrid, EspañaSecretaría de Estado de Comercio, = Turismo y Pymes6= Iva16JournalArticle{7B78= 22CF-F19D-4E15-93C9-5BAACCB00EE2}Gestión turística y tec= nologías de la información2016Ivars BaidalJosepSolsona MonzonísJavierGiner SánchezDavidDocuments= d’Anàlisi Geogràfica 2016327-3467Pow20InternetSite{473C87AF-2298-4D22-BC8A-B3869FB39C87}Power data2020Power DataPower dataenero29https://www.powerdata.es/big-data8= Váz18Book<= b:Guid>{8D4DD832-9A4D-40B9-92FE-20ED1C2DAD2A}Vázquez AlfonsoYasserBanco de datos tur= ísticos para el monitoreo y toma de decisiones en entidades del Turismo.2018La HabanaFacultad = de Turismo9 ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQAC Thl/wwYAAFEaAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZz48bNRS+I/E/WHNP82smP1bN Vskk6UJ326pJi3r0Jk7GXc84mnF2G1WVUHtEQkIUxIFK3DggoFIrcSl/zUIRFIl/gWfPZGInDtuu elih7l4ynu89f37P/p49vnzlfsjQMYkTyqOWU75UchCJRnxMo2nLuT3sFxoOSgSOxpjxiLScBUmc K7sffnAZ74iAhASBfZTs4JYTCDHbKRaTETTj5BKfkQjeTXgcYgGP8bQ4jvEJ+A1ZsVIq1YohppGD IhyC2yHYoDFBNyYTOiLO7tJ9j0EfkUhkw4jFA+mcZDYadnxUlohkkfgsRseYtRzoacxPhuS+cBDD iYAXLaek/pzi7uUi3smMmNhiq9n11V9mlxmMjyqqz3h6mHfqup5ba+f+FYCJTVyv3qv1ark/BcCj EYw05aL79DrNTtfLsBoo/Wnx3a13q2UDr/mvbnBue/LfwCtQ6t/dwPf7PkTRwCtQivc28K5br/iu gVegFF/bwNdL7a5bN/AKFDAaHW2gS16t6i9Hm0MmnO1Z4U3P7dcrmfMVCmZDPrtkFxMeiW1zLcT3 eNwHgAQyLGiExGJGJngE89jHjB7GFO3TaSBkN3iHYO192jRKNppkjygZxXQmWs7HMwwrY+X1n5c/ /vPyOTp99OL00S+njx+fPvo5dWRY7eFoqlu9/v6Lv59+iv56/t3rJ1/Z8YmO//2nz3779Us7EBbR is6rr5/98eLZq28+//OHJxZ4O8aHOnxIQ5Kg6+QE3eIhDExFxWRODuO3sxgGmOoW7Wia4AjLXiz+ eyIw0NcXmGELrkPMCN6JQURswKvzewbhQRDPBbV4vBaEBvCAc9bhsTUK12RfWpiH82hq7zye67hb GB/b+vZxZOS3N5+BelKbSz8gBs2bDEcCT0lEBJLv+BEhltHdpdSI6wEdxTzhE4HuUtTB1BqSIT00 ZtPKaI+GkJeFjSDk24jNwR3U4cw26i45NpGwKjCzkB8SZoTxKp4LHNpcDnHI9IDvYxHYSA4W8UjH 9RIBmZ4SxlFvTJLEZnMjhvFqSb8GAmJP+wFbhCYyFvTI5nMfc64ju/zID3A4s2EHNAp07EfJEUxR jG5yYYMfcHOFyGfIA462pvsOJUa6z1aD26CdOqXVBJFv5rEll1cJN+bvYMEmmCipAWk3FDuk0Zny nfbw7oQbpPLVt08tvC+qZLdjal0ze2tCvQ23Ls8+j8f04qtzF8+jmwQWxGaJei/O78XZ+d+L87b1 /O4leaXCINByM5hut9XmO9y6955QxgZiwch+orbfCdSecR8apZ06eZL8LDYL4KdcydCBgZvGWNmg mItPqAgGAZ7B1r3sSCfTJHM9TdCMJ3BkVM1W3xLP5uEBH6dHznJZHi9T8UiwWLWXvLwdjgsiRdfq q2NU7l6xnarj7pKAtH0bElpnJomqhUR92SiDpA7XEDQLCTWyd8KiaWHRkO6XqdpgAdTyrMDmCMGW quV4LpiAEZyZMCNjmac01cvsqmS+y0xvC6YxA0rwZSObAatMNyXXrcOTo0un2htk2iChTTeThIqM qmFJgOGrivogkqUwWxAbUV7ReNtcN1cpNejJUGSx0GjUG/8VjPPmGuzWtYFFulKwCJ20nFrVgykz wrOWM4GjO/wMZzB3ErmpxWwKX8BGIk4X/HmUZRYnoouTIA24Ep1UDUIqSIwYDVuOHH4+G1ikNERx K1dAEC4suSbIykUjB0k3k0wmEzISetq1Fhnp9BEUPl0F1rfK/PxgacnnkO5BMD5Bh2we38Iwxbx6 WQZwTBP4vlNOozmm8EkyF7LV/FsrTJns6t8E1RxK2zGbBTirKLqYp3Al5Tkd9ZTHQHvKxgwB1UKS FcLDqSywelCNappXjZTD1qp7tpGMnCaaq5ppqIqsmnYxNXpYloG1WJ6vyGusliGGcqlX+FS61yW3 udS6tX1CXiUg4Hn8LFX3DQqCRm3VmUFNMt6UYanZWatZO5YDPIPamxQJTfVrS7drcctrhLU7aDxX 5Qe79VkLTZPlvlJFWt1e6NcL/PAeiEcXPuTOmUhUKuHyIMawIRqoapnKBiyR+yJbGvALzWPach6U vLbrVzy/UGp4vYJbdUuFhteuFtqeVy33vHKp26k8hMIigrDspTcnffjYxBbZ/Ylq37hDCZff0y6N eFjk6m6kqIirO5RyxbhDSe9D0FBekTiIgug8qFX6zWqzUys0q+1+we12GoWmX+sUujW/3u13fa/R 7D900LECu+2q79Z6jUKt7PsFt1aS9BvNQt2tVNpuvd3oue2H2TYGRp7KRxYLCK/itfsvAAAA//8D AFBLAwQUAAYACAAAACEADdGQn7YAAAAbAQAAJwAAAHRoZW1lL3RoZW1lL19yZWxzL3RoZW1lTWFu YWdlci54bWwucmVsc4SPTQrCMBSE94J3CG9v07oQkSbdiNCt1AOE5DUNNj8kUeztDa4sCC6HYb6Z abuXnckTYzLeMWiqGgg66ZVxmsFtuOyOQFIWTonZO2SwYIKObzftFWeRSyhNJiRSKC4xmHIOJ0qT nNCKVPmArjijj1bkIqOmQci70Ej3dX2g8ZsBfMUkvWIQe9UAGZZQmv+z/TgaiWcvHxZd/lFBc9mF BSiixszgI5uqTATKW7q6xN8AAAD//wMAUEsBAi0AFAAGAAgAAAAhAOneD7//AAAAHAIAABMAAAAA AAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAUAAYACAAAACEApdan58AAAAA2 AQAACwAAAAAAAAAAAAAAAAAwAQAAX3JlbHMvLnJlbHNQSwECLQAUAAYACAAAACEAa3mWFoMAAACK AAAAHAAAAAAAAAAAAAAAAAAZAgAAdGhlbWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbFBLAQItABQA BgAIAAAAIQACThl/wwYAAFEaAAAWAAAAAAAAAAAAAAAAANYCAAB0aGVtZS90aGVtZS90aGVtZTEu eG1sUEsBAi0AFAAGAAgAAAAhAA3RkJ+2AAAAGwEAACcAAAAAAAAAAAAAAAAAzQkAAHRoZW1lL3Ro ZW1lL19yZWxzL3RoZW1lTWFuYWdlci54bWwucmVsc1BLBQYAAAAABQAFAF0BAADICgAAAAA= ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/image007.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAwoAAABqCAYAAAAcJKbmAAAYf2lDQ1BJQ0MgUHJvZmlsZQAAWIWV eQdUFE2zds9GdlmWnHNOknPOOecosOScMypRJKgEAUVABRUEFUwEERURRBQRVMCASBAlqaCCICB3 CPq+n99//ntuc3rm2erqquqq7qkpBgDWEVJ4eDCCCoCQ0OhIawNtLkcnZy7sFIDgP3rAAZhJXlHh WpaWpgBuv+//2ZaHYF64PRfbkvXf4//fRuPtE+UFAOQKY0/vKK8QGLcDgCr3Co+MBgCzReeNiw7f wikwpouEDYRx0Rb228EXtrDnDm7b5rG11oFxPwBkBBIp0g8A4ghM54r18oPlENfhMZpQ74BQAOjh lWPUvfxJ3gCwWsI8e0JCwrbwPhgLwfzhMD4HY0XPf8n0+w/5nn/kk0h+f/DOurYbmW5AVHgwKeH/ 6Jr/vYUEx/zWIQB3gn+kofXW+mEfvgwKM9nCBBjPh3qaW2z5GsYrAd47fgcAgfePMbTb4UeweUXp wP4DDDCW9CbpmsCYDcb6ocHmprt0T98AfSMYwz5DxAdEG9nCmAnGWT5Reja7PGciw6x3dSGafCN1 tHbpD0mR23q3dI3GBNlp7cr/6u9jtCsfSUz0t3WAMR7GfLEB9uYwJsJYPCrIxmSXRzXRX8f8N09k jPWW/XwwtvYJNdDekY+M9Y3Ut97lzwmJ+r1e5Bn/ACPzXXwt2t/WcMc/yE4v0rb98FqQ/T6hWna/ 5fhEOZr+Xou3j67eztqR0z6hdja7clbCo7Wtd+ai8OHBlrv8KB6fYIMtOg+MZaNibXbnouyj4c25 Ix/lGx5tabtjJyoxkGRsuWMPKh+YAh2gC7hADNw9QRgIBAF9883z8K+dEX1AApHAD/gAsV3K7xkO 2yOh8NUGJIJPMPIBUX/maW+P+oBYmL7xh7pzFQO+26Ox2zOCwAcYhwATEAz/jtmeFfpHmz14D1MC /ks7Ce5esL3BcN8a/3/Tf1P/oWjBFNNdSsxvjVyUvzkxehhdjCFGHyOMYkGpo1RQpvBVE+7SKEWU 0u91/MOP/oAeQE+gB9Fj6FfuAWmRf1lpBsZg+fq7vvD8ty9QArBMOZQ2Sg2WDktGMaBYgBhKFtaj hdKANcvBVJ1du7e8wvWX7P9Ywb+iscuHk8QhcIw4TZzQ3zOJIkS5P1K2fP1v/+zY6vnH3zp/Rv7W r/Mv73vDd5O/OZFZyOvIbuQ9ZA+yDdkMuJB3kS3IXuTtLfxnd73f3l2/tVlv2xMEywn4L32kXZ1b noySvCg5I7m+MxbtEx+9dfB0wsITIgP8/KO5tODs4MNlFOolvodLWlJaCoCtXLPz+PpmvZ1DIIan /9B8pgFQhc8Mrv8fWuAxAOq6AGDM+Ycm4AIA8x4Arj7ziomM3aGhti5o+ClBCZ80ZjiP8QIheD3S QB6oAE2gB4yBBbAFTsAN9rI/vM8jQRzYB1JBJsgF+aAYnASnwVlwAVwG10AzaAP3wAPwGPSDQfAG 3j1TYA4sgGWwBkEQFqKAaCFmiBPih0QhaUgRUof0IFPIGnKCPCA/KBSKgfZB6VAuVAidhCqhWugq dBO6B/VAA9AraByagb5CPxFIBAFBh2BHCCAkEIoILYQJwhaxF+GHiEAkIjIQRxEnEFWIS4gmxD3E Y8QgYgwxh1hCAiQ5kgHJjRRDKiJ1kBZIZ6QvMhJ5AJmDLEFWIeuRrXCcnyPHkPPIVRQGRYviQonB O9gQZYfyQkWgDqAOo06iLqCaUJ2o56hx1ALqF5oCzYYWRSujjdCOaD90HDoTXYKuRjeiu+CzNIVe xmAwDBhBjAJ8Fp0wgZgkzGFMBaYB044ZwExilrBYLDNWFKuGtcCSsNHYTGwp9hL2LvYZdgq7QkZO xkkmTaZP5kwWSpZGVkJWR3aH7BnZR7I1HBWOH6eMs8B54xJwebhzuFbcU9wUbg1PjRfEq+Ft8YH4 VPwJfD2+Cz+C/0ZOTs5DrkRuRR5AnkJ+gvwK+UPycfJVAg1BhKBDcCXEEI4SagjthFeEbxQUFAIU mhTOFNEURylqKe5TjFKsEGmJ4kQjojcxmVhGbCI+I36mxFHyU2pRulEmUpZQXqd8SjlPhaMSoNKh IlEdoCqjukk1TLVETUstRW1BHUJ9mLqOuod6mgZLI0CjR+NNk0FzluY+zSQtkpaXVofWizad9hxt F+0UHYZOkM6ILpAul+4yXR/dAj0NvSy9PX08fRn9bfoxBiSDAIMRQzBDHsM1hiGGn4zsjFqMPozZ jPWMzxh/MLEyaTL5MOUwNTANMv1k5mLWYw5iLmBuZn7LgmIRYbFiiWM5xdLFMs9Kx6rC6sWaw3qN 9TUbgk2EzZotie0sWy/bEjsHuwF7OHsp+332eQ4GDk2OQI4ijjscM5y0nOqcAZxFnHc5Z7noubS4 grlOcHVyLXCzcRtyx3BXcvdxr/EI8tjxpPE08LzlxfMq8vryFvF28C7wcfKZ8e3ju8j3mh/Hr8jv z3+cv5v/h4CggIPAIYFmgWlBJkEjwUTBi4IjQhRCGkIRQlVCL4QxworCQcIVwv0iCBE5EX+RMpGn oghRedEA0QrRgT3oPUp7QvdU7RkWI4hpicWKXRQbF2cQNxVPE28W/yzBJ+EsUSDRLfFLUk4yWPKc 5BspGiljqTSpVqmv0iLSXtJl0i9kKGT0ZZJlWmQWZUVlfWRPyb6Uo5Uzkzsk1yG3Ia8gHylfLz+j wKfgoVCuMKxIp2ipeFjxoRJaSVspWalNaVVZXjla+ZryFxUxlSCVOpVpVUFVH9VzqpNqPGoktUq1 MXUudQ/1M+pjGtwaJI0qjQlNXk1vzWrNj1rCWoFal7Q+a0tqR2o3av/QUdbZr9Oui9Q10M3R7dOj 0bPTO6k3qs+j76d/UX/BQM4gyaDdEG1oYlhgOGzEbuRlVGu0YKxgvN+404RgYmNy0mTCVMQ00rTV DGFmbHbMbMSc3zzUvNkCWBhZHLN4ayloGWF5ywpjZWlVZvXBWsp6n3W3Da2Nu02dzbKttm2e7Rs7 IbsYuw57SntX+1r7Hw66DoUOY44SjvsdHzuxOAU4tThjne2dq52XXPRcil2mXOVcM12H9grujd/b 48biFux2253SneR+3QPt4eBR57FOsiBVkZY8jTzLPRe8dLyOe815a3oXec/4qPkU+nz0VfMt9J32 U/M75jfjr+Ff4j8foBNwMmAx0DDwdOCPIIugmqDNYIfghhCyEI+Qm6E0oUGhnWEcYfFhA+Gi4Znh YxHKEcURC5EmkdVRUNTeqJZoOvilvjdGKOZgzHisemxZ7Eqcfdz1eOr40PjeBJGE7ISPifqJ55NQ SV5JHfu496XuG9+vtb/yAHTA80BHMm9yRvJUikHKhVR8alDqkzTJtMK07+kO6a0Z7BkpGZMHDQ5e zCRmRmYOH1I5dDoLlRWQ1Zctk12a/SvHO+dRrmRuSe76Ya/Dj45IHTlxZPOo79G+PPm8U/mY/ND8 oQKNgguF1IWJhZPHzI41FXEV5RR9L3Yv7imRLTl9HH885vjYCdMTLaV8pfml6yf9Tw6WaZc1lLOV Z5f/qPCueHZK81T9afbTuad/ngk487LSoLKpSqCq5CzmbOzZD+fsz3WfVzxfW81SnVu9URNaM3bB +kJnrUJtbR1bXd5FxMWYizOXXC/1X9a93FIvVl/ZwNCQewVcibkye9Xj6tA1k2sd1xWv19/gv1He SNuY0wQ1JTQtNPs3j7U4tQzcNL7Z0arS2nhL/FZNG3db2W3623l38Hcy7mzeTby71B7ePn/P795k h3vHm/uO9190WnX2dZl0PXyg/+B+t1b33YdqD9t6lHtuPlJ81PxY/nFTr1xv4xO5J4198n1NTxWe tvQr9bcOqA7ceabx7N5z3ecPXhi9eDxoPjgwZDf0cth1eOyl98vpV8GvFl/Hvl57kzKCHsl5S/W2 ZJRttOqd8LuGMfmx2+O6470TNhNvJr0m595HvV+fyvhA8aHkI+fH2mnp6bYZ/Zn+WZfZqbnwubX5 zE/Un8o/C32+8UXzS++C48LUYuTi5tfD35i/1XyX/d6xZLk0uhyyvPYjZ4V55cKq4mr3T4efH9fi 1rHrJzaEN1p/mfwa2QzZ3AwnRZK2XwWQcEf4+gLwtQYACicAaOG6De+yUwvuNiT88oGA7/aQHkIL qYhiQuMxZFhJMidcOv4uAUNBIjZT4amDaR7RydGXMwKmIOY+Vnm2fPY5Tk2uPO4BXjyfEr+TQJBg iJCrsLYIu8ii6IM9pWJB4moSFBLvJBukUqStZLhlPsnelDsob6XApjClWK8Ur6ylgld5rlqu5q2+ R/2rRrPmPi1tbYL2O507unV6FfoFBgcMSUYaxkzGiya9pvVmFeaVFm2Wk9ZoG2ZbFjsqe6T9usOa E3DGuRBdKfai9i65Tbj3e7STrntWe5V65/gk+Pr52fprB8gGigRxBzOHUIYiQ7+HTYT3R9yKPBd1 NDo5JjO2MR6V4JPYvg/sFzignGyU4pIak3Y0vTgj6aDswcnMvEOWWfzZ5DkgF3GY+ojQUfU883yH AudC52OORfbFtiVWx81PmJQanNQuUy9XqpA5JXZa5IxkpUlV+tmx80bVl2rmaqnr+C9KXVK5rFtv 1uBwxf2q/7Xw63E3DjSmNR1szmrJvZnXWnyrvK369o07XXeH28fuDXU03PftZOp82FXyIK7b9+He HodHVo9Neg2eGPbZPo3oPzPw6jn5C4lBnSGjYb2Xiq/4XxNfr76ZHnn59t7o2XfpY37jdhPmk2bv LaYsPhh/VJpmnB6byZmVnR2buzCf+MnwM9nn2i8GXyYXzi7Gf3X7ZvHdbClwuWPl0M/mDd3Nzd34 SyFRyBnUGHoSs0CGxMnj/cnLCWNEEco4qgc0zLQJdC8YpBnTmN6yyLFmsvVzsHA6chVwt/GM8C7x LfPPCjwRPCsUKawuQibyQvT0nkAxObFf4g8kjko6SHFKfZSul4mVVZOD5LrkcxQsFGkVh5RKlV1U 2FVG4F3gqs6sPqxxXNNFS0BrTXtQ56ruYT0ffVUDaoMPhm1GxcaxJj6mnmb+5mEWIZaeVhbWKjYi tqx2RHuE/bLDR8chp/vO9S5lrjl7E90C3B09dEkSnkxekNes96BPp2+jX7V/SUBGYFiQU7BmiGAo BbwTxsNHI75HcUe7x5TG3ot7GT+ZMJ+4uo98P8cBoWSuFEzKu9TGtLz0yAy3g3aZjocCstKzK3Iu 5zYebjpy4+jVvMv5tQXnC88cKysqLs4ryT6ediKhNOykX1lAeUrF3dPCZy5UCZ4tPPf8/GoN8QJL LW+dCLwPFC6r1+s2mF1xuhp8LfP62Rt3GgeaRpunW761Im8xtoneVrmjeVehnfse4t5ER/f9xs6a rrIH+d0HHyb2RD6Kfpzd29bH8HR//9tnLM81XtgO+g6lDJ9/+fTV9zc0I2JvTUfD3x0fuzX+bGJ0 cuL93Ac0HP3UmYE56nnJT3KfBb5QfllZ+LA4/PXRt5vfK5eSl+1/CP5YXmlbTfypskZY192Y2Y2/ ODSHqEC6oYTRWPQiZgY7SzaBWyTHE/gptIjOlKlUl6gHaDbp+On1GAIZDzKdZr7B0sX6kO0B+y2O Ss54Lm2un9zneEx45niz+AT5Ovjd+FcFigQlBR8J+QljhWtEDEU+imbuEdrTJeYlDsQrJFQlXkrG wG83DdKm0tMy6bIcsi1y1nLz8gcVOBWa4beWaaVkZQbliypaKs9UvVQ/qyWpY9XLNGQ1hjQTtTi0 WrQttF/p+Ots6lbpWerj9O8b7DOUNZw1qjJ2NWEyGTItNrMxpzTvsUi3VLH8btVgHWQjaPPettJu rz2z/QuHPEdDx02nRudgFz6Xt64le833LrsVufO73/DQ8nhNivfk8XwJP0f8fQx8FfyU/I0CSIEh QaRgjRCqkJHQ82Eh4XLh6xH3I3OiLKPpo9/EnI71jhOI+xB/KkEvYSQxOIku6fm+W/vvHOhMvp9y M7U2rSQ9PSPsoEum3iGRLHTWi+zSHOdcvty1w2NHnhy9mXcm/0CBS6HyMZZjq0VDxddKjh8/cqKw tPLk9bIH5S8rZk+tnaGo5KqSOWt4zvV8WPWBmuwLh2tT6kgXFS4RL329/Kl+9QrhKsc16euWN5Ia bzSttCjdDG8tvXWlreX2rTs9d5fuGXTc7LTpWuou6ZF59KL3SJ9Hv9EzrRfaQ8GviCNzE32zS99X t+K/8z/BrYaRB+BYKlyhZgJgpwFAQSdcZw7CdSceAEsKAGyVAELAFyAIvQBSHv+TPyA422AAOaAG TIATCAJJoAxXyRbAGfiCKLi6zAOnQD24A56CcfAdrhzZICnIAHKH4qAC6BL0EPqAwCCEEKaIKEQF XOdtwnVdLPIm8hfKAHUMNYGWQWeh32GUMaWYNbjCekSmQFaDY8UV4Mnx2eR48nwCC6GGQpaijahG bKVUpLxFZUj1hjqahormMq0u7QCdLd0AvQX9MwZ3hhXGUiY1plHm/SysLK2sbmw4tjb2WA5Zjm+c 17giueW413m6eUv4/PlVBYgCY4LXhbKEPUW0RAX2EPesiX0Wfy8xKNkolSQtJT0qkyUrJ/tFrkW+ UCFB0VvJVFlShVGVqCauXqYpqnVEu0fnix6ZPr0BsyGbEZ+xrIm5aYTZCfNOi69WvNYONkdtu+1R DrqOmU69Lgyunnvr3N57YEjUnhjPJa8p7xGfWT9Kf5OA4sCPwaohRaGfw40j6qII0RExr+P041sS xZKq93MdKEthSC1Ix2ekHlw6FJg1l5N7OORoYwH1MZaiTyW1J9xPMpT1Vxw5bXBmqSrvHN35rOrl C0G1Xy/mX9ZroL6yeO3DjemmuZaPrZNti3cZ7+ncd+vy6Lbp0Xgs8UT4qfxA6POVYdRr3Mjpd7Tj d6aI0/vmtD41fFn7Kv9dfxn/48jKo9Xpn1Nrr9ZvbOT/8tyU3H5+bMUfCwiABjADbiACZIAaMAS2 wAOEgCSQDUpBLbgJHoO3YAFCQyyQ5Hb0E6Ai6ArUB31CUCJkEM6IdMQ1xBSSE+mOPIecR8mjMlCD aGF0KnoEjn0ZFmD9sYNkemQtOAlcHV4Yf4lclvwuwZIwSRFPxBGLKbkpr8D16xvqOBoGmmZae9pP dPvp8fQnGMQYHjGGMTEytTMHsNCxtLOGsfGxjbCXcjhyMnG+4qrg9uaR5AW8L/gu8mcIuArKwrXc rHCvyHU4i+WJpYvvk4iW9JLSlCZI98nkyJrIMcotyr9S6FZsUqpSPqySqBqrlq3eovFDS0bbWydX t1qvSf+WwS3D20Y9xuOmCDMRc3uLg5bNVvM2fLbudhX2o448ToHOTa7YvQ5uJ927PAZIHZ61Xlne AT7WvoZ+Tv5pAe1BFMGeIW1hLOGJEW+jtKNrYynjwuMfJ3Inxe7rPyCXfC6VNa0oA38wKXM+i5Q9 kZt4RDIPkf+28GpRbIns8a+lV8tiKpRP/TxTXSV9tuLcx2rBGv8LV+oYL5ZfVqv/dKX0mtL1vkZS 01pLVatVG7hde9e0fbHjdKfnA+WH3I9Qj588iX2K6c95RnheNeg+bPYq+E3N249jnBOW71M/3Jlh nMv/LLDw5FvR8uFVozXp9VMb738t7sYfBXCACj793EAUyAMdYAnc4Njvh09+JbgBHoJR+NwTIAFI E9oLJUFl0G1oHIGDo05CFCP6kfRIH+RtFBsqBTWLdkI/wehgbmPVsPfITMne4qLwlPgr5PYEJKGZ IoIoRVyh7KIqpY6hcaI1ojOmt2IwZlRgEmaWY3FnTWCLZvfksOU05zLjNuMx5TXjs+Z3F4gSPCJU J/xQZGYPhZiCuK/ESckhaRYZb9kGuTUFS8UnytmqTupojXzNdW0TnXQ4gs36bQZ3DPuM1kxMTJvM xS0uWYlbN9nq2A05hDjhnS+52rtRe5B7unu7+Lz3U/HPDfgQZB3cG2oW9izCJXI6OimWI2404UFS +/6KZLuUn2mVGfaZnIcWsm/nHj7im2dQwFz4uMi3ePl4ein1yapy+Yonp30roaryc4rnB2tialnr Hl5Krje4InFN/0ZyU1VLXqtTG+Pt4btl95zuYzvPP5DtvtWj92i4N75Poh85sPB8enBguOCV4OuK N7/e6o3mvHs8TjlhN3nm/cwHqY9B02dmHs7OzqM/sX2W/KK74LBI+ur9zfI7z/elpSPLbMt1P5R+ nPyxuuKw0rTKsBq52rS69lPzZ8bPnjXims3a8bX+dbJ1zfX49avrMxvcG04bhRuPNjZ+Sf3y/nX8 1+NfvzalNn02T2z2bsU/yldGejt9QARtANCjm5vfBADAFgKwUbC5uVa1ublxFi42RgBoD975zrSd a6gAKF/YQo9bfij+/Y1n5xvUv+qYv+9gOxNta4Uz0VbbykrgfwBfdekh9OKk7gAAAGJlWElmTU0A KgAAAAgAAgESAAMAAAABAAEAAIdpAAQAAAABAAAAJgAAAAAAA5KGAAcAAAASAAAAUKACAAQAAAAB AAADCqADAAQAAAABAAAAagAAAABBU0NJSQAAAFNjcmVlbnNob3QP2quBAAACPWlUWHRYTUw6Y29t LmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0 az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMu b3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJk ZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4 aWYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZm LzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MTA2PC9leGlmOlBpeGVsWURp bWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2Vy Q29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjc3ODwvZXhpZjpQaXhlbFhE aW1lbnNpb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+ CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgr85x5Q AABAAElEQVR4Ae2dB6BcRfXG59V0EhISDIGQ0HsTEEWlV0F6F1CwF7BgAWwoKIqoqIAFaUr7i0iR XqXXUBM6BEIKpJCElNfv//ud3dnct2/ba8lLck6ye+/Onfrd+3a/M+ecmapEElwcAUfAEXAEHAFH wBFwBBwBR8ARSCFQnTr3U0fAEXAEHAFHwBFwBBwBR8ARcAQMAVcU/EFwBBwBR8ARcAQcAUfAEXAE HIEOCLii0AEST3AEHAFHwBFwBBwBR8ARcAQcAVcU/BlwBBwBR8ARcAQcAUfAEXAEHIEOCLii0AES T3AEHIHlEYEktAVbmiHzpiH01XUa1K9EfVUP2/TWtjyC7X12BBwBR8ARWCkQqF0pRumDdAQcgRUf gTbNe+g/xLvaaHhVHx1zVWipom+toYZDwpteltZHu+zdcgQcAUfAEVgpEXBFYaW87T5oR2DFQsBs B1WtoUqkO4Fwt+ll9lK70ucGW0v/sspBgqLARxdHwBFwBBwBR6CPIeCKQh+7Id4dR8AR6BoCSVIt RSEJLVIQFsi1Z2Fz33Xqaa2uCqtUV4dhGmpS3Sydpla6gmsLXbvzXsoRcAQcAUegtxBwRaG3kPV6 HQFHoNcQaJODURUmA3z9pSBUVzWHxdV1YdD9t4fw5lsh1NVk2u6TBoXYKSkGra1huzXGhMd33y+H FVd7S2VAdarKOmdVqaGkqkWfK/8ZaJMiViWLTa/0rzUJzTWtoa4T/TGsFOiRSPGqpE8R+ZbQEura akOrCtUkrbI+UdpMULn7UMkJ9SVJiyl6FXWgkko9jyPgCDgCfQiByn8h+lCnvSuOgCOwciNQLeXA PHbE1NrEeCe3JGH81ReI9Q0IoX8/gdOiF4pEH8WpSpQdXtpcG67faS+d0NEM1a2E8HZ1VBa7Iexa IMjCbbFI+aD/+5tArFfzSjSXLWEXcaMzIvChnrT6kBz2WSVkokC62oei5dTWB2pqxJXqT43AqSpz /2prQ3LosRG2NIQlmiCIvE3KgX76qqVgCPM/TpsR/vXGi+GBxR+EsHBxCI0NKs/AiwiXCJhvaQ7n b7Zt+MpWWy3Bq0gRT3YEHAFHYHlFwBWF5fXOeb8dgZUZAZE13IwSkclWEb/x/74mhNpBQkQErlWk tpqvtr7reqTOhtDQEt458tgwurZGvFMz4pGbagileGr3bnuGHNeoDSwDR77wuAivZtRr9TLdSuSc pZiicKr+2bXmEH790sTwvY02jld79NjGrL5pfwChNmUtyikshVriukll1oRc3qTGsD7q6fvD1S++ qrFp4LUoJbonKCimYMa6M6Xavdv9IW9LeMtUDV2N965dRv/gCDgCjsDyjwDfii6OgCPgCCx3CDD5 DT+7ZMrrIreaCa5p0icRvDodmDLvyyJl5t2jjwtjNCuOC5VN5qu/0FMsJL0pxnPlbtOg1m56eoJ4 8UCRZP0UoCzQgyxXzh2DcJWLVKirCt9/WYqFXej5HlYb8Vfv7CithFuY35f055xmle1LBbccC8JC lau68epw9XOT1YYeln5ZBcHKo2QWwCDdLuehMaOQoskAKC8XR8ARcARWQATsK28FHJcPyRFwBFZo BKB8YmcidydNfltHkb1m4hKys991kN6+JPqqjWRSVpCZR30+jFSf23SeaLUm5vn5Mr715RfNq2VJ 5h4eQ9ZfK5Ey8t/3Zogkq3752Ic2keM2ZvHVC9NWlJ47ikzXoH0J0wWN4ZmFC5UvMxj63VNisSZU xsx+ovZa6ZM+F30taZuzJZ+oJCOZ9OwVLFBKHvxfWZ8Wy72onxQgYR9a1R4WHqwJtM2jU7TN7DX6 pzKKjtFRUR8VKCnK6OIIOAKOwHKHAN9yLo6AI+AILGcILHE3afpgfmbmGT0B4lfOt32pj1Rfs1rZ yDilyOoHR3w2jBCxZAT2BYwrjCjsaROfC/s9drdx1N7tIoS5Nhz2oAK/W/vTkcyLRomdiJ/jMcea db26Pmx97806aTNvpKqc+w+FuydVihnINA5Ll2hVqA59iX2yI29LpJghpk3MP6vXhOumvhXC+3NU SG0Y2dcpFgTGwavQ+Nu1qfz2WXklGesPgfUujoAj4AismAi4orBi3lcflSOw8iAAC8xOGvfJQVvf sHQkoeGoE8NAuf3AR1uqCQpgFaEQTpn0XPjlM4+ItBKvEAlzz4+mTY1Vy6rw4iIF7s5fZO13qhUY 8bw54X11scam3rFC9F3wUR5QwxDGftjD/5MlQWYUlEmsKEtBLbPG/c0RcAQcgeUUAVcUltMb5912 BByBLAIZHth34eBbFq+dY04M9SKm1aKuiWbPayyYoip8/ZlHw7nPPqFMcmfB/Uei3SDs2NNvTJ6j mZz4zGNaHWqIzrtC8vuHU599yoo2g30fxp9QFZzU6OzkRVKM5klBYqMN9tjgvuCy5uIIOAKOgCNQ FAFXFIpC4xccAUfAEegmAuYG1RZmH3l8GCDXlipb1lV7F7DKkao+/sn/hfOffybTSI2UhNqGDH/F Z74XpE2awrtNDeGxl18WgxZZ7grJr28Kf3luQmjEy8tm5LtSSS8MrkCVtbJ2gDW7Rbw4/z1ZE7QM LNoS+hiuTd0OLui7Yy8Ahyc5Ao6AI9BpBFxR6DRkXsARcAQcgTIIwB+rxEbbWsLsw44Lw3XO3g9t 8jmyDc50/chH7wuXvyTCXifyatYFBde29M86w3Rlpr9Mn3SZPvzm9ZdkTdBSsrWaYW/rwk8Awb61 /cNVs6dInVF0BVaKPioJfl161QnVSfO1UlFNqrOmKDGYPLE9FrLpDQp6blE5fNtYvhXFjxdKhpbg HYEPWTNL9Lo4Ao6AI7BiItA701YrJlY+KkfAEXAEyiPAykHVIpfa9neWApeH42okUspsfnXWUvCZ xx8I17z2ogh3/lcwGkYviqr/zQuyYECY2xTInFVLOtUiRLm2LXzuoYfCZw9eW7wZpaaX+92pDi7J TK8yvasO0xZLMWK/hJSusCRn6qyKe6c4hoEDwiN7Hxg2HTo09Jeil75Tsd5mKtPSsax/5OIIOAKO wIqIgH+7rYh31cfkCDgCyw4BmGnSP8w/SqsbiUCyMk6VyHWN/kEwT5jwYLjilUkirYpJSAZk+1mO vXZvOJkA6RCumDZZQcyyXBBIjULTFTErhPo7b154Uq+eXCK1K90pWYZ7kZUpixbojGVNywiWoIY5 4Z19Dgg7DF0lDNGqVHWqh3AOe2nobQSkq5p6uTUlNVIhUu2Uqd0vOwKOgCOwXCHQxV+K5WqM3llH wBFwBJYeAtq4rPGI40UwYZb6ihWjjCsZfUlBxJdMmphREmwWWqTdSObS+Sr+zPPPhjBIrk62d4Ag ge12VliCtk3keGD/8O3nFNTcx2fTo1vQYoCuhNBLMQhrjQtj6oWTlIYWLCY5LUHn+mwB6arMXJtQ Frju4gg4Ao7ACojA0vl1WgGB8yE5Ao6AI5BDQGTRSCiHw7W6kZQE6GSLfNiNZ8pP/vhnHg9/1TKo gaBlhBl9iHpXyLpVUPotQ115l0WjLQkvLdZGaWyyhl+9XeyiFYPdjNmkTQ43D7zxYpjeonMtNUqK 1bislksFR3WiRYPL0XZpCUvCEiocr+7V6etuqMoQRZTksKJ85mVJjJMTu39K1zkYWJrwljbW7Veu x1THy9rXiZ3HNNIluTyZj/7uCDgCjkBPIOCKQk+g6HU4Ao7AyosAxLtGG6rJBaXpiBNE2BKFJ2Rc UxTCLCJZHY554sFw+USWQIXkZd1fKNeLktE/WJdIZzVV4fDH/qejlBQIZeZi11qn26wcxD4EirE4 4yXFPBDcq5ZIXmaz6xpXU22LiD3YQ9KlvMi6U8VmdxJDfYnWYGkF3xRPMsoYP8RfJ3afGN+SV1tV s9zJ2jRW0M2sZsVSrLUClzTFN7fLny7bmXML/+CG0QcsOVgvUFCqUIda1TI3MyvduaexDj86Ao6A I5CHQDo+K++Sf3QEHAFHwBEojwAz7Non4YhjFeOb2IqbNVo5J0Miq8Oej90b7nyFwGWtNGRkTu5G tj5n+Zq7l0N9UQVGNjVL/vx0WRO0Uk9mVrp7Ndsg60SitbPzX156Ifx5s201Iu2AjKvVMpS3Fi4K V703MwzghugeNEhxqBEKNXIhuqFBFpUYX1Gyjy3hjPmzw4Ipr4fqVhCUpPi4fZa+tViEff8hw8OH Vx2h+8paVm1hWlNzuGjam6FO7cHtuysNChqvU+Nj6gaEjQYMDdsMHaa9OPQQyRrFrthqNuvWRhdw gco+Yt1t2Ms7Ao6AI5BFwBUFfxQcAUfAEegqAkaM28K8w48Lg6QkQJQzS6CyT0J12Pv+O8KdU97S dLZWGII5ZjdUyygMXW200nKZvRrwr/8GG7pBenviG9+sCVKOqI8xLWgIl789OXxmrTWNuHZk1ZX2 t5v5RJJvmzkj/OShezVOWRFapZhhTci5hWWtKVnPr6KtqZ45r74UTp8k5Q4tC+VKw2wnzO63toTW zT4ctl51eFYZa9OO1wvCT+67U/dbbfeE5ALOwVoVMh65fm0zZq1w0XY7hq37D1RgNU5uEnUVxcHF EXAEHIGeRGDZTv/05Ei8LkfAEXAElgoC+tqMM8xyuZl3OIHLUhC0zj5WhFpt4gVf2+nBu8PtUyab 24/lh2xWyZpQY04wvd5TuhiDqP80Sass1VX4dU/BFlx3JHGcmU+Zd9t/QKdGnvU2oH84/rkntc0A uyogy5Ctorjh2lWFYiaNgM/VOtbqxfArUZSMnCtjveqJy9fispR7qR7qVGUtuv/VgIRLkMbdz+6x ynE5lz9dtpPnWG3qVIZ+UyfxIWpxwpQpYZtrLg9Vd94c3sUVyUR542k2xQ+OgCPgCHQXgQp/Obrb jJd3BBwBR2BFQICvTJYX1UExCQu0mdoqkFHN2leLLLLzMhtzffqRe8P9k1+2PLjAGHc2/iy2h2// UhCoK/2694O5alMz0R2mxQt1Qv3XTPmpu+2d6WdB4sngNQYOjJc8788JrzY2hmYL5+XCshFbfKhG hJlVmVgC1jqpQxxHPJbtnsaHQkR+u2+MKb6yhdVY5rLelcdWf6IDpqyQJ+bvxjHim20yc8hizy7T 708NY/55Ubh55nRd0n4duYG2K+AfHAFHwBHoMgJ8g7k4Ao6AI+AIVIIA5JHp3eq60ColYQCf+Y8L jpHEEA544oFw0+tyW6kZaATSMlRSd4/nEXtVYO+u99wGh5RU+HXfv3/4xei1tOOwxmTlKuiYINn7 f/cJGVZYqiB/L2WBuK9U0iZlob427H/b9eG/c2bqUVzpEFipbrcP1hFYFghU+MuxLLrmbToCjoAj 0AcRqOsXksOOlV7ATsu4HMUdl7Wy0OP/Cze+mrUkMBNNTAL+7MtAoIzvNutdm6KZklAJgW9pDD9c f3ObTf/0Bhup/xUUsnHWhjfmTJWtBbcfJ6tL7XYDtZTB0L8u7H/rjWGRByksNei9IUdgZUHAFYWV 5U77OB0BR6D7CGi2vfWQY0KrlARcTRItU1kt9xC48r6P3hWufeWlrBVBM71yxMm4KeFXvvSFPn1t wuOKIch+zZNQThS4+70tt1auqvC3HT4hN6QKfiJYSQjLQ1tL+OMLk0LzsjQpML5lrqeoA5VgTV97 QsC+Wc+bYhlWuf3GnqjR63AEHAFHIIdABb8Cubx+4gg4Ao7ASoYAJFgzthYQWxsaDzraOGCNlAP2 C2BRTBJ2/N9t4dbXXpdXUibYNON/gzVBr0pm5XsAVdQSSDI8GTvAXG2E9p8XtdpRo1ygLEWHfDEf eHLDNpvCuLHjwxDyqJJRzE4Pya7eYy5XRX4ujBQTD1AbvvvM/RarQR+ow/pUgVGC7D0h7G0QEpHm msYMENy7CAjX+FxOyMeYbBAaF0HJfE6/uKZYhMy+Cbwj2tvAVliiDWGVzl/pOdVkKuMsI1ilbIM7 PubdA/rKdRunnsXZM8OrTY0WXiEtr9hdz1bsB0fAEXAEyiOQ961TvoDncAQcAUdgpUHASJtYnkjh okOP1aStiJlWmWmxTbxgfyFsdc9/w8PvvCWeDNlGls3XKqGsCLswE8h87YwpsiaI9rMZnFHGAv2C aFp/VbYhhMs221zLbbKZl2rQOK/cYYfMdsMoFND+zJB1npaMkmBtaJWgexd+wI4KyqA9AFiRp0Cz 6dI9ed7WosYatV/CIvWpQQNaINLeLKWhebFe6ksTlp4yQiB0swLWmxapDtWzUK/Fqiv9alJ9DfND nfZNQDIePzVhMW5XjQsyfUjnr/hc7TbotZj2VbdZa1SnAueXBEmX6L+e02O1PCsbvqHbLUXoS3TK LzkCjsDyjIC+fVwcAUfAEXAECiIAMa4eEBYccmQYwOStPleLFdbIF59Lm99zQ3hhxkwROZiZluRk RSQj3wVr69XEajZ704pLttqRKOIXHrpHHZaFwxQF9Q+doBDR16Ze5mI0bFj45LCRyiRiLG7KCjpH rb52OLqeQnq1iXRTB/Sz3RgZu178moio73H3rSHZ/8jQpD0I6qUooHQghZq2Cz31pj5/btyaYd8j j9PO2FVSUsT31Wh/HWv1+ZCnHw2PTX0rO4YSjWpsP9h2x/ClsetgI7DVSVtTnddIA7swo5ANrZfi YTtBS0kUSd95leHh1aO/anDQvsFVoqn8SzxfCDaJxubmcOW0yeFXjz2ogOWhgp1ni9ZLiMo/hoIo hbZKedWF3se9RHf8kiPgCCz/CLiisPzfQx+BI+AI9BYC9dWh8eCjMzPjkEOInMgvu+DucP8t4YXp UhK0lr5JlWaZceGxPJmkpfquoGqWZ0VVuHP2u5pV14x0f3WGWWn6yBQzfUsLBB9WKjelX2xKEDPD q5LekIQarAGST68zLtz48usaGrPxhawKqkOxGqFZSgkbnc2fG15tXhjW1aZjFuiNsmDAWXW9+jao ql9YZ2C9xY1oW2VZR2qk2DHAmjDK7pP6Wpa+14QRtfVh3MBBwoKyINoeOHMxUv1VwhaUWtVGjdqq kaK2zsCByq37YEUyGCqLpH0dmbQl73gt5YroBPjPHrpqOGWDzcLI66/SPdLPtbmALSlT+Kw6zNYS t6M1BruhZdotXIenOgKOgCOQQYBvTRdHwBFwBByBNAJMBffT6kYHH6dZcWhitWaRpSAYm6sKn3jo Ls1Oz8gQcNgdhNv8/DnXaxmItnrLLDgkhrrns0/aRmjGEa1/GlChb3vGg8iv/cR1NszEXWgmukYF qxRfwVB+synuR3LfwVqC2SBbRB+yAliqvEa5waGuPnz36QlsJ2FKx9LEo1qNYvHJjFVrUsk6kN23 WP1W3yq6N1IAIlaqC6Wwg9h1KYVqj+tSESwLbVehkEjRkn0nV6wJLOwzaYVfrKJl16zPWATazKIx XPU9sscBckeSS1XBm5hrJnOi+/AqrlOSqlQfMhf93RFwBByBziEQvw47V8pzOwKOgCOwIiJgnFAk a9DgkBx0jHhbotlizZYb3dTXpYjgLg/eFR6c/KrScNHJEMT2rjjLBhi+zBPNck9ukj/922/qwxKi WrRHVbIAiNx/YqPNw6gaqQf42EB2swU4rj9gQAgfWlNnshiQHwtFQVnS3g0vP61Z7eYMrY2VFSzT G4mxwXjMtME6VZWJxhcVqFhGmIBLfFFTh9q4nEtHgcg8L+zWXa97gVWlLVsHygv96fBSu216YbHg WKOXWa9WkevRyFUr674UvNkLPsh2sEMvK6vDczkCjoAjkEWg2De+A+QIOAKOwMqHACR4wKohOeBw UxLaZEWo0c7KrHDEl+U2D94R7ntTSkJNPxExxSTgN95XxIKYq8OPnn1KPu2DCzDZAh1lhr21IZy3 yeZShaQEFPhFILj5yo23lNO8FBBzVq1gWr5mcLhsymQjuagPKyVdBSYpCC02erlA6ZiBF/IvqPVW 7lWFFStbauuhaxS4gQWStELXPAK4XRwBR8AR6AEE7Gu/B+rxKhwBR8ARWM4REI3TxlVtBxwh8qwZ YLl8oChkZomrw8Z33xRemiF3I224ZhYEW/ZUV3uMBcMsu1EZ7FPyzzdfycyI87Ecp9e+CVhNNh/G bLUya7z5fZCqFA4bOy4cjWtRM2PHwlJGhN13nnw0nDR+/UK6R5nCy/9lGRFs5SE5MVnQ8yPz54S7 5s4Lr86dFd6VxadR+FTLWpCJcCg+3ioFKjTLjWmk9rN4+v3ZyrjEalO0lG7TYgVCm3S8nUWL+QVH wBFwBAoh4IpCIVQ8zRFwBFYSBKQc4KKDm0i/utAsdyOW9qyuEcHTWQ0WBrG+sx64J7w0f36oGjgs DDaHEdxGWrUc5sBQmw367Q5gjWp/VNvA8F69NnAzZaFChieS36QuEkehRVvDOW++oeU1RRIHSEsg uFgBziWlenH40877ZgwFRZSUmqwCcsLW24eLX3g2w1XL6TMsH7toQbj53WnhgFEfynahXKGSPe3T F0EZqNtE6lt16+qE2QPz5oTd7r1Nwd1aLlXLxhq8OQh00yoh/aZmqWLK8UhUIuSNQRbZe1dJMc/j CDgCjkAhBFxRKISKpzkCjsBKgIDIGq5DBOD2GxgaZEmohbzps3i3hPgDeZFrAv20T+4eTiepQv5O 1s5JtmIOLXoz//bSNRAuSzBtZhlQLeOp3n//6UcyFg/FB1Q0ld86IHz9obvD11n61Log5SIt4MCi /Cyhakw4fbHEOQDWDwwHPvt4SPY8UFVnLDMlSizXlxTqrmemVgsttYYm7XlQf/t/Qpgl6xMuagru DnV6iNjjISfCsyLJ5uPeVCr27Faa2fM5Ao6AI1AagfQ3V+mcftURcAQcgRUJASwJbK7Vb0hoOvAI QnVF96pt7X1WoKnS0pisw0+WFikMLawjKusCnK2nX2gmbHCWKB6gTbvs0m45yYTCZnLVqL8PLdKq OA3aJIze0UH8X8qJ2rOJ7SqsD1klgXLxxcU6KVNoS1SHUlXRr4ZAQ8+aNj28LX/5FVtN4PnIKJXz pSQM+PclIbz/vjBTEDj3ESwbfE6u3KPo1x0BR6BvIlDRV37f7Lr3yhFwBByBbiDAGvmDh4QEJUFc ji9DJs45z8zo14R6zexX61Wnq7VGBjOOQcb/yNZDLypidZsqxQywOGmdMX1VXk6kELSIiFZrpZuP azWm0KYZbPtW1xvjKCdsFGf5lRGlgYBmlIx2L5FcXLDgwtXKw7VyAjkmX21d+OKEh3NNlCu2vF6v 1U5prHI09OZrFSAgrBi7KVcolzqPGC+vA/R+OwKOwEqLgE9zrLS33gfuCKyMCEDiRGLbRHhHjAzJ 3gcpbllEm0X/xayNA4t0H/Hk/eE/ixeEkWLH80XgVyGoVFcXQwZbYcw9K+/LrWctccrWpDG8stO+ xskzDLN4O3F/gFopPB/Q8VnTRea1EhPjM6JavGzuCvls0Coj15mM6LydcE0JJFdaL5lRLrRh3e1v vBXCR2KFwlhWCVbzKTe+WGJ5OCaKybh4+nshzJMlAcsMioFWyzLcuB81KFjd0BZWLLiWh1vqfXQE HIEsAvGXwQFxBBwBR2AFR0BErUbLRraKyA0bbkoC/ItgXeNhRmCrwth7bgpTpk2VaaF/mJElaDj0 RFlU0VR9zF3B0Uh4dXiVAOAGQqjVJ2OY5crKoUdliU44ZeITyixfeGbykc5wUto3yZaNHwsdpShV JsqXHVfQ5l8XvvpC+Mp6m8rDijYqraOylvpCLnaA/vwdt+sWSIk0a0oWS54fJLpscXMRIECRymhp qaNO0xLvjeFewf1Jl/VzR8ARcAR6AIEV7xu7B0DxKhwBR2AFRADS1iYiN1DuRp86NLTJksDyky22 3KcYmVh33e3XhynTp8llRqQbhYAyNkPPeXyR1oMv+J/1TcccceS8MmnUOP464VHrf2UllmYuDa6+ Nnz1ae0ULXyrRKhRbthobEWS15uk5BGwzLBspawCoyOYOf7iarnTjFIXHyTlp2z+y545JaJ86D67 OAKOgCOwtBFwi8LSRtzbcwQcgWWDACRMy5u27n+oOL9m48XVoGlEBBg/u/kqLWWpTcW0NGpIpCgk 2SDeHLtbNt0u1moVKwtpALfOniWSOkhkktH0URGPfqJpYdi2fpBxXm0jsELJxdPeFv5Z5ZKRMb5o PYgjNbLPBUj/YsXHjAiry02pUbeNmJRiP8bsttBfZd9YrDJtxJC4whAh9aMj4Aj0PgLFvpt6v2Vv wRFwBByBpYnAoAGhaf+D1WJ02dERss3/m64I4QMUA7E2lIQqORuZj7m+IvsoMSOiAmXn4HvvEDEV eeyOD3xv3YeouygIevtbbgltBx6sbuJYxQUBv4LIr6a8CttXZLmsCiyJivWg0PBQFrSvROMue2uv BcVqsAcHJpaSksFqtwfvDfdMfatkTr/oCDgCjkBPI8D0hosj4Ag4AiseAvCrGgi0iJhWN2rdX6sb iUyzI64WqRGPY78EucPcfE0IC7JKApwNMsf8Lud9VElQz0yeW/iBNjbTsqgVKwkQWL725YIlwm5j tDErqdKjuWRhccmSYbkTFZVYp5YNDfNnhlmsDsQtoY7lXXi+eCHzNNvfwsBQLGVKsGcocyn3TlpD U7hvk60yz52VFUCxHiCJ59mj1A4F0QNiCHpCXRwBR8ARWOoI6FvNxRFwBByBFRAB+DC+46tqdaN9 DzDO36KZ7RopCFrnyAZcc/t1InnzpBeIjBHkvBwR2GopOSc8L9//fprB1kr+ptyU6z+rPQ0ZKD2B r34RfCOrOu2MoGgQ19Gg8rjDVOf72BSoDIVLS6WeOunpcNFmW2omXe1n+G+BzMtJUrb/BmFrlsaT ZglZJSp/KFqCduCgwYSdS2QTSmNQwLJQq7iExPy0iO9QxV25X/l98M+OgCPgCHQCgYKKwowZM8IH H2imqoAMGDAgrLnmmrkrU6ZMCY8++mh45513wpgxY8Luu+8ehg8fHv773/+G/fbbL5ePk1btWvnQ Qw+FF154IdTU1IQtt9wy7LDDDtqb5v3w4osvho997GOB+hoa5CecklGjRoWhQ4emUkJ49VWZelOS 36/UpYpOqe+xxx4LtbW1Yeeddw4f+tCHOpR7/fXXLQCyw4VswqqrrhpWW221MHfu3DBz5sxi2Sx9 vfXWk8V5ya/EI488YrisssoqYaeddirYfrEKO9sefbv//vvDrFmzwsYbbxw++clPFqs6VNovnpc7 77wzzJ49O2y77bZh6623LlqnX3AElgoCzSKno9bUzsD768snCa2yLtSKoLJLMKuh1tx1vZYUlX+/ /uZDa9bdqKin+FLpcacamdbUGCZMfFFxFyL+kElmpMuJdmxesP/RQREN3ZZZIq0jr75A7dJ+mcbR JeSS8/enHgnnbbxFGKTuLu8CZ+cb3L7Fsc5EIaEQoUc5qqkLD8+cGrYbspFZtWxXjkJ5s3W16UGN 7nGyf2UaK5E/dsGPPYvAm2++Ka8ylPElUq2/uXXXXXdJgs7gMvyuRuE3nt/6SmXatGnhoosuCjfe eGN44okn2nGESutI54OXwc8OPfTQdHLF55MnTw7NzZpsycraa68d6uszam5M48iYGXtaRo4cGYYN G2ZJDz74oPGb1VdfPey9994BvlaJPP744+G5554L8KKPfOQjgfb7qpTCms00X3vttaJdHzJkSMWc D6zB89133w0bbbSR8ea6Oia52guLdYAdz9HYsWMtH+10RQoqCg888EC45pprwr///e92de65557h sMMOC5///Oct/Ze//GU444wz9Ds1MHANkn/cccfZg0AdEFL+mJBXXnklHHPMMeHJJ5+0G07Hf/Sj HwXI9VprrWWDQFG4+uqrwx/+8AdTPKyg3jbffHMjrIMGZX7eUDh+/vOfW/8WLVoUxo8fH7761a+G U045JRap+MgN/Na3vhX++Mc/tlMCvve974Vf/epXuXr4I1h//fVt99RcYt7JmWeeGU4//XTD5Pe/ /33e1SUfBw8ebH9Y/TQTOH36dPsjfvjhh3MZuH755ZeHgw46KJdW6oR7UGl7F1xwQfj+978fFixY kKtyt912M8Wuf3+twZ6VzvSLB3H//fcPlN9ss83CF7/4xfC5z30uXHzxxbE6PzoCSxcByNSo1UxJ SFgtRgHKcjoyJaFVP951WBJmzVa6vgKNeDEjXPDrcCn2m44Y7ayozXPefCXojy5D0lv0Q8HyqllL SbEKdtxgEykJqEpqSW5AiQi+EdFiBQqkG1zCcDW6uuqoEOayeGwZRQGrA65K9XXhxpmzw1EfGqky KXJdoJ3lIineslVHyLVK36k8Qjk3sDxMcD2qGxC++cg9YZ726jh25OjQv1//knecHcLbZMEZIKyn VhvyywUsK1on+d285JJLbCKMscFbDj/88PDnP/+53VDhN9/85jfDpEmTjOR/6lOfCtdff71NjLbL WODDf/7zn/Cd73wnoJQgcJP0ZGKBIkWTIPhnn3229XnTTTftsqIAD7z22muNt9HY0UcfHa644ooO 7U6YMCGcf/75xiPoM3wADvXRj340HH/88cZnNtlkk8Bk67hx48I999wT1lhjjQ71xISFCxcavrco rikKZBh+9ZOf/CQm9YljJVjfddddxpGLdRhu/M9//rPY5Vw6z8gJJ5xgk9ExcYsttjC+jtIQhQlb 7sE8WcuZjP/ud78b4JXcSz53VmTNxJ5ZWHjAeOARNMM5c+bkHlyILA/ABhtsYJpi1GiwJBx11FFG RBfLLA15hMwzy4zV4NJLL7Vy1An5PvHEEwODh7zyYCMoHB/+8IfbzcrzR8lDmxY0ZR5E+sjMeFfk F7/4hT18hcqisHzjG9+wSzfffHMHC0l+GcbHzdpuu+1yf1j5efh8xBFHmEIUcXnppZfsiyQ9Y4Hm N3Xq1FCJBlhpe2APgWdGoKkpayrPdvCnP/1p7g+wM/1qbGw06wFj/7//+z9TJHlwn3/++fC3v/0t p1QWwsHTHIGuIgAlros7Dtws0r9Is3hYBXBx4Rtt+Kq2TwL8NVGAcqte7LrcrImL+ls0ATJvvjLh Sy7yar72umjnOi4TYcpdZF9/T83HfsEWXmKn37Q06au63gandBHHqmsv1xA0y8l44xjSBdopDUKs sSW8oGVhN1xthPgs49Z/6mlXpvyHZuFWp03n2uTGdc2Md8LRt/9XMSByf2qC+KveQpuL0UirsK3R PRKZTg45ztrnrVUEuoY4B92jubp/q15xifIpUyE//3T3lCc5LFOPjQMcOgzGQr6VXBX2e/T+cPNb b6hJ9aOkVIffbPex8J11N1DvRNYsb4eK29Xwg7deD7965H+qm1lnKW+17NdRQBGyZ0xZEt2PxcoT n9d2teV9oGlZxMIAWW7qCtSZl50OX7DDTuEra6+rKwVByS/hnytAAE8IvCCYqf3yl78cLrzwwoKl 4CNwp5NOOimcd955BfMUS+S3l9982mBCNE60FstfKB2e9qUvfcn41d13322/zxD57giTqXEykglU lIBCwoQxHidxkvBf//qXKRd4a2yzzTY2QbrPPvsYbyykcMQ6mfi97LLLwr777mvlrrvuuhynIp0J 6b4glWJ9yCGHBMYANkySRwWQCdk33ngjXHXVVeHII48sOSTywa2wqhx44IHm9fOXv/zFuBz8l3sM 3+bZgT/jGYRixkQ+7TDRjccM3jNYezoj+lYvLunKOI+Do8S5555rBTEjRSWBBNyNIIhIJKO33Xab KQmkHXDAARxM0MqvvPJK++OLebmAhSHfXAcJPeecczIFs+9oqPwhoax0RdBaeeiZAeehxTyX/sNE GYqCyxSCFWD8+PHWZ740uOkIXwwoCdT5zDPPWBqY0Ufy8Yomu2gGBEP6zk3EjMQfYxRceSZOnBg/ Fj1W2h7uST/+8Y/DDTfcYIobFp+0CxkuRlE60y8sOygJyM4772zHrbbayo6Mh4fVxRHoaQREI8WB suQN7tQsAlot5bdKhHv4iIySII7Uqll2SCJxCaYkXH+FZsDlFoiPfSJijkRCWpZAZrL3znt2LHHW WLNy+YKSwOwy4a3/mCrCu1Az2PBAJI4h8yn7DiHWC/KayNQv981NVxtpwdyRP3ZspV0FBT/UCUt4 PYHgR40eJ9enwfqyF5Z0DRck20gsv6gu2th0ff7s8PD7suaoz9RRrbuDMrc8y9dGr6lxo3jqyZQC FZqLEHp7xoSBLArmMjZI2Gmmr+SLPKsMqUxJWJ5B7ON9x1oef7vvvffeor3FLYTf/jPPPLNonmIX IHW8uiO4fkPQ8/lSd+qEI0U59dRTw6233ho/tjviso17URR4BlYVlAQE12yUANKLCa7n//jHPwIY Mw7ag5/suuuuViQqIcXKL830SrCG3913330BNyomweGSPCO8sCTghpXvpl9oDPBRMIAXnnXWWeZ5 g8UFXg4HY+IcQemAg+611165Z2n06NHh29/+tlkY4IGdFb7ai0qaNBNTEAWNJVoaMMdFEh2voxnh u8dsM4KfVBQ03fTMORoQ5raYN+bjiMUiLTwwmHCiQLxRUtJ9i9fQzMvJs88+a+5KaGWY1HgoMddE SfsaclN/8IMfmFUFzY4bwQuTDoJLFoLmzB8KY37vvffsppLvqaeeMqsMXwJoycjHP/5xm4UnPw8c XyzRgsC4UDLKSaXtgTmWm09/+tOGF21zL6KgyETpTL+oMwqmLST6JeLeRP9cHIHeQCDJzbiLZHKO RWHIaqF57/3NbI8eUUNMgghpq5hx/Q1SEhaJXFdrxpfZe3PV6Y2edaHO6K5SR39ZPLQjhWelJjho qKoLxz3zrGYtKiAUVAMJ14o8f9rmI9axqIt0oZftisQfjxPkzmSKCm2hlOTuSyo7BhMEojxgaPjB C0ymqAZ9pnuZ/agtx3L5tkadnj2M82zoBwY1EZ3lcjje6SII4FaEvPzyy0XJLiQX95D4W16kqqLJ hfhM0cwlLnS1/RJVmhs4/A+vETDIF/qe5o1wAfhSWpjlzo85TV9/++23w89+9rOw/fbb55KZCcft CCEWoK9JKayZ9IXQ4/mRL3BOLCyRO+Vfz/8cJ+FjOm7j8DUk4nLHHXfY512zipV90FvktvmeOfF6 qWOXvs14EGIQDyDssssu5pcHMY7y17/+NfcwpH2nsAwQ6HrTTTfFrGZlgKjnC+a9NJnFFIcSgk9Y McGTCg0W4LF28FAXE2IiiJNICy5OUQjMjoI2RkxGvraPzxcSZxoI6Caol7iKtKBBgw9KQqwD3KKV IeaNlhWUIgJ4ykml7aHJY45KS2wLUxZYR6m0X9yPdIBOHAt/1FGiQhk/+9ER6AkEIu+krg/302yr LAR1cjdq/dSBobZVjFX/cRtpE+luEwmvw5KwWO4eNuGh7wS0iOJelz3Rxc7VAcmWpSDUDdYCTMyy dxQsI4rGDpMWaxJk9rvqf/HvtiWlGauUoqbZ4ejRaylZZJZIbmtvSa7OnUmNUbXg2qaN6767kb7r FimQEVebaOXJr5BlatvUDzVP2w+8NjFM14pUzTlLwpKJqPyiy8Nnlty9ca/91NUGjTGjAC0P/fY+ dg4BXJ0j4SvkVoR7EvGGad4SW8DV+te//rUtVoIbCO4o6Ym2mK+njj2lcMT+UB8eCSNGjLCZabxD 8IEvJbhZo1DghsWE6Z/+9KdAvMexxx5btBheFmnvipiRdhHc2Dsr8JCTTz7ZvB5wicd1Cl6Kvz6T 3d2VUlgzHgKx84VnBbfzNOfMz5P+jHt42loTr+XjEhWz/Mn3DTfc0IrwHOLB0hkp9HtUUXl8pKIQ Fc8fzTrrrGOaIDcCbSYSR87TGhcAMbPNHx0EGkK84447xupyR0wqBBl/4hOfyKURpHHwwQdrVb7F ubT0CTP/aG8oDLfffrut7pO+Xu48HeGPv12U9HhjGm419J8HDtcjhJtRKF4CzRGJCoV9SL0xHr5c uLkQ90J/KKnsudOutocpL/ocogSNHz8+V2f6pFS/UNiiskGZQn8sriik0fTznkIAioz3UKP+zk9e f90wYNWhoWmvA+RoIyZagxqhlY1EYjmrveWazDKerEQPiYPlVulcu+IaYYY0L4sXpNm+gXlTn+SH /oftCDRTr7nWThJbpp98xz9yv6wJ6jB9NlKq8oWOVA4AGufuWrt/VWa9rVC7irvwQQ2rapQwHcJG /QeEsLZ+hPRZu4jpgsaS3x+7YTRPQR3rB4czXp4Y6jXOZsZBER1M+Izk19HhcyZbqXfZK3Q5U2EN SgynHepRn9JpymIrDMWSuY4poYig7+y/mlwuRowW5pooMSWOehksL50v6Uq2lrx2033ozjltxT4X U9yKjMOTyyMQrQoEKb/11lvtChDcjMvH+PHj26XzO8qMLjyA2AbK4oYCl8mfrGxXsI99YFyMgclA FAAsC6UmY+FF+OYzMcwEMROguB7hRdJZwQMESU/gVlIHygmTx8ScYs3AUwVlJa50ifUHr5KlLeDI pHElbkel+gYuuJHHCfkYMpD25KF8OkQgWh9K1Zu+pm+Urgm+6bvuumu7wvjLE5FOh3G1icLypvHh imkc8aliKVB8porFVDM4Zu2JW4jy9NNPW1xB/Jw+4q6DOxOCohIJfDpPqfNotsEVB2WmlDAbwB9J MfIfy5KHPxb6xQObL5iCWAEgRr3z5YPWHDXD/PzlPpdqD5xRyrCmYA1C0LRZOSlfyvUrbXpMx6+k z1ntysUR6GkEzGZVkwnuPWr0+LBwr0NEjpo14Z7ZIwFjQYMsn/W3SEFn1gulgB2XIWBtEDl9Ng7H 52XwgsBDHM3iKUsCEb768f3K2HFyxVHHuNZOqpSjKjTKn//Jd6epnL7jyENMQLEXChHStDD8dsvt Za/AAasnJNM5Iai2OU/CDZvLB7lZlo44rg59Ii/jor86lwHhLy8+qc81Glei+BHqydSbuTG4MJUY m9VffjRmhclmq+ahANsOfctPyyov6pGuSCHSWznBmKJnq2kv/WYM13PWQqOMgSeVl85JokI7AkJ+ uz30uQqXXxqJ73bqbz2EAG7G+HxjUWelnyjwH9yOvvKVr8Sk3PELX/iCuWjjUQFHiQQajnLmmWea v3oucx8/weMgWlOIVYD8lxI4Dys5MZM9f/58G2+hScVSdXCN2AQmRvNd0suV+/rXv55zWYcg4/ZE XyDSTFYjKGvcv6UpcGI8TOJqnl1pmzgOsGVRnijRekHQN8HWUdLxoqVWnIr500e+rbokEHi0RGa+ 064mVIaPGQpAWqNBy/7f//7Xwe8e4orSwWo8xQRFAw08vfYupDo+rOlymGFYrpM/PpYqi9pVOk+x c1YZYklYtDyWaSVwuZRwo5FyigJWDm4SrlCFfNHAhhs9btw4q483NN+///3v9pmbzcOQ/0o/BLmC OinVHiT+N7/5TYdVA2g/vWQq9ZXrV3q/i7RykFb60unpPvq5I9AdBMxjRc9yi0gcbuEZClwbGvS5 urla6VVhwM36+5wrlxhW2oGUGXHWEbK4LF+5vvD1K7rdogFopn36IccqpkKEkrQC0ioTylmTNKvG pmnEV2gYRswh58VekNS6mrDxwH5a9cloc4Gau5mk7/DdVv+Q+iDwjRRrXOX6Bv7apfgfskoSn1DH sEVuGYYpc9XqN1y32LhIp40yQo+I+EAyhF99K1Un1xTPgSsRwtE2OrNPxd9aVSlxJTUKaG7e9+iw ybh1NT7dI5QSxqpbbOOyDqkP3Ppy4yvXz0LXwQSrTVS6cq5dSnLpEQTgPsyKI+x5EOMhCSLFJz/G IMbG+J1kspNA3/Hjx8dkmwWOK93gObE8CeOP7lW4U7EoTTkBm67yAfaVIBYWl/b0zHi5NuN1YkAR 7gF+/tSBskZ99Iml/NN8NZbrrSMByQQgV+p2VKgf8Cy2BICnfeYzn8llYaVOnjMmgvfYYw/jsr/7 3e9sxSQywW8L7ROWq6DACd8oXRI2BqHB3/72txbYzAOffgjQzmJ0Nb75uPQwi42ZhJuTXnGHDqD9 YCkoJkTNR+Ic8xBcnO+HxTVWJyDwJT9OIJYrdkTrp5+0E804xfLGTcvwNUwHAhfKnx/HkJ+HPyBm IVBw0gE8cQ1hlo7FrSv/VWyJsnLtoUWDN68ouBCxlFpayvWL/kRJKwdpU2RXV6SK9frRESiEgCkI ulCnWdx6kTlmpSFk/TRzi+dHv/9cofWXZUmApEFCm3SdpURF5EKyjF/WB331avOzUN8Yjl5vfFh8 xHFhdQXANjMDzVCMReaNXNd+rg3LbJa6JfvVrR85c/kpeFT52obwhx12ET6qVxaW3hBWYhok5vtF VjYB7zb56SMF+5TtL8sm1fcPxz37kDLWhubaFs3IZ5YytWVUzdJSamy6FgVLQRGBN8fA8Gb6hstZ qX5xraY5NLF6FmVVdzNpZYSN07BYVGvjNYWRhImf2DU8eoji3YatqkpUHkja5C6LItim+27L2iq9 XF86e522qF5ud0glSo5l9LdOIQBJxkOAmem4OiJuR6wOlD9bjucEPCWukJhuKPrbV7LCYbpcXzhH uYmbtbK3VtqLpCf7hxWAGErIbmyvs/VHbhrd4WN5uGL03U/HW8brvXWEo2FJyPcwwQ0cl/f0i7RC gvcOFhoU1Dg+8sHLWUQGywuTyXiL4P0RvXLYnyudv1Dd+Wn69ei8oCETqR19xiDLdJYVgAhSiX7p ccUblAnMIXQQ6wOEnHwEB2NNiCST5aNK7eiLPxwBMWiwUcrN+sd85Y5omZjR8FWLWj7kGetI/lKt 1IXbEaZHApJKCWPDSkE/Y9R5sfwEHEPeWSsXhaVYHEax8qR3pj3WIibwOro8peMz0m0U61cMaI/t srIS9xdcosQ/wvjZj45ATyBQl+WGKAy1IkeJXq1azodZ80THDw76TIcJZ55KJnb7iuAgia1DnZdL kQYk8lwvrSbRbHqhuf95DYvCh8eMDUOMlNbIatJSMN+S8Ym86m/xS+PWMV1JdFyX+MoXaD0opn6I mP50o83Cc+/OClUKPKgv46+DgtciMs6E+3zdqSHKr09hFSlRH19zrGwqmUB0gVK0p/1FyrlaajRG lLNE/6BhI8MCWTGqzaRQtFrb04EAeatbLlGZvSuK589cEQoaTKvGUq1/PI/bDR6uDf8OMtRfXDA/ PKr4updnvhfealgYZuo3NFHdPa26obAslEvepgMGWrdYGawUPuVG5dcLI4CnAnyEQFh835nIZEaa faTyJboQp1dRjHkieespHhPrXRpHZuUhvAR34y5NHCfEu7NuLaX6yoQzLuDMvONC1BuCAkdQcSFv j95ojzrxRkFJgNSnBQ6cv4poIZcoLDhwVWJk2WYgX3g+L7300lwy1gsm6JFCrnG5jMVORCyLinzR +K60l2bYc/lEYC1NWnAuLZ5ozdhE7j92ffz48ZasGfFEfn0xS7ujZv5zbWgguWua9U6kiec+xxOR 0ERKSq6M/sDipdxRAc+JHuCEYyUiF6VEbk2JFJpcdpHeRDP2ibSxXFr6RAE11gfKlhK5AVk+BayU ytbumqwKVkbKlKVL0030QHR4kZ4vnW1PVosclnJ3yq+u3ef8fnFx3LhxufJyXbL8Mkvm0uST2a4O /+AIOAKOgCPgCCzvCGjSMvc7B9cpxnHuv/9+y6dJtETKQrth8/sIx9KqQLl0+dBbGlynOyIFxerR 5Gt3qrGymvxNZCkpWA84aHbc2mIsp512WsF8nU2UFSaBN2lCM5GXQmeLt8svy4/1T6tEtkvng5YX tWuMsavSGaxpB5zgqPkipSChr+kXaWmR50cid/xEG6ylk0uen3jiidamArdL5it2seSERnq/g0Kz zZib0nk0ePN9ii4pcX1X0tE8C2nbuCMhmEIIkonCBmGFNHCWZkWbKubSgp89M93EDdCPfL/7WH88 4haFpYPZe6wb+LLhcoOJCstFIQsHKy/dd9995geWv+RorDceGTcS91mI6cy6s2QYGOYvVYUGyTh1 cy074wHL/Fd6Rj/WW6w94kNYYSFaD2L+qK1i6gKvzvSLOrAORYnjkLJoScSLEJfh4gg4Ao6AI+AI rEgI4HK8884725CIHyw2U8uMO7PscKX839+4WWl6JZ/ouhuPETPcRwrxsHg9/xjLi/zlX7LPcJ6H tZRrsevpQvAC6iuUFxyYve6sO0u6/vxzvFbgZfAwXMHTdcMjv/a1r+WKgGGlq/jkL+dKO3jAwCfT nLKnsc51VidYE7Be5MeykAcLA/wz/UpbHVjJkyVn4Xlpbko8ApYXnsN8AS8sX9ynLsfCFNMg0GbT s8UaWCJQLXu0KKhDpvFhRYgi9x3TXOSukig42JKxKJAXTVl/KDFropuWKNjCrjF7H0XLblpaKe1H D0eiZVWTfIuCXGmsLO3x0ipGsdoOR7kWJfJ5a5c/lotHPYAdyimAycrI1arDtXSC/rASmRYTmehM Q0xfw1oS20DL1c1MsGLI9cjSFYWfzl7Rean2RNhz7Slw3GY25FZl2rQCW3L3qrP9wmqjPzCrW3/Q ib7I7D4zNvkUVtRvz+QIOAKOQG8joB/RRC4MmqE8Njn++OPsdcIJn0uwhPJ7h/Ad2tbWai+5jCYH HLC/LNPtZ4GxmGpp6URryidnnnmmlaN8pizl23L1xTrT161A9k0LciS8Yr50HZxHien5n2Oe9JHz OJ6Y34+9g4BckO23L+1xUaglrYakfRSrEi0Tn8hFybLALaRAJFIwckVE+HK/03LnyaVr0tLSRS5z aeVO5PptZeAghZ4HTXLadU3WlqsqieOEmxUTxaRafd21KDCDHnmhyG0iRcteW221VSI3IWuDv01E i9zYZykUiRbXKdY141+Rb0UOClfRik1W/uabb86V7Q2sc5XrRO5Zidzb00kVnTM++C7eLxETxbgk Wo7fLDqKye1Qj0IC7JrcnIxvd8hQYQIaYgeRz13CTYnAxqP8zRMeBhQFzGiYM+ioNJ5Eex0kilWw MrgsyecrVy+KAg+lfPqMRGomPNl1110TBQPZHw6EEpKMaIbdwIhtUk5Bvrm60icAB2hpwVwV+8GR z8VEu/91GGNslyPmnUKiKHMrxx9iKdFeBZYPV6l84Q831hPb5GFXPIQpDfn5K/lcqj3+EFD2YluY EcFfFoF2Llpd6RdfePE54A+Zes8999xKuux5HAFHwBFYKgjgqokrw0knfT256KK/Jj//+RlyFzlE LqeZ76r4W9Hc3KTfjYbkmmuuTvbcc/dkxozp7X5H+N1TfF0iK22SdpdlENSxeHGcUGvITa5xLZJ5 8jQ0NNpnSEskLuRR8KEUl4yrAfkzeRvsN5fraWHijlf87aTdmJbO5+e9hwC/l7gdoTiWE62kaPwH 7sTvJeUU/Jy7fwoGTnATir/R8K3ouotCSjouz5UIk4EoIbEu6kVZSQvtx+uKN01fyp3zPMJf4Avk ZbKXugsJz6usAN12PVLgcq5fsX/po3zyc3+PcWKV67RdTKLrEcoak9haIt4mwnGZoo609AbWsX4m uOmrlsuPSRUdmdRlwjmNQ/45Cg4CX0b5RHmFTyr+tqCiWFHD2UxVHNVgp4QiBCqzqx0iLdOCQfQH YJuNsVtwWjANsRwTQRf64rPoeFYNYmMxVhdi9YCuCisKxH7EOvTHa4HWmFryVyCIebpzlM+hLYlW zq0GFxyCrwn2LhQQTR9YBlX+bbb0Kxu1xV32utK/cu1hnuJe6I/GsKdP3LNC0pV+sYEMwd/6Eiy7 tGyhNj3NEXAEHIHeQuD111/TnjEnacOmPcI3v/mt8N57M8yFYeutt5HJf0CYOHGSlk68SEsOfkdu rzPNlH/FFVfYppK4gq6zzvhwzjm/1bKQX9Tv1oa2HjsbV15yyWVah/10uTC8qLwNYdSo1cNuu+1m q+FQbpVVhirQ8wC5nx4ZTjvtB1qB5KXQ1NwY1lt3fXOt/gPFIgAAJCVJREFUwJ3kl788W4uBnGKb QBEkipvpqaeepsUyDpY7qDbbk9vKqFEjwtln/8p+M/74xz/Z97gUmnDWWb+wNeanTZtqriH8/l18 8SVhzJg1ewtKrzeFAL/xuAGnN5VNXW53KjJtri64/RAAXSk/iZyLhU7SrijtKu/kBzgYQby4rPAc w8W6KywVy0o7+atadrfeYuXBhQBgFpchoJpFdQoJruzwTwKX2fCXF9wHPPMDyXsD69gnMGfZfk2U d2g35unuEe4GF+OZ5D6k3ba6WndhllimNhpOk3O5KAVexSS9UzE3JcYlFMvfmfR0P2I5/vj4I+wt qXSJLjZl4VVKuJm8ekLKtccXWXr51VJtdqVfrOAQV3EoVbdfcwQcAUdg6SOgfQ702/Doo4+ItD8k Ut9osWCbbba5yPuLdk6f+H2D4CMQn7PPPjvMnTtPq9ucJ//ia1RH5hqEHFIxaRJror9s8Vrrr7+B ERBWHeF3r6WlVf7blwQUDuLBJk58QbFpJ+s7fz1TTs488+fWpwsuOD8w0XPJJZdq4uj1IIusHenv QQcdaP7IKBn4G0OKqP9nPzvDYsoaG5tUdlpgufD+2iV78OBBnV4n3Qbrb11CQN4XFZfjuWJloM5K PufqbPlC+XmGWDWHlQl7QkmgDZSYnlJkCvU5Pw1c8NVnRSRiTCsReFDcaK1Q/t7AOrYD5qwY2pvS Fe5Wrj9dUhTKVerXHQFHwBFwBByBvoYAxH7EiAyJ5xxrL5bhX/ziOXU1Y1wX9zAFgL4zA7z22uO0 UehgbVR5TkivtQ6h4KUYBhvmHnvsmZshPuusMzXT+Vhu11VmL2fOetc2esLaUFOT+emlDygDKAmK uTMrQJWWNEUJwVJPX1iemkBL2mLJbo4oMCw7jvKBFYRxXHjhhepvqzZaWiBF43c9Rv5scP62wiGg WILATtEonsurPP/887bZGAvhsCBLMYmb4vH34tJ5BFxR6DxmXsIRcAQcAUdguUNAezOI+ONymV41 hWHU1dXbTqZXX32VXHrmGhknnVVXrrvu37Zzq+Lhws5a5SZusAXJh5ivs866djz99FPlyrClEXtm +HHBZa+a2267zTYT3XyzbcKjjzyuDZB+arO4uONC+nHHVYyfWR1uvfUWs1BgecclSk20E2ZDeVGO FecYz7x5c20FFcoovkIKw5/NvamnZonbdcA/rDAI4HbDpl35rjfL0wAVk2MrAKEoFxM2B75UqzIh uEUpVkTuh7vb36kl+ltZBFxRKAuRZ3AEHAFHwBFY3hHo16+//Pw/lCPacTwQ/hNP/LysCmcF7UNj MXMZF4pBNsM/YcIzckWqUrzAYSL0O4WbbrpZVonVTIkYPnw1y8NS11pcQ77ej9rShief/C2b8b/i iquMzBO3oMUrjMjfdddd5hO+9trjw+qrj7b4g6OOOkYKQ5P5WNfX9wvf+ta3FQMxTC5Gq1t/sDqQ d9Cgwdo46W+2Wem11/7blAyWWdRiFSJ8mVi/9dffUIrDp+Lw/OgIFEQgbixb8OJyksjSs+WEDcyw 0GnxGsv66quvWowmljqXyhDoUjBzZVV7LkfAEXAEHAFHYNkjgDLAK8YeMBMfz0lHmKUvJ+SN+eJ5 PHamLHnT5eI5/aJ+XjEtnZc0JPbBPhR4S5ctcNmTHAFHwBGoGAFXFCqGyjM6Ao6AI+AIrOwIFCPh xdIjXuWuk69UnlLXYhvx2Jm8sYwfHQFHwBEohIArCoVQ8TRHwBFwBBwBR8ARcAQcAUdgJUcgs87b Sg6CD98RcAQcAUfAEXAEHAFHwBFwBNoj4IpCezz8kyPgCDgCjoAj4AisxAjcd999gf2Sbrzxxk6j QJzJLbfcEg444ABbsjZdAZu1snIW+2GsqKKdywOB0mwSuDSFzeO+9a1vaXPDA5dmsxW1NWvWrHD9 9deHv/zlL0E7umtRg+aS5bRLt22imF6OuViBd955x1Z+Knad55FNAbVDc7j99tttdbdieYulu6JQ DBlPdwQcAUfAEXAEHIGVDgFIHZuRsc9AZ4V9OQ477DBTMtgfIy033HCDEcWu1Juup6+eswPyZZdd Fq655prw9ttvL7Vu/vrXv7bdjn//+9/bztdLreEKGmKfCpZvPeigg8KXv/xlUxS33XZb2xU7v/ib b75pG/Ltt99+4Z577gls5vejH/0oP5t9Zp8V6mODtV/84hcF88yePdt2eT/mmGO00eSj4YgjjrCN IDnvlCjoycURcAQcAUfAEXAEHAFHQAiI4Ce/+c1vEpGxLuGhXbJZnioRyWtX/t13301+97vfJW+9 9Va79OX1w+mnn96h67LCJFdddVWH9N5OePbZZw1zkfLebqri+l9//fVk0KBBySabbJJog7vkG9/4 RqK9Wayf2rk9Wbx4ca4ubQqXjB8/PlljjTWS+fPnWzrPCs/RH//4x1w+TqQAJIceemiizRvtunan bnedD1oSNpGikWi/lkQbzdl17Slh/Rk6dGjy3nvvdShTLIFVFlwcAUfAEXAEHAFHwBFwBHoAAZSM QopCD1TdZ6p4+eWXE+3vkci1pU/0CeUOzPuSoqAN7ZL999+/HT7aRyXR8sbW13vvvTd3TVYBSzvr rLNyadqJ3Yg+ZB9FIl8mTJhgZQopCv/85z/t2vHHH9+uGMorOMka0S691Ad3PRJiLo6AI+AIOAKO gCPgCPQEAmyQtyLLggULgma0bSOzvjLOvoo5sQFpkRXA3IFII74gSoxb2WmnnWKSdoyvC+ywPmPG jNyO8LmLOmGX9mJyxx132KVdd921XRYpLvYZ97BKxRWFSpHyfI6AI+AI9DACza1JeGnG4jB7YcfA v3fmNoUJUxaGt+Y09nCrlVc3fX5TeOW9xYEpqFJSab5Sdfg1R6AvINDQ0BD+8Y9/aBfuT4QzzzzT unTFFVeE4447zl5f/epXc9382te+lkvHF72UyM0kXHrppeFjH/tY+NWvftUhKzt2f/GLXzR/9o9+ 9KPh29/+dpgzZ06HfMUS2IH4s5/9rO06vPvuuwf83ImJSAvj2nPPPcOaa64ZPvKRjwR8+gl2RRj3 5ZdfbkHc//73v8Pdd99tdayzzjoBH3fIKjJp0iQr+/zzz9vniAsxCS+88EL4+te/HtZaa60OSgTx Gl/4whfC5ptvHuRiY3Ec7JKMNDY2hiuvvDJAkn/84x+HKVOmGK7kw7f/ySeftHzEdrDDOX75+Odr xt3S899mzpwZuE/rrbeexQRcd911uSzx/n784x+3Hc65b9tss0349Kc/nQsyLtXXXEUVnPz0pz/V juqrd8g5YsQISyNWIQrYIYw5LePGjbOPTz/9dDrZzkspR2+88YblAdu0bLjhhvbx/fffD3KFS18q fl7K3ODXHAFHwBFwBHoPgUnTFyUH/uWl5Pz/TW/XyJ8fmGHpXOM1Z2Fzu+tL68OP//u2tT9rQen2 8/PNmN+UMIaH38j42i6t/t426f3kwvtnJAsaW5dWk97OCoYAriKrrrqquWd897vftdHh7y3SbWnD hg3LjRh3FxFXS//hD3+YS4++5ekYBfLhGy42luT79ousmhvPBRdckOBHjk86bj0i6ckrr7ySq7fY iUi8+b6LECdaYSc5//zzrbzId66ICHyywQYbJJpJTh588MFEhNH6ctJJJyUijYlIeqIZbEvDLWXg wIGJZqztM33Gfx6fegXcJtdee61dJ/1f//qXfVYQc7LZZpvl8mtln1zbUi6SkSNHmo++VvRJRKAt H/UTr3HIIYckIs+Wphlwa+vggw82f33a0Kx6IgUiGTNmTCIFKNfP73//+7k28LknL/eHftAe8QGk 8br44ost7z777GN5SKMt3HqiKxBxDuX6mmuwGydgKWUtVwMYxH5KkcmlcxKxkoLXLp0PUgasXCHX IylYdo37nhZcmGJbUsDSl4qee4xCUWj8giPgCDgCvYvAxAKKwox5TclBUg6Ou+zV5N5X5iXXPDVr mRHfH91UmaKQn++OF+eagvGTm6f0LoB5tZ/4z9es3RdndPTnzcvqHx2Bogj8/Oc/NzIVFQUyambW 0tKKAum//e1vLb2cokBe8kDS0orCc889l/Tv3z/RzDxZcvKVr3zF8hKwWk7wb0ex0Ex6LuvnP//5 JCoKsjZYXSg7UbRMp6VVV1cncoGx5M985jOWRn8ee+wxGzNKSyTSsoTE4jllKh2jAEb0gzGmFQVI rmbtc2U52WWXXSzfl770JUvXykX2GWVg4sSJlgapBW/qQ4GLQb533nmnpW2xxRaWj7eoKNDXSy65 xNLlIpXsu+++lnfUqFEJnxFZiiyNeiHbKAcoP0glfbWMXXzTakbWtqw3uRq0nK6lodjky4UXXmjX UOzypZSicPbZZ1s5lDGCn6PEMowdpbQSqVVmF0fAEXAEHIE+gsDUeU02BfaxdYaEnddfpY/0qnPd +PDYQeHwbUaEzdcY2LmC3cx94sdGhenzmsO4Ef26WZMXX5kRiK4haQyKuXngR16pDB8+vENW3Hxw h8ElKS1SUmwfBlyAXnzxRVvWMn09fU4fZPUw33eR5IDr0sknn8xEsGVjyVLkr3/9a/j73/9u58QZ ILge4fYigh5i/2QRCdtvv71dx5WI/R9kOTB3pO9973uWXuhNK/oEkd0gQp+7jBsP/vLUz94SUdj3 ANEsvh0j5rIuBK0SZGkDBgwwtyCWCpXlI+eTH/uW9vG3AnrD3QgXLIS+yJIQcJ+SIhGklBk2Uj7s OvsuRFcfrUIUKu2rFe7CG/fjlFNOMfcpKWW5GqJ7UKFnKbpXxXuTK1TmRCss2b4NLLm6xx57BJ4n xodrFyKLUZA1pUwtmcuuKFQEk2dyBByBZYXA+4tawvyG1rDmsPpQU11l3eD3b8r7jWFI/5qw6sAl X2MfKN9s5V9jaJ0RRq4PT12ft7g1zF3cEtZatV/IVmX1TXm/KQyoq1b9odNt0a/adGV5QE0X8Z8+ vznQ87HD+4URg5b0Ny+r9Y3YBKRNY5yhcoP7VeuVCY5saGkLb85qDIxzmMa17mr9cphQhliHpta2 MHqVejufPLsxrDa4NozVeKsy0JEtzFrQEhY3twmHevvMG5QCTGkrjVnMQBniJUYOqTX8UtXFLLnj UOGOopO+N/Ei9bwztzH0q60O643sH+pqltRUbnzl6thw9QF6TvqF/qo7LYxN7lBh2txmw3+M7lm6 3VaBDe4jB9fZc/CmcJP7UlhH+Ebs0/XF/IxlTWE4akid3d90Hp5Z8GpRHMp41TNsQPH7HssRs0IZ yo4ZWh9WX6U9Ce3MOPrreX5tZkNY3NQa1h81IAysz2AyVePkuRo7vN7GG9v24xIEamvL36sluSs/ K1Qvm7shY8eOtWN8g8BCDolT0Ay7bZgV/dhjHrnYBFk0zN+fuAetRGQKh9xrbG191uFHiAXo169f QAEoJMQsIJqNtyN50wJ5R1GoZAOw/DHGOIRjjz02nHDCCelq7RxlAMkvZ4l6iwpE/MxxlVUyEyiR RKev5Z8TI7DddtvZ/hVartQUBVlRLJssJ+2yV9rXdoU68UGrIJkSRTxKxJrio0ePtlqi8pauUkub 2kfudWcERUBWIVMQ2OTtjDPOsBgQ4kdQPIn9SPehVN2989dQqkW/5gg4Ao5AJxD4x+Ozglxwwkk7 jw67bJD5gXhu2qLw05unGPE+79BxudrOu296eOrtheH0vdcMZ932jhGtPx+5Tu762XdOteDh7+2x Rvjo+MyKEZCp7/7nrbD92oPDIJHkzrZ17sHjjFDmGsmeTJOCcM5d0wJkPQr6xKFbjwhHbbtaTGp3 PPPWqeH1WQ2WJvedwAvC/d3d1whXPzUr/OfZOaGpBbqYkdEikz/aZ4wpBqT8QeN/Q4rE7hsODTc8 P0czipl8KAo/3nfNnJJyzl1TFaSsoM3j18sRYcUhhJP/NTlsueag8FPlTcvlj80MD7w+P1ff2lJ4 fqI8hRQBylH3aTe+HfbYaGj46iczs1aLmtrC+ffPCA+/8UGu6lWkUHxvjzFh09EDKhpfuTrOu3d6 eG7qonDRMevmxvqq+nLuPdPCuyLHUSD/X/7E6mFHYYuk+ztJweWQaQRl4uRdRufykcb136k+lIQo G39ogN2jiMctE98Plz46M0D8Ee77j/ZZM2wlbIvJ45MXGD4oCVHo3ym690hnxrGb7r/iX0xBpSxK wml7rRnufnmePd+kIQduMTwcv8PIzAd/74BApUSqQ8FOJMgVxHKze2++QOpQFCDujz/+eCBgOS2R RK699trhiSeesABognNvvfVWm/3nXK43Vgez1oq9CKutVvi7J11v/nlUYgYPHpx/qeznGJD9wQcf WKB22QKdyFDp/VG8gtUaFaBi5XqzrwRrszMzG/lxH9LC/UPYzRprTFSESMMKgGy66aZ27Mwb4yaA PgoKAlYlRK5tMbnsMaNWlc3mGRwBR8ARWDYIbDEm477y1NsZUzm9ePadzCzL25p9nSmCi0Cgn5cC MUikaOs1ZVbVbCzkMM7QQzIhWwjKRJR4vrHIalfaWlszs4XkRRHK9z5oDgdtOTycuueY8Hm5xdTL ZPGvCbMDSkQhOXTr4eGT62WUIdx2PrfDqLDXxhkz+T0vzw/rawb+ayLe1LfNWoNkNWkKVz85O1cV igEz4dc/NyfsMG5I+OKOq5sbztuyFPz1odIrXESlIldZ6uT+1+aHj0mxoj6UBGa9//Jg8fqy+kmq hhD+8fhMUxJwC/qKSPqRH17NrCYTpmTuayXjK1dH/hgg3YqTsOcA8nzSzh8K+2wyzDD67d3TZEHJ 3IfY3ztfmhcWNraZ2xT5IfqMMxJ+6jvz1ncClqljtx9pyutGUhK413996D0bL/j//eH3TAHjPp2+ 95iwg7BrwURURHiGf6P+fKCyB+p54R6jVDwkpYq2OzsOFIJG/T2gkG6tenj2f3jT26Yk7CR3NrDH CsZzwrPhUh4ByCWv6M6TX6JYen6+/M/s2osUWtVGfv7W5o477mjuO6xUk37JV9/K4hqEOw2r+yhQ 2Xb3ZbYdtyEE1xvkT3/6kx3Tb6x8RPm04MaUFsUK2EeW6uysxLYhyvQ9LezkXMjKkM7TE+dxxSZc skpJb/UV1yncnG677baggPIOXcAFiFWokLjCU8zEKlNIZy0KsXz6eO6559rzC+Y8U5WKWxQqRcrz OQKOwDJBYFv5uzMj+4yUA1w+cD96duoSos8SopDpFzSDirKww3pDLA8Wghuff19KwQK5owy365RH KMMZhvanskT1I+MGhyGaae5KW9SZLxCyT6y7SqivpZWMEH9w68S5AQVnDVkD8gVCySQ0xBw3mk9v sWTm6feHjsu5j1AOgnr85a8Zac+vB6vFMdtlZg53GD84fOHKN8KTby0IC0UYUaQ6K4cp3uDorBVk e+H0paveCE90oj6IKtYRhJn16Nq018Yi49l7Um58ldSRP66bdP9xsUpbNnbZYKhZCng2bn7hfbMs xHL06+f7r5W7N7ggvSELD/dtnBQk8lMf2B68Vcbf/GPrDA7HXvZaePTND0KDrs2R+xdDGi1FdTth xd3fdmzpmdhb9EygENDP4z8y0rqzu86xdmHV+L8JnR/HWZ8ea8oy/f3sP16zv43jVDeKK4IL3m2T 5oZX3m0w1zRL9LeiCOCuwmw8M/8QZ1w7UA6ijz1xBlHikqPxWCodv32IJEuwKgA14OeP0IZWwwla 0SYXO0CbheT6668PuLP87Gc/MwII8cedCP90lmWFIGNdUMBw2HLLLc3thHpwZdLKTNZOut558+al PwatVGSfWXI1SozZUKBs0GpOtlQpMQFxzPEIMcZ9iHxHHXVUYP1+8qOMfPOb38yNLeaPx9hOVMDy 07leKC2Wi0eUBMg3GEQXq1gnM/hpqbSvYIpiR53FrBOx3ttvvz0Qj4ASx72MgoWFZWfPO+88i5M4 8cQTzVWImJS49wGYYUnCslSI2Mfxx/HEugsd2aeB+BXuvwLUC2Upmtb5X4yiVfkFR8ARcAR6HgHc RDYZPdBI7ksiNcyu4qc/PhuwOiFrHYiWAQg/AqFFYjouKQjliHugDuqCjOGrj19/V9uyivPemLGF 5L387mLN5M4PNz73viwJGevH4uaMwpJXpORH3EeYyX5ULiq3iuDdI3csBHKaL3tr1jwK7jDrrtbf yCsWjq5ItGpQlhgLYiMgwzMrrI/4ACPPUo6ikkBdxFkQF4CUG18ldVhFqbc3Z2fI265SDtLyiazV BgUgLQRhpxW4+IwRE4K8nbVAvK5nB3csXtc8NTsXJwK+uIOBOS5Kp8v9ivvF2EtJdHXaLC/4mxgO pCvjwKKGEHszKovxpzZdongSL4NgxXCpDAFm/yFlBMtCeNm8Ct99hNliLUtqa/FrNRlLi0f7oLep U6d2SNeqP+ZWQrAtewNE0gepR2lAgahEIJzEKCC4CPEitoAYACwLuLdAcElj34AddtghaNUgu5Yf KAuhjAG2xCVgdSCAOB2AC3lF8H0/7LDDjDjjCoWVAIljJw5Aq0hZGqSZWXuCa5lFv+mmm8yHnosR mzj7bwX0xp4ISDxyDoFGaC8dOE0a7XIvECwy7HUBjtqp2NJ4i3UR+5GWSvvKHhsQd/ZiKCWQcxRB +vmd73zHMCRegmBt4hImT56cC6Zmlp89IrTKUW5/A/ZhIG6B2JL8eArajThwjEpDof5cffXV4cgj jwzErqBEFlM4C5UlzRWFYsh4uiPgCPQZBLaTdQDBOgDhh3ftv/mqRjL5zGwslgGI+dZyyUE2/tBA I/4QNmajsUgQdPqpzTJkCZcXsyyosu3XzviqU64rbVEuX+ZKGfnmtZPDD254OxA7cLlcb57Lukzl 563kM7PjJ/zztfCrO6aGv8kd5qonZ1VSzPL0r8tYNaILTcUFi2QkUBZpwvxRgczKbii3TonViMqN r5I68ruCQogMHZgJBo/XIc/IYj0XpSRagyLRx1qA4Pp236vzcy8j43q2BtbX2DNI/AYWIVySuF/f vPZNCyAu1tbshRkFbh0pdIWku+Pg7yJfSgXg5+f1zxkEcN1g1hzlgNlxXHGYxUciOf/BD35gZI80 Njg78MADbfacVWhQJBDccCLpxm8edyFIIv7kzHoThAyJxgpQqbsPSgAr92g/BCuPMkCgM4KygNUC kooiwmw4ga6Q6Nh/y5h9wy8exQJCT/v4x994443tZs/Z0AyrAqsKsXEY5xDoKJBSFAMEf3j6AmEn DgDrB2RVy4IaYT711FPN2kFexszmZ7jcsIsxgbgI1gfyYT1JrxAFYX/44YfNakEMAEoPbYPFuHHj jHQz1uhWBCGPG97RPnjFOADaKddX8sRYBtplJaVCwqZx2gvCFC7uDTEkvLBuECuA8kCAdxTwY0M5 XJDYlI7+81ygkKLc5QvjICAZoS3uQVoZoh3uEfVgNULZ4x6m4x/y6yz22V2PiiHj6Y6AI9BnEPiI FIVLHnnPrANxBnSLMYPCy4o5uF2z63e+NNf80PHbjyQQFyLcliB0+Gwza4trx4eVB9qEpWGkyB0S rRB23oW2rJK8tytF5PH/xtf9M3JVYfb8umfmmK9+XtayH1nN6GKNn1WcTtltDQv+xQXr8L+/UrYs GebKEoGwGhFSLV9rBLeUQqv62MUSb/Pz6iuR1S4NG5BpF//9QlLJ+MrVUajezEpDjWG2Ao+xGEXB 7QaJwccxvdxxeHbFqh/KfWoTuX4VE+I4zj5grFmrLpPV4QXFzhBfQVB6IRnan59irbSUtVzk5+np ceTX758LI6C199tdYBae2WgIH+QZlxpI2s4772yz8zEzCkW+4O5RzOWD+AJmwfHhh3hC7vLbzq8v /Vn7Mxj5pW/aoM3K5+8IDFHGjYVZbFyS6H+xNs455xzboZndllFeWNo0X7RPg1kSILgxyHnChAn5 2XKf8dHHeoKrFkoC7ceVjn75y1/aLsm5zNkT3HAKCcpXIWFna/pFgDh9R8lZY432f3MoNrxKSam+ Ug7Fg+VdUWiiq1h+fVhcKlmVKV0OEk8gOu5tvEopieXGQMD04YcfbsoVymc5F6l0P/LPM9Mq+an+ 2RFwBByBPoQAy0TiKgHxvksBpyxJigsMpB/5WzaQNLobxa7Hz5BshBV9IOzjNXP7klyCHlAsAK4w 641aMpPblbYIon1MLiZPpywGb83JuLXga06b5IkuJLF/lR5jwCkzzgRcoyQQUBxjLvLrwSUmzoK/ 8t5ii4kgNoGlUpGhWeL+sly5EOphlZ5ikq4PV63JajtdX7FyMR2SjuL2wvTF7WbW6Zs2ncsF1JYa X7k6YlvpY3SvuT0bH8E1bCDEBCAbrr7kvltCmbex2eVk75HimS/RtoIrGBYsBNchAqiRaBUo9Kyw XCtyV6perD/Es3Bvenoc1pi/FUUAlxWEGel8YXb+k5/8ZG7ZTgghLjw9IZA7ZriLEfhibTCLzhr8 kGKUlnwlIV2OMWmzs5JtQCrZjwBf+UJKQqyPWIOoJMS0UkcUBPz68ZOPSkKp/F25RixJ7Hu+ktCZ +kr1ldWEUMq0CVpJMt+Z9tJ5iYUppSSk8xY7X3fdde1Z4PnsjpJA/W5RKIaypzsCjkCfQoDgZIKA EQg/srlIM24VkCrmyMmTFlZ8SV/fIusDji86QaoIrkaUTUtn20IBOFsuJriqXP25DfTFHCzuASJ8 kZQYljglADvGSaTbquQcxYg6mZnGslJXU604hfdzykB+HQRDo1zg/vJIdjnSfeSfHvehAD8Umwsf mGHuMZB1FI9iUq6+YuViOpaQndcfanEVp8pvfwfFjxAfQgDw/psPlzvYsLLjK1fHpopjyZf95GbG UqUPvv6B2psSNtB+AiiI4IjyFt3Q8ssV+0z+/yqgGQsVVgliCpoVQM9yvcQx/F4B5w+orUsffS8Q F0G8wyMaIxLdigo9K/tq/MSdxHpxkcMt7j2t2rWzlgTu6XEUG9/Kmo5iwKw8K8vgDoKfO2QQd6CV SeLqRrjFuBRH4LTTTjM3IdykVgZxi8LKcJd9jI7ACoAAq/dEQo+LEcLGWnFJU0hxvisJvvQoCwhW A8gmsp1WoYl1fVT15ktn2xok33RmzFk1KVbMyjgbqE32RcDthP0UcH1CxPMzx2wnoisQidSDxDyc E/B74kdH2ZKWrNZz3bOz5X400CwrMT/5omDFeEeBt7hl4V60z6bDtCTmiHjZ9llgGVauQaSZ7f72 rqNNqUrXV60PuCaxilKsj9lygqXT9UUFJLrCx2N6XJ/fcZQt/QqhZrUd9lOAuOOaVen4StXB4PL7 gdXpzP3G2opFzyuW5dqnZ5tihKL06wPH5tzUCvXX6kM7o97sPWHfh5/tt5ZZCgiiv0xWGFzM3tQ9 jrEt3HNcvFAoWJIWpQTFKK5CVehZwVpy2l5jzEqGSxyWBHA6UitN4UrX3XFwHxhKdjg2pnifa9KJ dmXle8NVheDh4447zvzs2ckYf/fOzJYvz6ix+s8jjzxiPvGMg/iIUm5Ey/NYe6LvWJAIhCaWYGWQ KgW2RIvpyjBeH6Mj4AgsxwhgOWjTVxa7+kbhG4wdfUmL5Cde41jseqG60uUKXS9WF+Ug3fVilJGs xrqYedZmyUb2SMM1pZ/IX5Z72uf6vL5bHqXlczj6BKlH4YFAsjY/fYrBqj/+7xTbS4INx7hOPMdq Isv5fYp9ox3LI0WE/rC8LApKzI/bi/5b/SgIkNcRcl/KD4QlH31J3xfqzh8X7TKGORoD/YN4p6Xc +GLeYnUU6kcsw/2h/8QZ5PefPIX6y9ib9GzF4O1YF8dGpc9d1Bpqdc+pM97PmIcxYm3AzSu/fLFn hbIEwRMkjnIQ70Osk2NXxsG9adMzGIOzY332nKWexZi+Mh4JvGUzLFw19txzz9xqNCsDFqy4hGKU FlyZCMx2cQRcUfBnwBFwBByBFQSBtKIA0XRxBBwBR8ARcAS6g8CSabnu1OJlHQFHwBFwBBwBR8AR cAQcAUdghULALQor1O30wTgCjsDKjMBErSrEmvw7Kni6kNvKyoyNj90RcAQcAUeg8wi4otB5zLyE I+AIOAKOgCPgCDgCjoAjsMIj4K5HK/wt9gE6Ao6AI+AIOAKOgCPgCDgCnUfAFYXOY+YlHAFHwBFw BBwBR8ARcAQcgRUegQ7LYuzx9UdX+EH7AB0BR8ARcAQcAUfAEXAEHAFHoDQCblEojY9fdQQcAUfA EXAEHAFHwBFwBFZKBDyYeaW87T5oR8ARcAQcAUfAEXAEHAFHoDQCblEojY9fdQQcAUfAEXAEHAFH wBFwBFZKBFxRWClvuw/aEXAEHAFHwBFwBBwBR8ARKI2AKwql8fGrjoAj4Ag4Ao6AI+AIOAKOwEqJ wP8D59g5g1SZmNwAAAAASUVORK5CYIJ= ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAHgAAAAqCAYAAAEPJa+4AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AABbISURBVGhD7ZsFlBXH0oA3CSS4S4AQXIIHWByC BXd4uDtBggRJcJfFLbi7w7LALvaQuLufuAtxT/qfr+bWbN/ZWYGf985LTuqcunemu9q7y7om4vXX Xzdp06W9Jozg5+T5U0Zhzea15mDModCbMfuO7Zf/p556ypz6d6zJnz+/eeONN0xERIRbeOXKleau u+6SBKBSlcomJiZGno+fiTE5cuQwmTNn9vIVpHCmTJnMli1bzKlTp8zjjz8uraVKlUqIeea/VKlS 8rw/+oCZPHmyORJ7jPQIE3fpjBDceOON5tCJw/Lcrl0707FjR3m+8847zf333y/PPkyQkHLUmbsW jNAxATfffLOMq1atWl7tZcuXMz/99JM5f/68jFdByp389ymZ+j179gjxjPkzJVMrXLFihSldurTp 0aOHad2+tXnttdck74SzvBH2mgJH46LN5t1bzAMPPCCTt/foPjNgwADTq18vb+bB0HOEqVGrhunf v7+XATZo0MB7rlmzpvfcp08f79lB7+HqkVmjCyAT0qVnV5MuXTpTo3ZNE33muJcHRp8+7hWs36iB DEnzxj4w1stjHjX9yKmjXnrlqpFeGa9hMoKAdOa0Wctm8r5+/XqP9vPPP3d26VFZCNLmzp0r6QDv g4cP8Z7t/5izJ9yGY86dMG+99ZYpWLCgZPihd//ezihizTvvvCPvdkV2p/nX59UbHzTHz8aYs2fP mkuXLiUsky59OpmaAgULmO+//14ybYCQCqC5nujU6/YS7De4vzlw/KA55mxP1nvDtg1enuLChQsT pIEjR470zsYNN9zgpcMfvvrqKxkE7EvTI9hIejT/W1i5cqSJ4MAx5+BRh53lvjW3yZI1q1m5fpWX rjh01DCvxzBgTaecpteuWztst0+YEs/12Eukbdm9Nb7hDBkzCONWuHLlihBrJYWKFJL01q1by//h w4edtYqVpYHFAEw1QDnK1KpTS95/+OEH+X/22Wdlfb2G125Zay5evCiZfmAGqGT8+PHyTqVFihSR Z9ava89uZtCgQZKuAKM8djraNG3a1HzxxRfmjz/+MF27dpU86LyGtRD/YPbs2U3ZsmW9NDba7t27 5R3p07NnT3kmr/Zdtb3nkiVLyj+AzJw6daq3seLi4uSf/AQNlyhRQv71HeCZEWsaMlIBxkwDzz// vPn44489GhUZ+s5/ixYt5Dlq+cL4hrPnyC6JnOOPPvpInvft2yf/2jBrzfPgwYNN0aJFhSuRDu48 uEvyJk2aJP+HTx4JK9O7d2+ZwX916Sjp0vDpy2eEJULgB6buaNyxsIN/TejMiv3OhnTac9f1xLmT 8l++fHlTv359eabHiC6ladu2rfds40033eQ9582bNyxPxVzVqlXD0h2Mf4m9ECfTBOOHTbJr7XzW cdmyZTIbdnratGnNe++9J+nwezuPtY2MjDSrV68OS3cw7OW/h6lvTi1njk2WGMKZ0PygY0aCaBLD E+dPmjMPnTWnL5+VGT10MpjORpbdLXPGxF50VyGIzkZErZaJu3g6sMzuw44sgWfzoicDhKXWrBOv 7rBs7KvatWuHzRZ8xWbLimzijJkyimrMtrABBZayeuIU6fCteW41GTJk8LaLQq9evaTMAV97KEgF ChUQnvbmm2+GqF0YOnSolNlxYKdXRk6xPWBOc9HiRYUQDpscFC9eXGhZfe2EshIbGIAtfoBKlSoJ l6dM6FSLavz111+bKVOmyHvu3LnD6oLzN2/dQsocc7iLnVehQgV5V0QbBmDuNR3tcV+0b8AMNlfu XHIgbTh58qT55ptvQm/GPP300+by5cuhN2POnTsnDUQ7g6bjRYoWESVLAftGO0GnbCCNLV+hYgVz 9OhRSYO3Kj3IoG0gDVncsHFDs2rVKkl76aWXJP3PP/+Ud0xC3hV4RnkIG7Com04GxABCoFixYvKs YFdiA+loocw82obKaoUgi2/nzp2mYOGCMkmzomabnDlzhnLc+rAiAQbx3XffmerVq0t6jpw5ZHGW r1lh0qVNJzS///675E2fPl00ZZ4LFXKVlueee86kSZNGjlDYgBEYEG7YsEEIH330UXnXM0cHb7nl FjkvjRs3ljQFnqfOnioD5rxs3LFR0tgNwPLly01UVJQ8A+Q1bdFUeABlwO37dkj6xUvBShAyCL7C BGkZylPm+PHjIapwyJgxo2M1lvWObIIzvHLdSqngmWeeCRVJHqDPkiWLV4eNcNsVTp0dOnUwrdq1 NtPmTJeJ3Xc0nM5GdtqDm9aYDp3/ZVq2bWmmzJoq9QTRKsJD1m5Z5/CErk6ZVmbyzClyVPx0MmA6 rLj70B4hRLvnfdOmTaFhhQNbjG0CzSpH8Yar2/X8j2PCxBhm1OFqrFprZ2UQFaSnSp3KlC5b2ixa sVg0E2beFl9+5FigIi9atMi8//77plGjRmb48OGBtKAyTJ5hlpzf1KlTx7uJApD86Oho4TeVK1c2 S5Ys8epIBAMTPcxfIL/p0qOLGTdxnBl4zyBTpVqVQLogBGAiM2bM8N79NDayszBCu3XrJtwfLRnx 8vPPPwfSgwwYgDl17tzZTJw4UfgM4i2IPoJZ4Rz/3ZHJFHG15/Be2bqJIewcFw+MASU7iCYxxM1z +tIZUfdQ+6gniM5GysRdOu2Vod0gOhvpY1gZ57j5aWgbNToCzuXnZiCMKGpZlKlYuaLJlDmTwTGT 77Z84huxNasgRDTRiWLFi4VtJ+pYsmppmGixy+BvKVWmVFgZRCH9QPYGlaEv5e8sH1aGLT1z3sww 9ZVBs9IJBkwlW/du8wpjMmG3tWnTxuTLl89Lb9WulcyaXVbLz1k0V2jmz58v50vhkUcekXRcI3TA LoMrjDyUBxvwWJAO72D17TIbtrvyfty4cSFqF15++WVJL3FHCZlE6AMHTCXY6BBnzZrV/PLLL6Eq wmHWrFlCg0fEv9qqF3/77bchapdR2V4VlIiBQwd6ZdRP9MEHH4QojKivhw4dMj/++KO8w8E7d+/s lVFRCFNUeOWVV8L6jPbWpHkToQ8c8EEnkUqqVKkSKpI44MiEtmr1qp7GRKXZsmczW7duDVG50K9f v9BTPFD25AXXP5X/9vzi/sNo1jwQq17FDEAaOjHtsfVHjRol6Rg6WgYsXLiwpAO8MzkJBgxD4ryw hVMKOGSocO8R1/xCqefdBu2EPx3ZjtKiKi1bl10VRKuQL28+5zwvFPNTaZDV6OoVK1aUd4A8de5h sEyaMSnhgPcc2SuE9hbhjsi2jABudtRHBlAGxqYr7O8s74o2NGzYUGS7OvkBtXJs/PLLLyUPYKcM uGegKEZaBsAdp/4+ALdanTp15Hn06NGmY9eOCQfcb3C/sErQkHgvU6aM/Ou2oSL+dftxqcI7Z9nu vILaqWxPNd8A/D7T5swI6/yJE+65RJm444475GqMd87vww8/bJo1a2ZGjh3p7QqFF154QTQ5BfI6 dOggz927dzf9hwxIOOBqNavLlgY4+HaFAI3TCT+g1kHLNlNG8uuvv4Zyjfn0008lDaPeBtIOnjgk Xgue0YwA9UHaXo/NmzdLGrjr0G5xLXL03n33XclHeeKdHaLllWnCGzbt2hw8YNVl8S1TyAa2Tbly 5UJv8cBtJ7QMmHqYTVw7CjhgyefyUmHOnDniAlI5OXr8aNGEFJo3by5lQMQhcODAAVEc4OiUmTZ3 unB7hRo1XDcniwY/AI4cOSIDVoUnbMB9BrjXdAoIb7bW3XffLenKldU+Vu45bJh7JYF2Qz04+nLm yun51PE6ox8rL2Cw0LMboAcZBEpNYldca9askTIqU0GcgRgyHL0gwH6nDAMVev+A2SoQqEscwGLZ v9+95AaQibhsbHnJVqJh25jHpmXHUB9nHuOhU6dO8s71ClYWMl/pQbZ2vYb1hIbVogw3FryrZ9Vf hq3donULoWFbc2w4s7zTLxQVLZNgwMxyamdV4XApBWUyeAbtjoBMAHWOmXCfON76Duxrtu/fIeLP T6tIGbYfV7CU4YZ5y56tYSsbhDBMXEst2rQwPfr0NJt2bpYJsmm8ASP44XrMFhkMAFUyOdAtjgtF 6whEvXfQ/5TgtZRRTKQMhgW6vNNnlzngHIOJzF7onjG/t9AG7qGhQXXj7C5YGiXvfxGMf+nRt6ds q8274l2rcD3kH7EHiCVNb9aquWw/9Xb6ES9jly5dxPupXBdNinc/rSL3MvyrrEcqJOUhUZw5c6ZJ nz69PDdp0iRBvg/DE7r16i7bG9/WDMfEKl6yhLB/2HvWbFlFgWegcjai3SMQhHgs+Qf4R3HQ58QQ 5WH79u0So4No4zlXrlzCOIPoQRWhMFj+YaxMtE3jw4SJmbNklnsYDj7nE+YD4+DgY5eiwLdq2ypB ORsRQ3BaFAjekYl2tEoQcom9dOlSkaOsNpfepFerVi0BrSLik4n57bffxJfdt2/f5CY2MNHDuvXr mqH3DhXO2aFzB5MrdP2RHKKHY65p46iiuHP9dDYqrf2PmPTfadnIyhKp9Nlnnwk9ugN2t3pVAzAw 8e+LhKB179NdtjAyD7n8l8W/ev+vBzpzgJ+yW+/uEl4YkSZdGslQlTOlqEoRMh1+xgZBweHGA6Qh 6BDT0IjO7zB1fz1Xi2iKouc4+gX8c+GKReYeh8VwX9CkhXubyi3sxOmTpD9osX6lK6XIGBFWqCdL Vi81I8aMMG3at5FrseaOVO7UrZMoeOu3rRfp7Amvq0Rpx+knwpGbqVHjRpk2Hdx2CM9r37G9sFBu oFAqmVPKBNUFspasaZq0DhtDu0zJAjOxEvrhNDBpxmSJ5AxkCYkgvJOgxgVLF8iC057fFEgKoWVR 8W2WcZRZrTdbtmyi1hAIu3jxYrNgwQJxSXDdrjRoET369JAFYLGSapc87Dg2R6R1x5IhfQa5KBo7 dqxcHNHOkCFDEsTMtOvYTtqwzZYgJA9zCSukVt14GYSaRzzOfffdJ+MBR4wYIaqYHfTXqFljqSfI pNIFFsshuQWmMAuyaOViCcDQBkD0Pi59udTh8scPGMJPPvmkBIoVKFAgrGzJUiXFqcxkJjcRbKpV G1Z7N3poL/6ADhxfSxwDHfPND2vXrhXthLL1764vp23/8fATQDtwoo07NnuKBlFbjC2lgNdQ9dsq 1asK1wq6PTh86ojY4gULufFOOAEeeuihUC3JQ2xsrBgxlC1esrjZf+yAOAe0/hQtMANmh3FiUDOp DMQhh1f/WgF9Gp+x1oc/etfB3WE3CjaeuhBrevd3PTHo1B9++GGopnDARat1osIGAZuRfBwQGEfq XgLhDsNHu0YKixQ0RvxquLm0HUUNy1TAJ086XIuNqWY3yIZ+YNpEycfvoPaFAhv13nvvlUXHgQEN xhaeV3yDNuA91j7MXTRP1os2UrTATCwyRivgBPrDrf4/8Oqrrwp71fpHjh0lk2z3Ae8tbmvyiY7C NvADLnRYMuwSKxJ2hhXLqQ0CdXMVcE4PDlPkORxi5nz35ogJZWK1X2xGbBF9v/322yWgFwcrTtEn nnjCfPLJJ6Ha4+HMGff7Ci5hOK2cZBZ66YPLhNWyiWwvGaAxuiAhNLjZaQtXvKYjeuybJKJcqQ/W vnHHJtm0yS4wi4ss0UqZwP8UqD8URInRRUaJQL5UinRlqX2nYIPtrbaRONXEAPc/NITXsLhsJGKR SeNDDwWiW+w6QewvDFX6DRLhmxhonJNcGzjjQtQRokMaRrMCG5cbMm0DLqF2n8Lp06e9fFyUNqjL Euc4H6QkucAc8zkLXWcVqDHONmDk+q14draGxAG4OuzPa0DuWQjWsoFoMg3uTp8hvbBO+sLJ4r9I MdcXZIf12aAff/jRH01nAxda0IyfNF60V5QvwgBJ01BAAA8lyo5dbxAyrgkTJiTQC/TkcRHGDSNt ETpImj8GE4ATJBalz3UK3IWy+K9t0M3B5RlemSQXmF3WqGkjKQDyQYoNGgMJG8OlArBIBG/Cyt5+ +20zZswYoYF17NixQ2j4BICvbqDh0ssGBqvtDR05THah25dYcRKSjvaaGCCbNKwRRKlLDPgCCGWN /nNNi2XAmLv3ck8BfVSgz8SXEkJJHhOsShf3Zpw8PDHz5s0L0ytATjf+OJ652oUb0Q4mHWlo5DYQ BKhl/XkAEU2av27dulCqC3Ar0rFujjsKZKILDFvExqpaw/WVMWm2nGByCFskz753tgH5QDwnNJyU lABaIfRgd8dAZyJYYOQWQYG4ysnjtAYBk2wvsH1f5wc1n7CV2UC0o9wCuUwe3l4bWGRxGoTqpy3u KFhEFt9PT2iZ3jJjl+vXP8wv3KJcBdfEJJTbBlxw3GNqO2j+qv2DtOvXtpU9Ey6j13TJnmBlIyCN 2qDfWWBb2toqMoWvivBPDhw40KOxWR40rVq1kkBEG1CItL0hI+7xTrBMfowz+Y7igFlFPgvkl09s Qi0PwkH8ALfRfE6RTrqiTn5kVdf2RXOFG/mBxSPGD0WOBUIs2bESjBftmTrw7PvbAZHHDRu7ugen XC91bUDEMb/4Ygm49AMLrb5fwnV1s4JJLjBKx4y5bkAkqPECNjAIZVuKaMS2fKVjyEGbhg75A7YA PR0oMOu3bQgzX0BMNmzXletWmTx58wgtO52PWDWK3Q/Y5QRP6zfKIF4hNFm0Z7t+ux3Gv2HHRvkc kjKIGTTzF198MVRzOMCm0Zjtm/s69erIGEDqDGoHmxvtukw5N44ERPxpYLkfEBeYVPqVM0hADR5E 7G27nSQXGGTXtWzjansgisZ/CthA2s6gYYM89hyEDILBoAhOmHx/gjBDP7LpcC2u27pednhS7j0b aQdnBJuKoPSKkRXNTanivwTzIyEbjZs1ETcjcwfLD1pYP0LDvHOisWP5Ik0VqSBM55hWcNfFq5bI eBBhQe0ku8AgHW3bIf6zNwJ3NLjmegAaqv3J3MChg8Q8s/uQHLJgLDiyh7JMFP1mk3AS/WO6VqQd HDFeO079LsaKznK92gGlHWdj6TjsdvycLTEMW2DkRbuO7UXp4LYXVXt21GyRR5wUPh9WFyGIeWTL nKuFxx57LIy9E5KKaQTLgn1iM9IH+vIPXhuylqxpSBdwJ9qPxAyxW/HZspuII+ZTNZtGvxP1238K yCdMIuKL/TK7cNEicuvEbmVnckr4BNym+QevCwYmesg32HyOilzR26SxE8dJrEcQfWKIshJZNdKR NXM9b4sr52IkaDuoTGKomj3hE7gLietAmULpAtRTdfDgQXn3K3spQUIfiQ+hfnXso2jpF3pYCgAa PaEZmFI4IOw6UorY7SiFuB0xM1EctU2CeYErV66EcdKrwMDEBMhV38adm+R7ZQLlOXEsNjKCE0je sjXL5aRzR4sTYdvebSIjkSEY+iLLnHfqWLAsyhQpFn6qU4p4ewjRxokSFxcni8DNFnl8YQuw6PiJ 2Vj+8ilBtHQ8SxcuXJD66tatK859Ng0uSMC2jbWM/Z5S5BYMgBNyPaiePepjYVFy+fqBcfvLpgAD E5NE5CafPvIBHouGC06VHBQRkIWHtaMc7Dq0Rz6iadyssbgjg+q8GsSUIAhK3/G2cYL0nfhcxEMS cTvJIpPLCeaeGUe+xuFzWXHbbbfJ87Jly4QWWQc3IZrMX09yiKLJwmqorQZaT5s2TTxW9AGdR21h PHr+OpLBwMT/acQ/jm3KNR1Yr54bY6wIq+QSgIWx068G8SD179/fY/cgzo2WLePNxwYNG4ibEk+W RsxdC9IWrl4CCagLt2eePHnMyJEjw27c8B7id86UKVNY+STRNlX+wb8X5s2b1/wfwqTu9MTyProA AAAASUVORK5CYIJ= ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/image009.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABkALwDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD99/MX +9SFlf7rV+A3wx/4Khft2fCa6hk0b4/atqNvCw3WOvKl9DIv90+aCyj/AHWBr9X/APgl/wDtueLv 24Pg5qfjTx34TsdL1TRdV+w3X9mO/k3P7tXEiq5JTrgruPTOecV9dn/BeaZBh/b1XGUL2unrd907 fqfJ5Jxhl2dYj2EFKM7Xs/8AM+dP+Cxv7an7Sv7Kv7R3hXTfgj8RptKsb3wkLi809reOaGaUXMq7 irqecADgjpXG/s+f8HA/jHSZ7fSf2lfhXDqNr8qyax4bYRTIe7mFztf6Bl/HpWD/AMHCvP7S/gwD /oSf/buavz/kX5TxX6Vw3wxkuccL0JYikuZp+8tJbvr1+dz8/wA+4gzbK+Iq0aFVqKfw7rZdP8j+ kn4MfF/wN8fPhtpPxa+GuqNe6LrUBlsbhoWjYqGKsCrAEEMrKc9xXZCvmf8A4JFLj/gnt8Oj/wBO N1/6WT19MV+JZhQhhcdVow2jJpfJ2P2DLsRPFYGnWnvKKb+aIb+6hsrSS7uZljjjUtJIzYCgckn2 r8df2+/+C53xp1/4o6n8PP2Stch8P+G9JuntR4gS2WS61J1O1pF8wFY48/dwMkc55wP0S/4Ki/GC 8+Bv7BfxI8d6YWF42hnTbN1ba0ct5ItosgPqnnbx7rX4TfsW/AKH9p39p/wb8Er95Usta1ZBqUkL YcWqAvLg9iVUgHnGaxpxW7Ow6If8FKf2+ZXZx+1V4w5bPyagQPyA4r1X9hj9vT9tPx9+2R8M/Bfj b9o/xZqWk6p40sbbUbG6vi0dxC0qhkYY5BHWv2e8E/sq/s5/D7w7a+FvCPwR8M2dhaRCO3gXR4m2 qPVmUsx9SSSe9bWn/Bn4U6RfxappHwz8P2tzbyB4Li30iFHjYdCCFyD7ijnXYD82/wDgpX/wVu/a w/ZS/a01z4L/AArTQG0bT7O0lgN/pJlk3SQh2y24Z5PtX6TfB7xNqPjP4VeF/GOslPtmreHbK8uv LXavmSwI7YHYZY1+Zf8AwU9/4Ka/FP8AZp/a9174TeGfgn8NNZs7Gzs5E1DxH4be5upN8KsQziVQ QCeOBgCvuL4qftmfDT9mX9kDRP2ivjDNDax3nh+xltdK05NrXV3NbK621uhPA69yFVSSeKUldKwH u4ZT0NBdR1avxo8b/wDBxt+05qGvTS/Dj4P+C9L0vzD9mh1SO6urjb6u6zRqT9FH49a7P9jr/guD +1l+0H+094L+DPjHwf4Jg0vxFrUdpezafplysyxtnlGa4YZ+oNHs5AfrKGB6GgkDqa/JP9rf/guT +1t8BP2nPHXwb8IeEPBE+l+GfEl1p9jNf6ZctM8UblQXK3CgtgdgB7CvPB/wcU/trgh28B/D1lVh uU6Tec+3F1S9nID9rt6f3qN6/wB6vkr/AIJj/wDBTjw/+31oGp6LrfhuHQfGOgwpNqel285eGeBj t8+Hd8wXdwVJJBI5Oc15b/wUK/4Lg+Gf2X/iFffBT4EeDbHxV4k0tvK1jUNSncWNjP3ixGQ0rr0Y BlCnIzkEUuV81gP0IzXzX/wVQ/ag+Jv7IP7LFz8ZfhILI6xFr1nZqNQtvOj8uUsG+XI54GDnivzl T/g4o/bWJby/AXw8C7shf7Iu+Pb/AI+q98vv+CpPxw8c/wDBLjVf2tvFfw88D6hr1p8SI9Ej0u80 eWTTzBsjbeY3mJ8wFzg7sD09TktJXA9M/wCCOH7fnx4/bjk8fP8AG1NKX/hGjpo07+y7Hyf9f9p3 7vmOf9UuPT8a+5gwPQ18F/8ABGj9tjx5+2BbfES48YfDfwX4dPh1dNNv/wAIno7Wnn+aLrPm5kbd jyxjGMZb1r5L1T/g4Z/bV03Vbqwg8D/D/Zb3EkaltHuskKxHP+k9fy60crlLRAftQWA6mgEEZBr8 V9K/4OLv2xLXUo5tc+GXgG8tVYGa3isruF3XuA/2htp9yD9DX6Ufsb/8FBfg1+1n8D7L4s2GpRaH ctcSWmqaPfXQL2l0gUsm7jcu11YN3DdjkUcklqB+AzfdNfrf/wAG8w/4x78bf9jav/pMlfkgwyK/ W/8A4N5v+TfPGn/Y2J/6TpX9CeJP/JNS/wAUT8H4C/5KCH+F/keH/wDBwqMftM+Df+xK/wDbuavz /k+4a/QD/g4W/wCTmvBv/Yk/+3c1fn/J9w16PA//ACSuH9H+bOHi/wD5KKv6r8kfvJ/wSL/5R5/D nH/Pjdf+ls9fSwyBzXzT/wAEiv8AlHn8Of8Arxuv/S2evpav56zj/kbV/wDHL8z90yb/AJFND/DH 8kfJf/BcLTLzU/8Agmr48+xwtJ9nutJnkVeyLqVtk/hmvyp/4I7eJ9K8M/8ABQ34f3erTrHHdXFx axM5wPMkgcKPqTx+Nfu1+0F8LdO+N3wQ8WfCLVWVYfEnh+704u67hG0sTIr49VYhh7gV/Nz438Hf FT9lr42XXhbWlu9D8VeENZBimUbXhmifdHKh7g4VgeQQa46esbHpH9OkZ3Jup1fj54A/4OQfjPov he00zx3+z/oWtanDCqXOpWuqSWq3DAff8rY4UnqQDjPQAcD1D9m7/gvz4v8Aj7+0B4O+Clz+zjp2 mx+KPEFtpsl9Hr8kjW6yuFLhfKG4jPTIrP2cgPkb/gua3/GxHxYM/wDMO07/ANJkr0z/AILd+Ota l+Fv7PvwwWcjTo/h/bak0XYzGCGMH6hR+teZf8FygP8Ah4h4q/7B2nj/AMlkr37/AILTfs/+IfEH 7IvwT/aM0DTp7i18P+EbDTNcaKPcLeGW2haKViOi7wVz0ywHetl0A+cv2Df28/2df2OPB95beK/2 OdP8c+JdQu2kuPEGq6lCfKhwAkMUclu/lqMZJzliTnjAH25+wz/wVY+Cn7U/7UHhz4J+Hf2KND8K 3mqC5kt9dgntpHtmht5JsgLbIcnZjO4YzXxT+wL+0/8A8E//AIceBb3wR+2Z+yrY+JryO9abSfEl rYiSd4mAzDKu9c7SCVYdmwegJ+zP2QP2w/8AgkXqn7R3hXRP2df2YLjw94x1O+Nlo2rLooj8lpUZ Wy3mnAKFgeD1pS9APgL9vG1huv8AgpP8RbW4jV45PiZcK8bLlWU3IBB9q/WX/goV+xl+ytYfsQ+P vEOh/s9+DdL1DTfDUl5Y6hpPh22triGZACGWSNA31GcHvX5O/t0E/wDDyz4hZ/6KdP8A+lIr9sP+ CiZx+wR8TD/1Jlx/6CKmXSwH5X/8ED9cu/DX7TfjzXLV/ms/hHqdwq9iyXNow/lXgH7LXwxt/wBs D9uDwz8PvHt/M0HjDxc8utTCTDyRbnnmAPZmVWUHsSK+if8Ag330eDxB+1t4w0K5P7u++Ft/byey vd2an9DXzl4gi+Jn/BP39tlrkaU0Ou+APFwurWC6Uqt1Csm9M9/LliPUdVc4rX7TA/evw5+wj+xl 4f0a30jTv2WvAJht4wkZuPCtrM5Hu8iFmPuSa+Zf+C3/AMMvh78K/wDgnDf+Hvhj4G0fw9p7eNNN max0TTYrWEyMWBcpGoG4hQCcZIA9K5/w9/wcafs1TaRby678HvFlveNGpuYYTBIiPjkK24ZGenAr nf8AgpP+2P4E/be/4JQ6p8YPh1oOpafp8PxHsdOa31RUEhkjG4t8pIwRIMfSsFGfMrgc3/wbcX9j pekfGfVdWuI4ba2i0aS4mlYBURRfFmJPAAFXPjF/wW9/Yt8JePL7w78K/wBi7SfFmm2tw0a67cW1 pZLdkEgvGht3YoT0LbSepArx/wD4JM6T4r179iv9q3R/BMcz6nN4PsRbR2/+sceVfl1X1JQMMd81 8y/sNfED9lz4b/HGLxP+118NJ/FXhRdMnjTTbdd226JXy5WQMu9QocYz1YHtV8t5MD1z9vH/AIKN /Ab9sT4YW/g/wx+xrpPgvW7PUEntPEOm30O9Y8EPEyx28ZZWGOp4Ir5q8HfFf4heAtMk0fwn4nub O2knMzRQyFQXKqpPHfCj8q+r/wBuH9o3/glh8S/gNdeFv2Uv2bpPDXjCS/t3t9VbSfJCQhiZF3ea 3Ue3NfFqdK0iB1x6V+t3/BvN/wAm+eNP+xsT/wBJ0r8kT0r9bv8Ag3m/5N88af8AY2J/6TpX754k /wDJNy/xRPwfgP8A5H8PR/keH/8ABwt/yc14N/7En/27mr8/5PuGv0A/4OFv+TmvBv8A2JP/ALdz V+f8n3DXo8Df8krh/R/mzh4w/wCSir+q/JH7yf8ABIr/AJR5/Dn/AK8br/0tnr6Wr5p/4JFf8o8/ hz/143X/AKWz19LV/PWcf8jav/jl+Z+6ZN/yKaH+GP5IGUMMEV4f+1T/AME9/wBl79sNob74zfDy GfUreMRwa3p8ht7xYxnCGReWXk8NkDtXt0u7b8tfIv7bv/BXL4T/ALC/xgt/g145+GmvaveXOhw6 ot1ps0SxiOSSVAvzkHIMR/MV58ea+h6Rxv8AxD4/sPuzFdT8Xqpbhf7YXj/xyui+EH/BEH9kP4Jf FTw/8XvB+p+KG1Tw3q0Oo2CXWqK0RlicMu4bORkV5f8A8RH37O2P+SFeLv8AwJt//iqveGP+Div9 lXV9ah0/xL8MPF2k2skgEl8UhmEXuVVskf59qq1QD179p7/gkD+zB+1j8X7741/E7UPES6vqMMMc y6fqAji2xoEXA2nsB3r6Kg+F3g1fhfbfCDVtGh1LQ4NFj0qSz1CMSrcW6RCLa4Iw2VAzVf4N/Gf4 afHzwDY/E74TeLbXWtF1CPNveWrcAjqjA8ow6FSARXk3xc/4Kh/sU/Az4n6h8G/ib8XG0/xFpc0c V7YjSbqTYzorqNyRlTlXU8HvU6geW+NP+CCn7B3i3XJta07Rtf0UTyM7WmmawRCmT0VWDbR7ZrS+ Cf8AwRL/AGSPgJ8VtC+MXgrUfEzat4fvlu7FbzU1aMyDpuAQZFfXukajaaxpsGq2L74bmFZYW2/e VgCDz7GrWPajml3A+O/il/wRU/ZM+Lfxo1j47eJ9T8TLrWta42qXS2+pKsQmaTecLt4XPavpj4wf CXw58avhRrXwf8XS3C6Xr2nNZXzWsm2Ty2HO04ODXWEADpXmv7R/7VnwO/ZM8LWfjT47eMf7G03U L8WdrcCzlm3zbGfbiNWI+VTz0ovJgeX/ALHv/BLH9nT9ij4mXfxU+EWoa9JqN7o8mmzLql8JY/Je SOQ4AUc7ol59M11n7Vn/AAT/AP2Y/wBsmO3n+NXgNbjULSPy7TWbKYwXcceSdnmL95cknacgE8Yr ov2b/wBq/wCBn7Wfhu+8VfAXxj/bWn6beC1vLj7HLD5cu0NtxIqk8HtxXzV+1D/wW6+C/wCy38ev EXwA8VfCbxLqWoeHriKK5vLGeERSGSCOUFdxBwBIB9QaPebApH/g3w/Ydzkap4wHPT+2F4/8cr0u 1/4JP/s2WX7Kl3+x/FqPiD/hFbzxMuuSSf2gPtP2kKq4D7cbcIOMV9K+GdWj1/w9Y69DEyJfWsdw iN1UOoYA+/NXsD0o5pAeA/saf8E8/gd+w2niKL4P3WrTL4mFsNRXV7oTf6jzdm0bRj/Wtn8K8x+K v/BDH9hf4peMrzxp/wAI9rGhTX1w01xZ6HqPlW29jklYypCAnnA4r7MwPSmThvL+QUru4HwoP+De 79h4nI1Xxd6/8hZf/iKX/iHu/Yg/6C3i7/wcL/8AEU6y/wCC6PwRvP2h4f2dF+EHiZdRuPGCeH1v /Og8nzmuhbiTrnbuOemcV90xZCfMabcluB/MSelfrd/wbzf8m+eNP+xsT/0nSvyRPSv1u/4N5v8A k3zxp/2Nif8ApOlf0J4k/wDJNy/xRPwfgP8A5H8PR/keH/8ABwt/yc14N/7En/27mr8/5PuGv0A/ 4OFv+TmvBv8A2JP/ALdzV+f8n3DXo8Df8krh/R/mzh4w/wCSir+q/JH7yf8ABIr/AJR5/Dn/AK8b r/0tnr6Wr5p/4JF8f8E8/hyP+nG6/wDS2evpav56zj/kbV/8cvzP3TJv+RTQ/wAMfyQV+JH/AAcP 5/4br0vB/wCad2H/AKVXtftvX4k/8HD3/J9el/8AZO9P/wDSu8rhp/Eekan7BP8AwRO8K/tj/s36 X8eNW+Pmo6FNqdxcRNptvoccyx+XIUyHMoJzj0rz/wD4KM/8EhfHf7C/hW2+KugfENPFnhWa6W1u rltO+zXNjK33N6h3VkYggMCMHjHOa/Sb/ghwf+NeXhYf9RC//wDR5rsP+CsOk6dq3/BPL4qQ6hCr LD4d8+PcvSSOaN1I99yinzS5gPzb/wCCAn7TniT4dftOTfs86hqcknh7xrZSSQ2jyfLBfwrvWRR2 LIHQ46/LnpXpP7fn7L/7APjn9tjxZ4y+Lv7dcnhPxRdahZvqHhkeGWnFrILeAInmBvm3KFbp/FXx 5/wS5vrrTv2/PhfPakhm8TRo23+6UYH9DXTf8FbVA/4KdfEBf+oxpw+v+h21U1aQH70eHL7Q/Dvg OwuZdXj/ALPs9KhP26dhGhhWMfvGJ4UbRnk8V4t4t/4KrfsAeCtam8P61+0poTXUDbZlszJcKrem 6NWH618Xf8F3P2p/GPgv4TfDn9l7wbrE9jD4h8Nw6r4he3kKtPbKoihhyOql1kYjvsHavnf9hD/g jZ8W/wBtH4V/8Lln+IGn+F9FuLp4dL+1Wrzy3ew4ZwARtTdwDnJxUxpq12B+ox/4LB/8E6sf8nIa b/4B3H/xuvP/APgqJpX7Jn7VX7LHgrxR8U/2lV8F+EdQ16PUNB8RQ6S1yL5jbSgR7OCuVLNk/wB2 vyh/4KAfsU6t+wh8ZrP4Qap44h16S80OLUheW9q0KqHkkTZtYnn93196+uP+CjEYH/BGj9njj/l7 s/8A0iuKfLFNNAfSv/BNGb9jX9jD9lnxt488B/tRL4u8HWevQz694huNHe2WxldY4kjKDcWyXTkD +L0r8tv+Clnxb+H/AMbf25PH3xU+GPiGPVdB1a+tX0/UIUZVmVbOBCQGAPDKw5Havsv/AIJGfs4R ftaf8E1vi9+z7J4mbRl8ReLLOM6klv5ph8o28+duRnPlbevevgv9sX9ndP2Vf2lfFP7PsXiZtYXw 7dQRDUmt/KM3mW8U2dmTjHmY69qcfiYH7o/sz/8ABRj9jn4vzeGfg38OvjNZal4kuNLhhh0uK3mV meOAFxlkA4Cnv2q98S/+Cnf7D/wf8d6n8NPiL8dLHTdb0e48jUrGW1mZoZMA7SVQjoR0NfNn7Bv/ AARTsv2avjJ4Q/acj+O0mqNY2ZuF0ltGEQfz7crjf5h6b/TtWT+2P/wRT8AfGP48eKv2g/GX7WVn 4Vi8Uaqbr7LqFhEiQMVVdnmSTKG6e1RaHNa4H0fB/wAFgP8AgnVcTLAn7SmlKzNjL2s6qPqSmBXv HgP4meAvir4Yt/GPw28W2Ot6Vdrut9Q024WWKQY7FT19utfi7+1D/wAEgfhb8EvgrrnxW8AftreF vE17odqbo6L51uklyikZWPbM2X74xziuw/4N1Pjh4w0v4+eJv2f5dQeTQdW8NyarFayOStvdQSxJ uQfw7klYN67Vo5Y7oD5p0Hn/AIKiab/2XS3/APTutf0TV/Oz4f8A+Uoenc/81zt//Tutf0TUVOgH 8w56V+t3/BvN/wAm9+NSP+hsT/0nSvyRPSv1s/4N6W/4x58bY/6G5f8A0mSv6C8SP+Sbl/iifg/A f/I/j6P8jxH/AIOFs/8ADTHg0g/8yT/7dzV+f7kFK/Qj/g4F8P8AiHVP2i/B1/pehX1xAngzbJNb 2juit9qmOCVBAPNfnvcwXFtlLu2kjI/hkjK12cD1qP8AqzQhzK9npdX3Zx8X06n+sFaTi7X+WyP3 k/4JFNu/4J6/Dof9ON1/6WT19Kgkrmvyu/4Ji/8ABXT4H/Br4P8Ah39mv426TdaFFo/mw2viSNTN buHmeTMqqNyY34yAR096/TTwV4+8HfEPw7a+K/Avimx1jTLyMSWt/p10ssUinuGUkV+HcS5Xj8Bm taVem4qUpNPo03ffY/Y+G8ywWMyylClUTcYpNdU0uxvA5FfiR/wcPnH7dmlj/qndh/6VXlftn5pU fKK/Kv8A4LQfsEftcftPfta6f8RPgd8G7zX9Hh8F2dlJfW97bxKs6XFyzJiSRTkCRTnGOa8Gm/e1 PoT13/gjf+1L+zp8Nf2EvDfhT4gfGjw3o+pwX1601hqOqxxSoGnJBKk5GRXJf8Fnf+CkfwK1T9mb UP2efgp8R9N8Saz4ulii1JtLmE0dnZpIsj7nHAZiiqBzwW6V8Mf8Oev+Cjuc/wDDMOp/+DSy/wDj 9aXhH/gir/wUU8V63FpN38EF0SGRsSX2ra1arFGPUiOR2P4KTV8sN7gSf8EVvhlqXxJ/4KBeEbu1 s2kt/Dcdxq19IF4iWOMqpP1d1A+tVv8AgraMf8FPfiAM/wDMY0//ANI7av1e/wCCZ3/BOTwp+wN8 O7yG71KHWPGHiAo+vawkeFVFB228QPIjBJJ7seT0AHwj/wAFG/8Agm/+2v8AGj9vfxl8XPhj8Cr7 VvDupapZS2epQ6haosqpawIx2vKGGGRhyOo9KXNeYHP/APBffQtQtfjZ8LfEckbizvPhTZ28MhHy +ZFPMzgfQTIfxr7s/wCCKXxp+HPjj9hPwp4P0bxBarqnhpJrLV9PaZRJE/nO4YrnO1lYYOMGtz9v T/gnlpX7cX7NuheCLvUI9H8WeG7OOXQtSmXcsU3kqskMmOSjbRnHQqDzX5Z69/wRt/4KUfD/AF6b TPDvwim1JFYhb/QfEFsIph64aVG/NRT0lGwHoH/Bw3c29x+2poz286yL/wAIJaDcrA/8vFxXdf8A BRn/AJQ0fs8/9fVn/wCkVxXwd+0T8Bfjp+zv44j8EftCeFr3SNcmsEuobW/vEnc27MwDBkdhjKtx nsa/Sv8Aaa/Zp+OX7Uf/AASQ+Angv4D+AbjxDqenrZ3d5a29xFGY4fssybyZHUdWAxnPNP4UgOs/ 4Nwjj9mfxwf+pxT/ANJkr4F/4LDyCP8A4KS/FBj21Ky7f9Q+1r9M/wDgiH+zJ8df2W/gZ4s8I/Hr wDceHdQ1DxMtzZ2txcQyGWIQKu4eU7dwR1rwL/grv/wSW/aI+Nf7R19+0f8As6eHI/EUPiO1txrW krexQz21xDCsO9fMZVZGSNDwcht3HIqYv32B+l3wr1jTdT+Enh3U9OvYriGTw/avDLDIGV1MKnII 9a/n1+JHir46/wDBRL9sl9D1HxTHca14q8TSWGhw6petFZ2EfmMI4x1EaKgxwMk9iTz9b/8ABMX9 hT/gob8EP2ufB/if4w/DzxHpfg7T/tK332jxDDJbRq1vIqjyknbI3Ff4TzXGftf/APBEb9rfwL8b dU8Tfs1+GW8UeG9Q1SS80mSy1SG3vLAOxfynEjpypJUMpOQM8GnHli3qBz3xp/4IT/tX/A74R+IP jF4q+Jnw9udN8O6XLfXlvp+qXrzSRoMlUD2iqWx6sB71f/4N7Of28rodP+KD1H/0dbVyeof8E0P+ Ctmq2Emmal8KfGNxbzIUmt5vFcDI6+hBucEV9Hf8EaP2Av2u/wBmX9r2b4ifG74MXmgaK/hG9s1v p722kUzPJAVTEcjNkhW7Y4qub3WB8d+H8/8AD0LTST/zXS3/APTutf0TV+J+i/8ABMv9ua3/AG+L H4vTfAK/Xw5F8WodWk1T+0LTatmNSEpl2+buxsG7GM47V+10b713VnUd7WA/DOP/AIIr/wDBQmZP +SUacn+94ms//jlfQH7HX7Pf/BX/APYb8Pah4V+GXwP8I6lp2qXwvLu31XWreQmQIF4ZJ0I4Ar9S tmD93j0o8vP8NfZY7jzNsyoujiqdOUG9nF9NtmfG4PgnLcBW9rh6k4yXVNf5HxrY/tX/APBTXR2S Lx9/wTlsdTx/rZdF8XRr+Sssn5ZrU1n44+CfHunKvx+/4JreNI5NuZmn8I2WpRx+u10fefwUGvrY woOdtAgiI5Svn3mdO940VH/DKS/Ns9pZXUS1rOX+JRf6H59+Ov2ef+CRHxh/5GHwBqHga8b5S0mk X2kMje4dNn9Kx/AP/BPP4t/AW+bx9/wTZ/bXstShabzZvCPiC6SS1uE9GeEspbtzGp/2hX6LXGl2 F4Cl5p8My9MSRBgfzrj/ABN+zt8FfFNz/aesfC/R/ty/6vUrWzWC6jPqs8W2RT9GFdtPiLGRp+z5 5OH8s7TX3Nflqcc+HsPKp7TkipfzRvF/hdHlPwc/bY8SWV7a/D39sP4WXXw38UyS+RDeTSedo+pN nAMF0PlVm/uOR14LV9DWs0U0fmwSKysuVZeh965vSfhN4fsPDs/g/Vp7zW9JmjZPsPiG4+3YQ5yp eYGSQHP8bMfeqvgv4a3fwv8A+JT4L1KZtCMhMej3kpkFlntA7fMsfpGSVXou0cV4uIlh6snKnHl8 tbfK+q/E9jDxxVGKjUlzLv1+dtztk+7nFOwPSmwgiPBp1cx2BgelN8mPrtp1FAHy3/wVo+Pvx0/Z v/ZfXx/+z3cSw68fEFtblodNF0fJbdv+QqfQc4r8zV/4K4/8FWgM/wBs3w+ngpR/7Tr90LqzgvFC XEKyL1wy5qNNI0vZhtLt/wDvyv8AhVxlZWA/nvs/hR+3b/wU3/aJh1fxT4a1jVdYvvItbzWtQ01r Wz061U4yTsCqi5ZsKCSScAk1++Pwb+G2k/CD4W+HfhdofzWnh/R4LGCQrgsI0C7se+M/jXRRWNpb 5FvaRxg9diAZqb5UGOlKUuYCKchPn6V5hoH7XfwL8WeMdT8GeH/FzXk2jalHp+p30VnJ9jt7x2Cp bm42+X5pYgbd2cketVv2zv2mvDX7LXwauPHWtWUl9fahexaV4f0qFtr319PkRxBsYXgMxY8AIe+A fkz9kL4a6l4Q+Fniz4RfFPXtN8TeHbPULrxEumeHdL1GG5m1m3kW7e0+3ALDdtG8YQopJJXHYgep hMthWwcq9RtapRXfu/lp2PGxuZTo4yNCmr6Nvy7ffr3Ptb47/HHwb+z38Nrz4n+OPtL2FnJDF5Nl GHmmklkWNERSQCxZhwSK4S3/AOCgn7MN/wCI/DfhrRPiAuoXHia6uLezezhLpAYUZnaU8bVyhXcM jdge9fDnxN+J3xE+KOlaBrfivxnrHiC8Xw9/wl+saU16W05dUnkeDTbOCIgLGlv5rPMc7QYl3/MM 1paT40+IGi+NdL1GC9ks9Q0u60r4c23i7ULFFGlxvGlzqOpsrLtSac/LFuGTgE8nB9ankOGWHvOV 5a7Oy8t/v06HlVM+xUsRanG0dN197P0s0Hxp4e8T28dxo+qRyCWNnjU5R2QNt3hWw23PfGKr+G/i J4N8X67rHh3w/rsF1e6Bdra6xBETm2lZA4RvfawP418V/H+D4reGJPhv4/8AtGsaT4guZDbfbtN1 SeW9n0a2le9limLAeY8oEKLGwJG+QkkZx594V/aZ+NetaLJr3xA8Wa5o+n3HhnUPHk1voczw3Gq3 NxKqWOmQTY3vDbqwMgU4+UhvlUgefTyWVanzxmv8tfxO2pnnsavLOD0/HT8D78+J/wAcfCXwt8T+ EvBmtwXlxqHjLWv7N0mCzjDYcRtI0kmSNsaqpywBxxxXcW2fKGf1r4V/Yhj+IvxO+P2k638UdYv/ ABBefDfw2umJqGqszMby9X7Vc3Skj51Cyw28TH76KzAkV91wHMdcOOwsMHUVJO7S1fTy/A9HL8VU xkJVGrK+i/rzH0UUVwnoBRRRQAUUUUANx8+KXYvpRRQAvTgUUUUAFFFFABRRRQAU2SiigDwb/goh 8GPB3xg/Zy1RvFP2qO48M3Eet6JeWUwSS1vIAdjjcrKRhmUggghj0OCOO/4J6/GDxX+0z4L0/wAb fEOCxhuNIjk+z2+k2oghkmdmVp3XLZkIB6ELlmO2iivfj72Q3fSTt5aI+dl/yPmu8Vf7z6Yi0PR0 Hlppduo+ZflhUcZ3Y6evP1pzaDosrMsul27CSQSyboVO51xhjxyRgc9RgUUV4PNLue/yQ7ElxY2k 7IZrdH2tlSyg7cjHHpxUcuh6PHHGF0u3/cxlIx5K/KpxlRxwOOlFFOUpKKsPljzN2JLWws4JHaC2 SNmxuZFALdhn6Dj6Vch+5RRUy+MIfAf/2Q== ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/image010.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKb 5hNG/wBBQA6g9OlNycZAp1G4Hjf7e3xq8Z/s6/sqeLPjN8Pxa/2todvBLZreQ+ZGS1xGhDDIyCrH vXwp8Lf+DhzX7YR23xp+ANvcLnEl54b1Axtj1Ec24Z/4GK+v/wDgrcuf+CfPxF/68Lb/ANK4a/BX Z6Gv1ngPhvJ88yeq8XTvJTsndppWXY/L+Nc+zTJ80prCzsnG7WjT1fc/eD4Cf8FZv2Jvj0kFtpvx PXw/qU2B/ZXiiP7LIG9N+TE34Oa+kLDU7DUrWO/069iuIZlDxTQyBldfUEdRX8x5jB7169+zv+3b +1F+y5dxf8Kr+KV8mnxyBpNC1CQ3FlJzyPKc4XPqu0+9dWbeFseVzy+r/wBuy/Rr9UcuW+I9RWjj qf8A29H/ACf+Z/QwrfNUleCf8E7/ANrzVP20f2foPi1rfhOLR76HUptPvLe3m3xySRhCZEzyAd/3 TnGOpr3uvyTFYWtgcTPD1VaUXZ+qP1LC4mjjMPGtSd4yV0FFFFc50BQTgZNFcL+0h8ePCf7NXwU8 RfGrxtMFsdB09p/L3YaeT7scS/7TuVUfWgDmf2vP23v2fv2LvBH/AAlvxm8U+XcTKx0vQ7FRJe6g w/hjjyMD1diFHc1+bfxh/wCDjX43a1ezWvwP+C+h6HZ7sQ3WuSSXlyR6kKURfphvrXwz+0n+0Z8T P2qvjBqnxj+KmsNc6hqUxMNupPk2UGSY7eIH7qIDgDqepySSeFAxXRGnHqB9qf8AD/X/AIKEkk/8 JB4TUdl/4RlOPb71H/D/AG/4KE/9B/wn/wCEwn/xVfFW45wRS1XLHsB9qf8AD/T/AIKFE/8AIweE /wDwmU/+Lr9AP+CNn7bXx3/bb+HXjPxN8c77TJ7rQ9at7axOmacLdRG8RY7gCdxyK/Cuv13/AODb Nz/wpr4lHH/MzWf/AKTtUTjHl0QH0J+03/wV7/ZT/ZJ+L998E/inY+KX1nT7eGW4bTNJjmh2yoHX DGVecHnisD4T/wDBcL9jP4z/ABN0L4UeELHxguqeItUhsLBrvRY0jEsjBV3ETEgZ6nBr83/+C5p3 f8FF/FQP/QK03/0lSvI/+CfBC/tw/Csf9T1p3P8A22Wl7OPLcD+kSiiisQCiiigAooooAKKKKACi iigAooooAKKKKACiiigDm/i58TPD3wX+F/iD4ueMEuG0nw1o9xqWoi0iDymGGMyPtUkZbC8DIya+ O/8AiIQ/YRzxpvjj/wAEEX/x+voT/goYx/4YU+MAI/5pzrH/AKSSV/N+AnXHNaU4xkrsD+j/APY8 /bd+Dn7cnhHVvG/wXg1iOz0bUlsbxdYslgfzTGHG0B2yMEd+teyjgYr84f8Ag28JX9nP4gEf9DpH /wCkkdfo8OlRJcrAKKKKQBRRRQAUUUUAfhV4A/4LJ/t9eBGjE/xWt9cijxmHXtJimDD0LKFf8mz7 19H/AAf/AODhy/XybP48fAeJm4E2oeGL0qp9xDNnH08w1+ZtNfd0C5+tf05jODOG8dfnw6T7x938 j+dMLxXn+Da5K7fk9fzP6Dv2YP2/P2Zv2t4Ps/wm8fxvqqR759B1BTBeRjuQjffA/vIWFe15yARX 4H/8EnHmi/4KD/Dfyn2Z1K6DbW+8PsU/FfvegwM1+HcYZBh+Hc1WHoSbi48yvutdj9j4TzzEZ7lr rVopSTtofOX/AAVt/wCUfPxE/wCvC2/9K4a/Bav3p/4K2/8AKPn4if8AXhbf+lcNfgtX6X4Wf8ie t/18/RHwHiP/AMjal/g/VhTZAMZJp1NfpX6cfnR+zn/BBBf+MKLg/wDU5Xv/AKBDX29XxH/wQS/5 MluP+xxvP/RcNfblfyzxR/yUWK/xs/o/hn/kQ4f/AAoKKKK8E90K/Mv/AIOPvjTc6L8N/AnwF0y/ 2/25qNxquqQq2CYrcKkQPsXkYj3j9q/TSvxE/wCDhHxZPr37dFn4eeUmPRPBdlDGvYeZJNMf/Q/0 FaU9ZAfCwAHIFfSH/BMX9hC5/bs+Pv8Awi2t31zZeE9BhS98TXlqv7xo92Ft0Y8B5CCM87QGODgC vm9unSv2q/4N6fhjp3hr9jXUviKloovvE3iy48242/MYbdEijX6BjKf+BVrN2iB9OfC79hP9kH4P 6FH4e8C/s9eFoIVUK01xpMdxNL/tPJIGZz7k11X/AAzf+z5/0Q/wn/4T9v8A/EV2g4GKK57sDi/+ Gb/2fP8Aoh/hP/wn7f8A+Ira8KfD/wAC+Abaa28D+DtM0eO4cPPHpdhHAsjAYBYIBk49a2qKVwPj D9sD/gol/wAE+/2ffjtqXww+Pvwlk1bxLZ2tvJdXn/CKwXW5HjDIPMc5OFIHtXMfBL/gqN/wTK+J fxg8N/D/AOHHwUey17WNYgtNIuj4Lt4vKuHYBG3rymDj5h0r4P8A+C5//KRjxT/2CdN/9JUryH/g nz/yfF8Kf+x50/8A9HLWyj7twP6RAcjIrN8V+LPDXgrRZvEni7xDZ6Xp9qhe4vtQukhhiX1Z3IAH 40njDxXoHgfwrqXjLxTqUdnpuk2Ml3f3UxwsUMalmY/QCv5//wDgop/wUW+Jf7cvxOuv+JrdWPgX Trth4b8Oq5VCg4E8wHDysOec7c4HvnCLmB+rPxO/4Lef8E/PhrqsmiwfE+88RTRPteTw7pMk8Ofa Vtqt9VJHvXI/8RB37C//AD4+MP8AwSr/APF1+IKsMbR2pdy5xmtvZRA/b3/iIN/YX/58PGH/AIJV /wDjlfT3wU/ag+HXx6/Z/h/aS8Epfr4fmsrm6jW6twk3lwFt/wAuTz8hxzzX80pI6A1+63/BMUhf +CQ2n8f8yvrf/oVxUSpqIGI3/BwX+w1HK0TWPjDKsQf+JKv/AMXR/wARB37DH/QP8Yf+CVf/AIuv xIu/+PqT/ro386jzVeziB+3f/EQd+wx/0D/GH/glX/4uur+E3/Bb/wDYH+KviKLwvP8AEHUPDdxc OEgm8SaY1vblj0BlG5U+rYHvX4M5B4pvDGn7OIH9Tmj6vpeu6XBrOjalBeWtzGJLe6tphJHKp6Mr Dgg+oq1mvx7/AOCDX7d/ivwv8UY/2OfiDrc95oGupJJ4VNxMW/s+7UF2hXPRJFDHaMAMOBya/Vr4 2/F7wf8AAf4U678XvHt20Ok6Bp8l3eMuNzBRwi+rMcKB3JrGUXGVgLvxA+JXgD4V+HpvFvxI8aaZ oWl24zNf6reJBEvtuYgZ9upr5U8e/wDBdX/gn94I1STSdP8AHesa+0TENPouhyvC30d9ufw4r8if 22P24fjF+278ULnxr4/1aaDSIZ3GgeHY7gm306Ak7QBgBpMY3ORlj6DAHi4YDjmtI0u4H7fD/g4N /YX/AOfDxh/4JV/+OUf8RB37C4/5cPGH/glX/wCOV+IYYHiin7OIH9K2sftBfCrW/wBk2f8Aac1z TLi68F3Xgk+ILmzuLNXkl09rbzyjRE4LGM4Kk47V8Xr/AMFfv+CSfUfACT/wg7WvWp9v/DisAj/m 29e3/UIFfg+ODwtTTipAf0UfsHftQfs0ftReB9c8U/sx+CW0TTNN1ZbXUIG0WOy8yfyg4bbHw3yk DJp37Zf/AAUO+BX7C9zoNt8Z7fWXbxCk7WP9l2Im/wBUUDbssMffGK+Xf+DbvH/DOXxAz/0Osf8A 6SR15/8A8HKjg6v8KR/076p/6FBU8v7ywHuZ/wCDg79hcf8ALh4w/wDBKv8A8XSf8RB/7C//AD4e MP8AwSr/APF1+IucdaNw9a19lED9wtM/4OA/2Dr+7S3u5PFlnG3DTy6DuVfrtcn9K+nP2f8A9q39 n/8Aah0A+IPgZ8UtN16JFBuLe3l23Fv7SQuA6fiAPSv5oAwbpXY/Ab48/Ev9mv4paX8XPhR4hm0/ VNMmD/u5CI7iPPzQyrnDxsOCp4/EA1LpLoB/TmpyuaK8w/Zq/ah8DftEfAfwv8atMuYrOPxBpSXE lm8uTBKCUljz32yKy59qKxtID+deg9aKD1r+xD+Uz6G/4JPjP/BQX4bH/qJXX/pHPX74p92vwP8A +CTv/KQT4bf9hK6/9I56/fBPu1+B+KH/ACPqf+Bfmz9q8Of+RRP/ABfoj5x/4K2/8o+fiJ/14W3/ AKVw1+C1fvT/AMFbf+UfPxE/68Lb/wBK4a/BavrvCz/kT1v+vn6I+a8R/wDkbUv8H6sKa/SnU1+l fpx+dH7Pf8EE/wDkyW4/7HG8/wDRcNfblfEf/BBP/kyW4/7HG8/9Fw19uV/LPFH/ACUWK/xy/M/p Dhn/AJEOH/woKKKK8E9wK/CP/gvCsi/8FEdc8zv4f00r9PJP/wBev3cr8Uf+DiDwTcaB+2jovjDy WEOveC7Zll28GSKaaJl+oUL/AN9CtKXxAfBLdK/eL/ghXJC//BOnwyIiMrrGprJ/vfaW/pivwdbn tX7Kf8G7Pxj0nxH+zJ4j+DEl6v8AaXhnxI92sG7k2tyilWA9pI5M+mRWlT4QP0QooB4ornAKKKKA PwZ/4Ln/APKRjxT/ANgnTf8A0lSvIf8Agnz/AMnx/Cn/ALHjT/8A0etevf8ABc//AJSMeKf+wTpv /pKleQ/8E+f+T4/hT/2PGn/+j1ro/wCXYH66f8F1vjPffCr9hTUvDuk3HlXXjLVrfSNynB8k5llx 9Vj2n2Y1+FKKB0NfsB/wcjzTj4FfDu3GfLbxdMzf7wtXx/M1+QNFP4QP0n/4It/sWfsuax4Uk/aZ /ag8QeEb65nvGh8L+G/EGp2/l26ocNcywyNhmLZCBhgBc4yQR+mNt4m/Y9s4lt7XxJ8NY441xHHH eaeqqPQAHgV/NQJHUbVkYfQ0vnS95pKHTcne4H9LD+MP2Re3in4b/wDgdYf41qfEeLw8vwD8SP4V SzGnyeFb6S0OnhPJdGt3IZNnykHOcjrX8yLyy9RM9f0UfAE5/wCCZ/hfd1/4Uzb/APprFZyhy21A /nbu/wDj6k/66N/Ov0U/4N+vgX8FvjX4h+JUHxh+E3hzxSlhZ6e1iviDRYLwW5ZptxTzVbaTgZxj OK/Ou7/4+pP+ujfzr9Pv+Dav/kZvir/146Z/6HNWtTSDA/QLUv2AP2H9T0+bT7n9kr4drHMhV2g8 I2kTgEdQ6RhlPuCCPWvwz/4KW/s7+Dv2XP2zvF3wj+Hcbx6FbyQXWl28khdreOaFJPKyeSFZmAzz gDr1r+iw9K/BT/guL/ykX8Wf9g3Tf/SVKyp35gPL/wDgnHdXFn+3j8KJ7aRlb/hNrJdy+jSbSPyN fpP/AMHFXxk1Twn+zn4T+D2k3jRf8JZ4gebUArf6y2tUDbD7GSSM/wDAK/NX/gnb/wAn1/Cf/seL D/0aK+2P+DlKec+LfhTAD+6Gn6o2P9rfB/StJfxEB+YGCDxX6j/8Ec/+CTvwi+Kfwltf2oP2l/DK a5HrE7nwz4duXYW628bFTPMoI8ws4bCn5dqgnOePy3c4Oc1/SB/wTxs9Osf2GPhLBpqKsbeAdMch f77W6M3/AI8WoqXsBci/YJ/YjhjWKP8AZG+G+1Rj5vBdkT+Zjp3/AAwd+xL2/ZG+G3/hFWP/AMar 1iiue7A8P/bp8NaB4Q/4J7/FPwx4W0e103TdO+F+qW2n6fY26xQ20KWTqkaIoCqqgABQAABgV/OV k4yK/pD/AOChf/Jifxg/7JzrH/pJJX83fb862p7AfsV/wbef8m5fED/sdo//AEkjr9DNZ8K+GvEB R/EHh+xvvKz5f2y0SXZn03A4r88/+Dbz/k3L4gf9jtH/AOkkdY//AAW2/wCCm/xB+D2vD9k74AeJ W0vU5rFZvFeuWcmLm3SQZS2iYf6pinzMw+YAqARk1Mo3qWQH31rlx+zb4XufsniV/A+nS/8APO+a zhb8mwao/wDCYfsiHr4p+HH/AIHWH+NfzW6p4g17XLyTUdd1u8vLiRt0k93cvI7n1JYkk1X86TvK 1V7LzA/Yv/gst8A/2Nfib+zBrHxe+Hmr+CbPxr4X8q4tLjw/fWiTX8JlVJIJFibMvytuXIJBXjjI P44Ab+TTmlcjaXbH+0aBjtWkVyqwHtnwh/bk+LXwf+Hmn/Dnw1rs0Njp3neRGshwPMmeU9/VzRXi eB6UVQHWUHrRQetf1wfymfQ//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/wD4JO/8pBPht/2Err/0jnr9 8E+7X4H4of8AI+p/4F+bP2rw5/5FNT/F+iPnH/grb/yj5+In/Xhbf+lcNfgtX70/8Fbf+UfPxE/6 8Lb/ANK4a/BavrvCz/kT1v8Ar5+iPmvEf/kbUv8AB+rCmv0p1NfpX6cfnR+z3/BBP/kyW4/7HG8/ 9Fw19uV8R/8ABBP/AJMluP8Ascbz/wBFw19uV/LPFH/JRYr/ABy/M/pDhn/kQ4f/AAoKKKK8E9wK /On/AIOJ/gTqHjX9n/wv8ctGsGmk8G6xJb6k0a8x2l0EG8+wljjHtvr9Fq5/4p/DPwp8Yfh5rXwx 8b6et1pOu6fJaX0LAco64yPQjqD2IFVF2kB/L0G5xivY/wBh39svx5+w98crX4u+DrKO/tZIfsuu 6PNIVS+tSclMj7rgjcrc4YDIIJBsft0fsQfFD9h74w3fgTxfYzXOh3FxI/hnxCsJEOoW275TnoJF UgMmSQfUEE+KAbutdGkkB+9Pw2/4Lff8E/vHOgQ6rrPxOuvDt00YM2na1pcqyRNjldyBlbnuDzXS f8Pg/wDgnZ/0cbp//gFcf/G6/nxC85Ap2AeoqfZRA/oM/wCHwf8AwTs/6ON0/wD8Arj/AON16n+z 1+1d8Bv2qdK1DXPgR4+t9etdKuEgv5reF08qRl3BTvUdhX80HToK/Xj/AINsUx8GviVn/oZbP/0Q 1ZzpqMbgfIv/AAXP/wCUjHin/sE6b/6SpXkP/BPn/k+P4U/9jxp//o9a9e/4Lnf8pF/FR/6hWm/+ kqV5D/wT5/5Pj+FP/Y8af/6PWtvsAfqt/wAHBPwt1Dxv+xXZ+N9Otmkbwn4qt7u62j7sMqPAWPtu kT86/EhW3DgV/Tz8cvhF4Z+PPwi8RfB3xgjNpviLSZrG5ZR80e9cCRf9pWww91FfzlftT/sx/E39 kf4x6p8H/idpUkdxaTMbC+8krFqFsSfLniJ6qw+uDkHpUU5aWA+1f+CPv7MH/BOn9sj4e33gH4z/ AA2af4iaHO80+PEl5b/2hZMw2SpGkyr8hO1sDj5T3zX2sv8AwRB/4Jstx/wo28/8KrUf/j9fg74b 8SeIfCWsW/iTwpr15puoWzb7a+sLloZYjjqrqQR+HrXqUP7fn7bNvEsMP7VPjoKi4UHxHOf5tTlG Td0wP2Qb/gh9/wAE2s/8kOvP/Cq1H/4/Xu3ivwR4a+Gf7M2q/DrwbYNa6Tofgi4sdNt2maQxQRWj Ii7mJZsKBySSe9fz9n/goJ+2+Bx+1V45/wDChm/+Kr9jf2A/HvjX4o/8Errfxx8RfFV9rWsXnhjW vtWpajcGWaXb56jcx5OAAKzlGUdwPwWu/wDj6k/66N/Ov0+/4Nq/+Rm+Kv8A146Z/wChzV+YN3/x 9Sf9dG/nX6ff8G1f/IzfFX/rx0z/ANDmrSp8DA/WI9K/BT/guL/ykX8Wf9g3Tf8A0lSv3rPSvwU/ 4Li/8pF/FvH/ADDdN/8ASVKzpfEB5Z/wTt/5Pr+E/wD2PFh/6NFfoV/wcifDu/1H4XfDr4q2tqzQ aXrV1p15Iq52efEHQn0GYWH1Ir89f+Cduf8Ahuv4Ukj/AJniw/8ARor97v2x/wBmrQP2sv2cvEnw M1qWOFtWs86feSKWFrdId0UnHOAwGcc4JqpPlmmB/NXgMK/bT/gh/wDtt/D34sfs1aP+zlrviG3t fGPguBrWLT7iYK17YqxMcsWT8+1TsYDkbQehr8cfjH8HfiJ8A/iRqnwp+KXhybS9a0i4MV3bzLw3 o6N/GjDkMOCDXPWN7eaZdx6hpt5Nb3ELbopoJCjI3qCOQa0kudAf1OrKhH3hS70/vD86/mJT4+fH ONQsfxo8WAKMAf8ACQ3PH/j9L/w0B8dz/wA1p8Wf+FFc/wDxdZexfcD+hL/goU2f2FPjAP8AqnOs f+kklfzft90H2r959Zv9Q1j/AIIeTavq1/NdXVz+zp5tzc3EpeSWRtIBLMx5JJ6k8mvwYYZAA7Cq orcD9iP+Dbz/AJNy+IH/AGO0f/pJHX5r/wDBQjxRq3i/9uP4ra1rEzSTf8J1qNspbtHDO0Ma/gka j8K/Sj/g28/5Ny+IH/Y7R/8ApJHXxV/wWi/Zv1r4E/tv+IvE40+RdF8cTnW9LuvL+RpJAPtCZ6bh LvP0YGlH+IwPPv8AgnD+zl4B/as/a88M/Bb4najc2+i6gLiW8Wzm8uScRQtIIlb+EsV6jnGcc1+v UH/BDz/gm0kSqfgletgY3N4s1Dn3/wBfX4P6Dr+u+FdZtvEfhjWrrTtQs5RJa31jcNFLC46MrKQQ fpXqcf8AwUA/bcijWJP2qvHW1RgZ8RT/APxVVKMpdQP0r/4KCf8ABJf9hT4G/sc+PPiz8M/hJdWO vaHo4n026k8RX0wik81FzseUq3BPBBFfjmhzk5r07xn+2d+1j8RPDN54L8dftEeLtW0nUIvLvtOv 9alkhnTIO1lY4IyBXmYGKqMXHcAoooqgOsoPWig9a/rg/lM+h/8Agk7/AMpBPht/2Err/wBI56/f BPu1+B//AASd/wCUgnw2/wCwldf+kc9fvgn3a/A/FD/kfU/8C/Nn7V4c/wDIpqf4v0R84/8ABW3/ AJR8/ET/AK8Lb/0rhr8Fq/en/grb/wAo+fiJ/wBeFt/6Vw1+C1fXeFn/ACJ63/Xz9EfNeI//ACNq X+D9WFNfpTqa/Sv04/Oj9nv+CCf/ACZLcf8AY43n/ouGvtyviP8A4IJ/8mS3H/Y43n/ouGvtyv5Z 4o/5KLFf45fmf0hwz/yIcP8A4UFFFFeCe4FFFFAHJfGT4HfCb4/eDJvh98YvAWn+INJuOWtNQgDb Gx99G+8jjsykEetfBHxc/wCDcj4KeItUn1L4O/GjWvDsUjFo9N1K1S9ji/2Q+VbA9yx9zX6SUVSl KOwH5Ln/AINrvHIb5P2oNK29t2gSf/HKB/wbYeOif+Tn9J/8J+T/AOLr9aKKftJdwPyX/wCIa/x5 nj9qLSf/AAn5P/i6+xv+CY//AAT513/gn74K8UeE9Y+Itr4ibxBqkN3HNa2LQCEJGU2kMxznOa+o qKTlKWjA/Pv9vP8A4IreK/2yv2lNW+PWm/HLT9Dh1KztYV0640l5mTyoljzuDAHOM9K439nX/ggJ 4z+Bnx48JfGO7/aH03UI/DOvW2ovZR6JIjTiJw2wMXOCcehr9NqKOeVrABG4YNeZ/tMfsjfAP9rf wh/whnxw8AW+rRRq32G+X93dWTH+OGUfMh9uQe4NemUVPoB+X/xD/wCDbXwhd38lx8LP2jb+yt2b MdtrWkLMyD03xsuf++a5cf8ABtf46/6Of0n/AMEEv/xdfrRRV+0kB+S7f8G13jo/83P6T/4IJf8A 4uvvj9lv9kvU/wBnb9je3/ZbvfF8OpXFvpV9Z/2tDalEY3BkIbYSTxv9e1e4UUnKT3A/JeT/AINs vHU0zy/8NPaUu5s4/sGXj/yJX1V/wTE/4Jk+IP8Agn1qvi3UNY+Kdp4jHiWC1jjW109oPJ8ppDk7 mOc7/wBK+vqKHOTVmAjZ28V+fX7eH/BFPxZ+2P8AtKav8edN+Oen6JDqlraxLp9xpMkrJ5UQTO4O Ac4z0r9BqKUZOOwH5l/s3/8ABAjxl8B/j54R+Mt3+0NpuoReGdet9QksY9FkRp1jcNsDFzgnHpX6 aMoYYNFFOUnLcDxn9rP9g79m/wDbN8PLpPxm8CxzX8Ee3T/EFi3k31n7LIPvL/sOGXvjIBr4Z8bf 8G2Glzag8vw6/aYuILZmzHDrGhiR0HoWjcZ/75FfqZRRGUogfkuf+Da3x12/ah0n/wAEEv8A8co/ 4hr/AB3/ANHQaR/4IJf/AIuv1oop+0l3A8Vk/ZW1N/2B/wDhjP8A4S2H7V/wrMeFf7c+zny94s/s 3n7M5xn5tuc18Ar/AMG2HjvqP2oNJ/8ABDL/APF1+tFFJSlHYD5l/wCCZn7A2tfsBfDbxF4B1j4h W/iJ9c1xdQS5tbFoViAhWPYQzHJ+XOa9K/al/ZJ+C/7Yfw4m+Gnxp8LLeW+7zLC/hOy6sJsf6yKT qp9RyGHBBr1Cipu73A/Kvxf/AMG2G/VJJPAP7TRjs2b93Fq+h7pFHoWjcA/XArLH/Btf46xz+1Bp P/hPyf8AxdfrRRV+0kB+S/8AxDY+Ov8Ao57Sf/Cfk/8Ai6P+IbHx1/0c9pP/AIT8n/xdfrRRR7SX cD8l/wDiGx8df9HPaT/4T8n/AMXRX60UUe0l3A/mHoPWig9a/sE/lM+h/wDgk7/ykE+G3/YSuv8A 0jnr98E+7X4H/wDBJ3/lIJ8Nv+wldf8ApHPX74J92vwPxQ/5H1P/AAL82ftXhz/yKan+L9EfOP8A wVt/5R8/ET/rwtv/AErhr8Fq/en/AIK2/wDKPn4if9eFt/6Vw1+C1fXeFn/Inrf9fP0R814j/wDI 2pf4P1YU1+lOpr9K/Tj86P2e/wCCCf8AyZLcf9jjef8AouGvtyviP/ggn/yZLcf9jjef+i4a+3K/ lnij/kosV/jl+Z/SHDP/ACIcP/hQUUUV4J7gUE8UUEZGKAMXxR8QvA3gcQv428a6To63G4WzapqE dv5pXG7bvYbsZGcdM+9ZP/DQfwH/AOi2+Ef/AAo7b/4uvzn/AODlkY8P/CEf9Pmtf+gWdflH+NaR p8yuB/Tp/wANB/Af/otvhH/wo7b/AOLo/wCGg/gP/wBFt8I/+FHbf/F1/MXj3ox71Xsl3A/p4svj t8FNRuVtNP8AjD4WnmY4WOHxBbMzewAfJrqIbiO4jWeCVXjYZV1YEMPXNfyvqXV9ytjHQ169+zf+ 3l+1X+ynqcN18JPi3qkGnxS+ZJ4fvrprjT5uckNA52jPdl2t70ez7MD+kagnHWvmf/gnD/wUe+Hf 7efgGaS3s10bxho0aDX9AeTOM9J4T1aInjnlTwexP0wCGGaxa5dGAA56UEgdTX4p/tTf8Fjv28fh h+0p46+HXg/4k6fb6Vofiq+stPhfQoHZIY5mVAWK5JwOpr1L/glP/wAFP/2wv2pP2ytH+EPxi8dW WoaHeaTfzz20OjwwsXigZ0O5QDwRVezkB+rQOelFIuQvIpakAooooAKKKKAAkDrRXg//AAUn+NXx C/Z2/Y08YfGD4W6nHZ65pMNu1lcTW6yqpe4jQ/K3B+VjX5Hj/guR/wAFFAP+Sp6Z0/6F23/+Jqow lLYD96KbK4jjLlgoXkk9q+UP+CPH7UHxk/a6/ZY1L4ofG7XbfUdYt/Gl3p8U9vZpAogjtrV1XamB kNK/Pv7V9T64M6Lef9esn/oJpWs7AcuP2hPgTnDfGzwkP97xFbf/ABdanhj4nfDzxvdSWfgrx9ou sTQoHmh0zVIrhkXONxCMSBnua/l9vAftcxz/AMtW/nX6Of8ABt2D/wAL8+IH/Yqw/wDpQKuVO0bg fsJnPSiiiswCiiigAooooAKyfFfjnwd4Gtkv/Gni3TdIt5ZPLhm1O+jt0d8Z2guRk4BOOta1fnP/ AMHIQA/Zl8B4/wCh7/8AbK4qormdgPudv2hfgOoz/wALs8I/+FHbf/F10+jazpev6dDq+i6nb3lr cJvt7q0mWSOVf7yspII9wa/ljIOOtf0Yf8EyBj9gP4Uc/wDMn239aqUOUD3aiiiswP5h6D1ooPWv 7EP5TPof/gk7/wApBPht/wBhK6/9I56/fBPu1+B//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/AJH1 P/AvzZ+1eHP/ACKan+L9EfOP/BW3/lHz8RP+vC2/9K4a/Bav3p/4K2/8o+fiJ/14W3/pXDX4LV9d 4Wf8iet/18/RHzXiP/yNqX+D9WFNfpTqa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/wCCCf8A yZLcf9jjef8AouGvtyv5Z4o/5KLFf45fmf0hwz/yIcP/AIUFFFFeCe4FFFFAH5cf8HLf/IB+EP8A 1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflF1rop/w0B9Hfsw/8EsP2tP2uvhinxd+Dmj6 HNo0l9NaK+oa0sEnmRkBvlIPHIr0R/8Aggf/AMFCkGf+Ec8K/wDhTJ/8TX3v/wAEBVX/AIYBteP+ Zs1I/wDjyV9tkA9RUyqS5gP5w/2lv+Ce37Xf7JdqNY+M3wivLXSWcKuuafIl3Z5PADSxEiMk9A+0 ntXi5B6E1/UZ458E+FviN4U1DwL420S31HSdWtHtr+xuow0c0bjBBB/yK/nH/bZ/Z4uv2Wf2pPGH wQkD/ZtI1Mtpkjnl7OUCWBj6/u3X8RVU582gEX7Gn7SviP8AZG/aM8OfG3QLibydPvFj1i1iYj7V YuQJoj65Xp/tBT2r+kXwt4h0nxb4csfFOg3S3FjqVnHdWc6HKyRyKGVh9QRX8tL9M1/Qh/wSM+Jz /FT/AIJ8fDvVbq58y60zTZNJuiWzhraZ4kz7+WIz+NTVXUD8/f2nv+CJ37c/xW/aN8b/ABK8I6D4 bfS9e8UX1/p7XHiBEcwyzM6ll2/KcEcV6d/wS3/4JRftd/smftgaP8Zvi/o2gw6HZ6XfW80lhraz yb5YGRMIF5GTz6V4/wDtTf8ABZH9vD4X/tJeOvh14P8AiNpsGl6H4qvrHT4ZNBgdkhjmZUBYrliA BzXqH/BKn/gqJ+2F+1J+2Ro3wh+MfjixvtDvNKv55re30eGFi8UBdDuUZ6iiXPygfq0DkZoppbbH 1r4q/bx/4LTfBX9kTXrz4XeA9F/4TbxnaLturS3uxFZ2EmPuzSgNlh3jUZHQlTWSTewH2vRX4Y+L f+C+v7fviS/kudG1XwvocLNlLXT9BDBB6bpndj+dY/8Aw/L/AOCimP8AkqOlf+E7bf8AxNX7KQH7 zUV+DI/4Ll/8FFf+ioaX/wCE7bf/ABNdJ8HP+C1X/BQDxd8YPCnhHXfiVpsljqviWxs7yNfD8ALR S3CI4BC8fKx5o9nID9UP+CjHwL8f/tMfsfeLvgt8Lra1l1zWYbdbGO8uRDGdlxG5y5HHyqa/J8f8 EDv+ChXQ+HPCv/hTJ/8AE1+rX/BSP42/EL9nT9jbxh8YfhZqcdnrmkQ27WNzNbrKqF7iNDlW4Pys a/JD/h+X/wAFFQcf8LR0r/wnbf8A+Jp0+e2gH6f/APBIn9lH4v8A7Gv7MGo/Cj412Wnw6tc+MrrU o006+FwnkSW9rGvzADndE/Hpj1r6d1tx/Yt4R/z6yf8AoJr5Y/4I+ftS/GP9rn9lXUvin8b9cg1D WLbxnd6fHcW9kkCiCO2tXVdqDBO6V+ff2r84vir/AMFq/wBv/RPiD4k8Kab8SdMWzs9ZvLSCNtBt yREszoozt6hQKSjKUgPi67/4+pP+ujfzr9Hf+DbsgfHv4gEn/mVIf/SgV+bxdpHaRjyzZNenfsu/ tjfHf9jnxJqXir4FeIrbT7zVrRbW8kubFJw0YbcBhwcc962lG8bAf0rfSgHNfgyv/Bcv/gokXVW+ KGl7SwB/4p23/wDia/Zn9pX4j+Kvhx+yn4u+KXhS8SHWNJ8IXF/ZTyQhlWZYd4O08EZ7GudxlED0 2ivwZ/4fmf8ABRX/AKKhpf8A4Ttt/wDE0f8AD8z/AIKK/wDRUNL/APCdtv8ACq9nID95qK/Bj/h+ b/wUUBBPxP0rr/0Ltt/hXqv7O/8AwcQ/tC+GPEdvZftG+BtF8TaHI224utHtTZ30P+2vzGOTHdSq k9mFHs5AfslX5z/8HIf/ACbN4D/7Hr/2yuK+5vgL8dvht+0h8L9L+L/wo8RR6lourQ74ZFOGicHD RSL1R1PBU8j8q+Gf+DkP/k2bwH/2PX/tlcVMfiA/HM9K/ov/AOCZP/Jgfwo/7E+2/rX86B6V/Rf/ AMEyf+TA/hR/2J9t/Wtq3woD3WiiiucD+Yeg9aKD1r+xD+Uz6H/4JO/8pBPht/2Err/0jnr98E+7 X4H/APBJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/kfU/wDAvzZ+1eHP/Ipqf4v0R84/8Fbf+UfPxE/6 8Lb/ANK4a/Bav3p/4K2/8o+fiJ/14W3/AKVw1+C1fXeFn/Inrf8AXz9EfNeI/wDyNqX+D9WFNfpT qa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/4IJ/8AJktx/wBjjef+i4a+3K/lnij/AJKLFf45 fmf0hwz/AMiHD/4UFFFFeCe4FFFFAH5cf8HLf/IB+EP/AF+61/6BZ1+UVfq7/wAHLf8AyAfhD/1+ 61/6BZ1+UVdFP+GgP3K/4IC/8mAWv/Y2aj/6ElfbVfEv/BAX/kwC1/7GzUf/AEJK+2qxl8Q5bhX4 n/8ABw74btdL/bV0fX7eIK2qeB7Vp8D7zRzzpuPvt2j6KK/bCvxW/wCDiTW7a+/bM0DRYn3SWHgW 3Mw/ul7icgfkM/jVU/iEfAg+90r9sf8Ag3o1We9/Yk1LS3fK2fja8CfN03RQtj86/E4HBzX7W/8A BvDps9n+xRq2osPluvG92U99sMIrSp8IH5Tftz/8nmfFD/setU/9KXr3L/gg/wD8pGfDv/YA1X/0 lavDf25/+TzPih/2PWqf+lL17n/wQe/5SMeHc/8AQA1X/wBJWofw/ID9O/8AgrX+1/e/sgfsl6l4 h8K3Bj8TeJLhdI8OyK2DBJIrGSf/AIBGGI/2yn1H8/8Ad3d5e3UmoajcyTzTSF5ppnLO7E5LEnkk nqf/ANdfp1/wcm+OLiXxz8M/hok7eTb6Te6lJH2LSSLGCfoIz+Z9a/MNs4xRTVo3A7b4Gfs5/HH9 pTxK3hD4H/DXU/EV5Goa4FjDmOBT0aSQ4RB/vEfoa93X/gid/wAFIXXePgNH+PiSw/8Aj1frb/wS 4/Zv8Ofs4/sZ+D9D0/S4YtT1rSodX126WMeZcXNwgk+ZupCqVUA9AtfROAEwKmVWXQD+Zb9ob9m3 4xfsr+PF+Gnxw8LLo+tNZx3a2q3kU/7lyQrbomZex4zmq/7ORz+0R4DP/U56X/6VxV9Z/wDBwQoH 7dcJ/wCpNsf/AEOWvkz9nHj9ofwHj/oc9L/9K4q0Um4gfuh/wWZ/5RyfEP8A697T/wBK4q/n97D6 V/QF/wAFmf8AlHJ8Q/8Ar3tP/SuKv5/e34VNH4QP2y/4N4QW/YT1pR3+JGof+kdjXyD8UP8AghF+ 3Pr/AI78ReL7AeEPsd9q95eQ79fIby3ldxkeXwcH86+v/wDg3d/5MX1n/spOof8ApHY19y62oGjX XH/LvJ/6Caz5nGbsB/LOyNG7I3VWxXr37IP7EXxr/bd8U6t4Q+Co0n7Xo1it3ef2tfGBfLZ9g2na 2TmvJbvi6kH/AE0b+dfo5/wbdru+PfxBz/0KkH/pQK2lK0bgefp/wb9/t87ldk8G4DA/8jEf/jVf r5+0Z8MfE3xP/Ze8WfCLwz9n/tbWfCc+nWfnzbY/OeHYNzYOBnvivSO2KjuJ4rZDNMyqirl3ZgAB 65rnlKUgPw/H/Bv1+31j7vgz/wAKI/8Axqj/AIh+v2+v7ng3/wAKI/8AxqvvD9oz/gur+xv8CfEl 54M8OPqnjbUrCZorlvD0aC0SRTgr9odgGweMoGHvXkn/ABEofCYk7P2YPEJHY/2/B/8AG605qnQD 5K+JX/BDX9vr4b+E7zxg/hHRNaisYWmns9D1kTXBQDJKoyqXOB0XJPYGvj+eOW3ke2niZJEYrIjD BUjqD6V+uT/8HJfwmY/N+y/4g5/6j0H/AMar8t/jv488O/FH41eLPiR4T8OvpOm694gu9Qs9LkkD G1jmlaQRZAAON2OAOlVGU+qA+7f+DeP9o/WvC/xy139mfU7xm0nxJpkmpafEzcQ3kG3dtHbfETnH XyxXuv8Awcg8fsy+Ax/1Pf8A7Z3FfD//AARSmlh/4KOeBTG5G6PUFb6fY5a+4P8Ag5CGP2ZfAY/6 nr/2yuKmStUuB+OZ6V/Rf/wTJ/5MD+FH/Yn239a/nQPSv6L/APgmT/yYH8KP+xPtv61Vb4UB7rRR RXOB/MPQetFB61/Yh/KZ9D/8Enf+Ugnw2/7CV1/6Rz1++Cfdr8D/APgk7/ykE+G3/YSuv/SOev3w T7tfgfih/wAj6n/gX5s/avDn/kU1P8X6I+cf+Ctv/KPn4if9eFt/6Vw1+C1fvT/wVt/5R8/ET/rw tv8A0rhr8Fs19d4Wf8iet/18/RHzXiP/AMjal/g/VhTX6U6mueOlfpx+dH7Pf8EE/wDkyW4/7HG8 /wDRcNfblfEP/BBKQH9iS4YD/mcrz/0XDX26HBGa/lnij/kosV/jZ/R/DP8AyIcP/hQtFAORnFFe Ce6FFFFAH5cf8HLf/IB+EP8A1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflFXRT+BAfuV/ wQEI/wCGALXn/mbNR/8AQkr7aJA6mvwU/Yy/4LBfGr9in4MR/BTwL8NvDeqWMepT3outUafzd0pG V+RgMDHpXrDf8HHf7TrDA+CngvP+9df/ABys3TlzAfsPrWr6foOm3Gt6tfR29paQNNc3E0gVIo1B LMxPAAAzX85//BQj9oyP9qn9r3xl8Y7CfzNNur8Wuit2NnAoiiI/3lTd9W967f8Aa1/4K4ftdftd +F5vAHinXrHw/wCHbni80bw7btCt0v8AdldmZ3X/AGchfavmDOBzWlOPLqwA9M5r+gL/AII3fDNv hp/wTz8BW9zbGO41q3uNXuAVxnz53aM/9+hFX4b/ALM3wG8UftN/HXw38EfCSN9p13Uo4Zp1XP2a DOZZj7IgZvw96/pU8BeD9G+HvgjR/Anh23EVho2mw2VnGP4Y4kCKPyFTWlsgP5xf25/+TzPih/2P Wqf+lL17p/wQe/5SL+Hf+wDqv/pK1eF/tz/8nmfFD/setU/9KXr3T/gg9/ykX8O/9gHVf/SVqp/D 8gPVf+DkTS7mH9of4f6yUPkzeD5YlbtuW6ckfky1+cQbYyvj7rZr9jP+Din4G6p4x/Z+8LfHDRdO eb/hEdae21Ro1yYrW6VQHb/ZEqRrn1kFfjkWyNmKKesUB/TL+yp4q0nxr+zR4B8U6JcpJa3vg/Tn jZOn/HsgI/AgivQO1fi//wAEvv8Agsxpn7Kfw+g/Z/8A2hfDmoal4XspnbQ9a0sCS4sFY7jC8TEb 4wckFTlc4wRjH2gP+C9n/BPLZz4s8TdP+hZl/wAaxlGVwPhH/g4LGP264QP+hNsf/Qpa+S/2cf8A k4fwH/2Oel/+lcVe2/8ABWn9qn4R/tf/ALUcfxV+C+oXlxpC+HbazMl9ZNA/mozlhtPb5hzXiX7O P/Jw/gP/ALHPS/8A0rirePwgfuh/wWZ/5RyfEP8A697T/wBK4q/n97fhX9AX/BZn/lHJ8Q/+ve0/ 9K4q/n97fhSpfCwP2z/4N3f+TF9Z/wCyk6h/6R2Nfc+t4/sa7z/z7Sf+gmvhj/g3d/5MX1n/ALKT qH/pHY191anA91p1xbRj5pIWVfqQRWMvjA/lmu/+PqT/AK6N/Ov0c/4Nuz/xf34gf9ipB/6Uivzl 1CCa21C4t542V45nV1bqGDEEV9Sf8Eiv23vAX7Ev7RV94h+Kltdf8I74i0n+z769s4vMezYSCRJS nVlyCDjkZyAcYreS90D9+q+I/wDgu5+094n/AGf/ANky18HeBtWex1Xx5qjaY11C22SOzRN8+09i 2UTPo57mu+g/4LHf8E6Z0Vl/aJs1LAfK2m3QP0/1dfK//BypbXeoeDPg94gs9zWK32sRySfw75I7 Jk/NY3P4VhFe8rgflB1+duT1zXd+Af2Xf2l/iroS+KPhn+z5428QaazFE1HRfC91cwOwOCBJHGVJ B6gGuFI445r9wv2Uf+Cv37AGj/s8+D/DOv8AxNXwvfaT4etLG80e60qYeRLFEqNtMaFSpIJBB5z2 NdEpSjsB+SY/YS/baH3v2RPiX/4Q99/8arzPxH4a8Q+DtfvPCvi3QbzS9U0+4aC/07ULdoZreRT8 yOjAMrA9QRkV+/w/4LE/8E6f+jjLL/wW3X/xuvxG/ba8feFPil+1z8RfiL4F1Vb7R9a8W3l3pl4q MomheQlXAYAjI9RUxlKW6A9b/wCCK3/KRrwJ/u3/AP6Ry19xf8HIf/Js3gP/ALHr/wBsrivh3/gi t/yka8Cf7t//AOkctfcX/ByH/wAmzeA/+x6/9srilL+IgPxzPSv6L/8AgmT/AMmB/Cj/ALE+2/rX 86B6V/Rf/wAEyf8AkwP4Uf8AYn239adX4UB7rRRRXOB/MPQetFI2euK/sQ/lM+h/+CTpP/DwX4bD /qJXX/pFPX74p92vwO/4JPnP/BQj4bH/AKiV1/6RT1+925duM1+B+KH/ACPqf+Bfmz9q8Of+RTU/ xP8AJHzn/wAFbv8AlHx8Rf8AsH23/pXDX4Lmv6LP2tfgCv7UH7PniL4Gv4kbSRr1vHF/aCw+b5Oy VJM7cjP3Mde9fntrf/Buv42SMnw3+0lpszfwi80WSMf+Ou1ehwBxLk+TZfUo4upyyc7rRvSyXRHD xxkObZpmFOrhafMlGz1Xdvqz83Ac9Ka+AwOK+4vGf/BAv9sTQI2m8K+J/COtqq52R6hLBI30Dx4/ UV4z43/4Jd/t5+AjI+rfs461dRx5zNpLRXikDv8AuXY/oDX6dh+KOH8Tb2eJh83b8z87r8O55h0/ aUJL0Tf5XPpb/gkL/wAFL/gH+zb8NZf2e/jU17pH2rXJr218QiHzLQeYqLskC/MmNv3sEc84r9TP Anj/AMF/Enw/B4q8A+KbHWNNuF3Q3un3Cyxv+Kmv5uvF/wAM/iF8P7trDxz4E1jR7hfvRapp0kLL +DgV0/wD/at/aA/Zm11dc+CfxMv9HbzQ89irCS1uMdpIXBRh26Z9CK+M4g4BwucVZ4zAVUpyd2m7 xb8n0v8AcfW5HxvisppxwuMpXhHRNaSS9Ha9j+jlN235qWvz2/ZC/wCC7fwv+I8tv4P/AGntGj8I 6m6hRr1lvfTpX/2wcvDn33KO5Ffevhrxb4b8Z6Hb+JfCevWmpafeRiS1vrGdZIpVI+8rKSCK/IM0 ybMsnrezxdNx7Po/R7H6nlucZdm1HnwtRS8uq9UalFRhwxzTh9zivLPU3Py6/wCDlv8A5APwh/6/ da/9As6/KKv6bPi9+zh8D/2gksIfjb8LtI8TJpbSHT11a1EotzJt3lc9N21c/wC6K4n/AIdtfsH/ APRq3g3/AMFK1pCooxsB/OTRjNf0bf8ADtr9g/8A6NW8G/8AgpWj/h21+wf/ANGreDf/AAUrV+1i B/OQSR0rsPgx+z78av2h/E0fg/4M/DnVPEF87hWWxtiY4s93kOFQepYgV/QbYf8ABO39hzTLgXFl +yv4LVlOVZtFjb9GBr1Dwf4C8F/D7TF0TwN4R03R7NPu2ul2KQRj/gKACk6vYD5T/wCCV3/BMDQv 2G/Cs/jfx9NZ6t8QdatVS+vIFDR6ZCeTbQsevON78bioxwBn7EA2jAowPSg7u1Yybk7gfzX/ALc/ /J5nxQ/7HrVP/Sl69z/4IP8A/KRfw7/2AdV/9JWr9evEf7AH7GHjLxDeeK/Ff7NXhO+1LUbp7i+v rjS1aSeVzuZ2PcknJNafw0/Yv/ZY+DPi6Hx38KPgR4d0HWIInjh1LTdPWOVEcbWUEdiODWjnpYDs viT8OPCPxY8Bat8NvHWlJfaTrVjJa39tIOHjcYP0I6g9iAa/CL9vn/glN8ev2PfF+oa14c8OX/iX wE0hk03xFY25la3jJOI7lV5jdem7G1uoPUD9+QcJ8w+tNnht7uBraeFZEkUq0brkMPQj0qYy5QP5 XtpP3qXHGK/pO8X/ALD/AOyH491CTVfF/wCzb4NvbqVt0lxJoMIdz6kqASaxj/wTe/YOC/8AJqvg 3p/0CVrT20ewH85QGDkV2X7OP/Jw/gP/ALHPS/8A0rir3T/gsP4V+CHw9/bX1T4ffATwzpOkaXo2 j2kF9Y6NGqwpdlS8gOP4gGUH0PHY14/+yD4bvPGX7WXw08M6fEWlvPHekphRnC/a4izfgoJ/CtdH G4H7ef8ABZj/AJRzfEIf9O9p/wClcNfz+544r+ob4g/DbwR8WPCd14D+JHhe01rR77aLzTb+LfDM FYMNy98EA15f/wAO2/2D+/7K3g3/AMFK1hGfLGwHz5/wbu/8mL6z/wBlJ1D/ANI7Gvu+TO3Irl/h R8Fvhb8CPDcng74PeAtN8O6TLeNdyWGl24jjaZlVWkIH8RCKM+iiuqqJO7uB/P3/AMFW/wBi7x3+ yt+074i1weGp18H+KNWm1Hw7qkUX7j98xke3yOFdGLDacfLgjivl4LlQ/rX9SHjDwV4S8faLJ4b8 b+F9P1jT5hiax1KzSaJ/qrgivKrz/gnV+w3qM7XN5+yx4LLN126LGv6KAK1jU01A/nHgUecg/wBo fzr+gz/gol+xmf21/wBkA/DjRZo4fEGmww6n4Zml4X7VHFjyieyyKWTPYkHtXTn/AIJufsIqMp+y t4Nz/wBgla9rtreO3iWGONVWNQsaj+EAYxUyqc1gP5efiL8NvH3wj8YXnw/+JnhO+0XWLCVo7qwv 7cxuhB64PUehHBHIzWKBjmv6c/id+z/8E/jRGsPxZ+E/h/xEI/8AVtq2lxTMn0Zhkfga4L/h25+w iTk/sreDfw0lar2yA/nJIB4IpAgByBX9G/8Aw7c/YQ/6NX8Hf+ClaP8Ah23+wf8A9GreDf8AwUrR 7RAfjn/wRW/5SNeBP92//wDSOWvuL/g5D/5Nm8B/9j1/7ZXFfYfw+/Yj/ZO+Efi218e/DL4AeGtF 1iz3C11LT9PWOaLcpVsMOmVJH0NdH8XvgL8IPj5o1r4e+M3w50vxJZWN19ptbXVbYSJFNtK7wD0O 0sPxqXP3rgfzGnpX9F//AATJ/wCTA/hR/wBifbf1qY/8E2v2EO37K3g3/wAFK16z4J8GeGfh54Ws fBPgrQrfS9J023EGn6faR7Y4Ix0VR2AolPmA1qKKKzA/mJEUxOFib/vk1INL1VhldNuCPaFv8K/p mtdI0mzXZaabbwr/AHY4Qv8AKrH2W2xlYF/75r9el4r1ebTCr/wL/wC1PyuPhnHriP8AyX/gn82f wm+I3xL+BHxG0v4tfDuWSx1vRZml0+7ksxII2ZGQ/K4IOVZhyO9fV3g//gvH+3B4cVU8Qab4S15V +81/okkTH8YJEAP4Gv2cNpbsPmgX/vmq114e0O+XF/o9tN/12t1b+Yrycdx1lubTUsZl8ZtaX5ne 3a9j0MHwXmeWrlwuNcV2tpf7z8vPC3/BxN4xhCp45/Zs0+b+/JpeuSR5+iyRt/6FXpnhH/g4S/Z0 1Jo4/F3wh8VaWzH55LcwXCL7/fVv0r7c1X4JfBzXwU134UeG7xW5YXWhwSZ/76Q1zOr/ALF37JGt Bl1D9mnwO27q0fhm2Qn8VQV49TNOEKz1wMo+cZv9dD1qeW8VUdsZGX+KH6o8p8Df8Fkf2BfGyp53 xffR5G4EesaXPFz9QrL+teteDf2vf2W/iHtHg/4+eE75pMBY01yFWOe21mBz7YzXH63/AMEyP2Ed eBF3+zV4djZurWtu0R/8dYVxPiL/AIItfsB68jCH4W3mms3/AC00/Wp1YfTczfyrikuFK3wOrD1U ZL80zsi+KKa95U5+jlH/ADPpjV9A8F+ONJ+xa9pGm6tYzDPl3MCTxsPXDAivDPit/wAErP2GPi6k smrfA6w0y5lB/wBM0CRrOQH1xGdufqprzqw/4IyfD7wA7XHwC/ab+J3gl2bcsWma6DCW/wBpNq7v xNadl+yj/wAFLvhq+fh/+3rYeI4V5W18Z+Fw272LozN+tOj7HCyUsFj+V+anD8romt7TER5cZguZ eTjL87M+f/jR/wAG8tuxmvvgB8cmUdYdO8U2YbHoPOhA/wDRdeJeFPCf/BUz/glz4gbVtJ8Kapce G7ebzLy3t86hpNymeSyoSYsj+LCEetfoXY/F7/gpX8NIVT4lfsw+FfHVvH/rL/wL4m+yzEepguwN xPopFbnhn/goP8M5Ln+yPjN8N/Gnw7u84f8A4Svw7KtqT3xcxb4se7Fa+go8TZ/7F0cXGGKpdU2m /vXvJ+qPDqcP5LKsquFlPD1Fta6X46W+ZxP7FX/BXf4AftSCHwh4vmj8F+LpCqf2VqlyPIu3/wCm EpwDz/C2G9M9a+tkl3rwd1fMXxg/4J//ALCH7bGkT+M9J0bShf3mWXxN4Nuo45PMP8beXlHPruBJ 71xfgbQ/27/2AIl07Wbu4+Nnwzt8JG1r8uvaTEOhCOT56hcfKGJ4/hFfPYzCZTjpOeBbpz6059/7 sv0dj3sJi81waUcalUh0qQ/9uj09UfahcdqcDkZrjfgz8c/hn8ePDCeLfhp4ljvrf7txCymO4tJO 8c0TAPE47qwBrsgc9K+eqU505uM1Zrue/TqQqRUou6YUUUVJYUUUUAFFFFABRRRQBleOrie08E6x dW0rRyR6XcPHIpwVYRsQQfUGv5yLv9uL9saO8mjj/ab8bKqzMAP+Ein6Z/3q/pA8R6U2u+Hr7Q1m 8s3lnLB5m3O3ehXOO+M1+V8v/BtbrNxO8x/aytvmcnH/AAiTcf8AkxWlNxW4HwX/AMNy/tkf9HO+ Nv8Awop//iqbP+29+2FcwtBP+0z42ZXGGX/hIp+f/Hq+9f8AiGl1j/o7G2/8JJv/AJJoP/BtNrAG R+1lbf8AhIt/8k1pzUwPy8v7+/1O+m1PUryW5ubiRpLi4mkLPK5OSzMeSSe5r76/4IJfsf8AiL4n ftB/8NQeINLaPw34LEi6dcSr8t3qLoVVU9fLQlmPYslfQnwT/wCDc/4J+Etfh1v42/GbVvFkEMm9 dL0/T10+GT2dt8jkf7pWv0E+HPw18C/CfwbY/D74ceF7PR9F0uHyrHT7GERxxrnPQdSSSSepJJOS amVRWsgN5elFFFYgDHAzimeZtHzClY4Jr5g/4Ks/tg+If2Qv2am1/wAESCPxF4h1BdM0e6ZQwtWK M7zYPUqiHH+0RXXgcFXzHGQw1H4ptJHLjsZRwGFniKvwxV2fTn2uMPsLLn03U9JQ4yPyr4C/4J0/ sP8Ah7xz8FrX9rz9pbx1r2ueMvFdjJe2ms3WvTxyaVaEkqUdXBDcbic4AOAMZz7P/wAE5P2rbz4+ fAzXNY8aa+t03g/xJeaTJ4juCI01C1iO6K5YnADGMjd7jPeu3HZT9WdX2M+dU2oydrau607q6t+h w4PNvrEabqw5PaJuKbu7LXXtoz6Vkk2rkCuT+Hfx0+FPxY1XXND+HXjmw1e88N6i1jr1taSZeyuA SCjggY5VhkcEqeeDXm3x2/bo+Bngb9n7xn8VfBPxO0XWrjw7pbmKHT75JM3LkxwrweQZMDIyODX5 2/sn/Cn9rmH4deHovgz8UdH8I+KPi5rb+IdT1fUtWWHUL21gm8uOOKM581f3txOQeHBxnsezLeH5 YzBVK9afs7NKPNom7NyvpeyWpy5hn0cLjKdGjH2l027au2yt0u2frR49+Knw/wDhZoqeIfiR4w0/ Q7GS6S3jvNSulhjaVz8qBm4yewrchvYbiFZ4ZFZHUGORTwwPQ1+T/wC234a/as+M37S3gn/gnlrf 7R0fji4uLmDUtSvo/C8dkNPbDkyS7JD5gSHc+Mr1UdTX2zpXhPxdob6X8JPix+29Zx3UKQxw6P4d 0210q6njVlEaZeSWQAjauVIJzweazx2SU8HhaNT2qcppysk/hvaL2vrrvYrB51UxWKqw9k1GDUbt rWXVb20+Z9FrJkZYUGT5ScV4Dc/t0eGPDX7X2s/steOPDf8AYlnpHhdNXTxdqmopFb3AIQsoVgOB uxuDHlSMV03xj+N/hTWP2Zdf+I/ws+NHhqxju9Lmt9D8VXl8psYbxgUjLOuekhA7kHseleXLL8VG UFKLSlaztp7221/8z0o5hhZQk4yTcb3XXTc9XSXf0FO3e1eHfsq3njv4D/spaNqn7XXxr03UtUhi kuNS8RXV8nkLG7lok844EgCEfN3zx0Fdlo37Tv7P3iCfSrbRvjBoFxJrl01tpKR6khN3MoUtGgzy wDLx/tD1qamDrQqSjBcyTauk7O3mXRxlGdOLm1FtJ2bV1c2Piv8AGb4a/A/wt/wm3xX8XWmh6SLi OA316xCCRzhV4B6mug0zUrTVrGLUrC5SaCeNZIZY2DK6sMggjsRX54f8Fbtfvf2nf2lPhd+wF4Kv WkN1q0eq+IlhY/uchlXdj+5D5r/8DFfoR4Z0Sx8M6BZ+HdMi2W9jax29uv8AdRFCgfkK68bl8cHl 9CtKT56l3btG9k/nr8jmweYTxeOr0or3KdlfvK12vloX6KKK8o9QMD0ooooAKPwoooAKMZ6iiigA wPSjA9KKKADA9KCAeCKKKAGhAOg/Oo7qytLqMw3VvHIrcMkihgR+NTUEZ6ijbYLJ7nF2XwD+Euke Lv8AhO/Dngey0jWGb/SNQ0dTaSXI/uzeVtEy+zhgO1dcsI8vB/WpdvuaTbjvTlKc9ZO/qTGnCHwq x5v4x/Z08Map4tf4oeA5m8L+LzCI31zSo1X7YoORHdRfduU/3vmH8LKa6rwlq/ieWH+yvGelx2+o RRjzJLUlre4H99CeRz1RuRn+IfMd/bxgmkMeWzn9KqVWpOPLPWxEaMISvHT8hU+6KWgcDFFQahRR RQAUUUUAFFFFABRgelFFABRRRQAUUUUAFBOOtFB6c0ARTywwq0k7hVVdzMewr8uf+CgfxvuP+CoP xP0/9i/9lX4enWpvDOtveXvi64uvLtY2RGikI4I8obsbzyxxtB4J+6v299b8V6B+xx8StX8EGVdT i8I3n2d4c70BTDsMcghCxz2xXwB/wRw+Hni7x1+yl8WrL4C+O7Lw78RdQ1W2tIdZu4yz2dn5YYMu PmUsTKA3YgHqOPtOGaFLB4Krm8rc9OUYxveycvtStq0l0PjeJK1TF4ynlSXu1IuUrWu0vsq+l2e2 fsC/A/8A4Kj/AAe8a6J8NfjV4o8LN8M9Dsms5tJe4guZHtwrBFi8tQ4OccuQNvBBrM/4KdateeI/ ih8Of+Cc/wACba18O2/jzU0vfFUOjW6W6valyPmCAZGI5JG9fLHWvUL79k3wt+y98GdL+IFj411y 6+JFjdWQk8ST6/dSPrN/LNGjwNE7lXik3MBGV4HIwQTXQ/tK/sN+Ifij+0p4L/a4+EXxGtfD3jHw pbNZv/a2mm7tbq1ZZVwVV0IYCeXHODu7YzRDNMLLOPrlXlStK3LHli5pe7JpN9Xe/wCASy3FQyv6 rT5m7xveV2oNq8U9Omlj5S/bx+CHwi8fftLfCv8AYA/Z98Kw2M1jplsvjLULVmH2fS4XeVIpTnBY AzzFiMlpUJPOBnaH448BfF3/AIKCat8fLK5jt/hL+zj4b+zaTJb/ACW7PbxvHBDF675txAGcqg9Q a+mtG/4JmX+i/tKap8covjZd3Fv4o8Pix8YLcWA+3XspYGYxShtsCSgKpCqSq5VSM5GZ8Pv+CUNl 4Q+E3jb4LX/xJgm0LW9R1C98OwWmlmJrWedCkUty28+eYV+VFAVV5bkkbfQp51lcMLGk6rdoct7O 95v94/W2i8vuPPqZLmU8RKoqaV5X6WtBfu16X1fmfMXwK+NWofCf4afFT/gq18U4lm8W+OdQuNJ+ HOnzHJQs20suf+WcYCL/ALsBHVhnuPhp8PfH/wAGv2XfAPxo8R/C6D4ieNvi58QNP1Xxh/aEMl3q P2ASfaY0t0WRXZ40TzMA7Vb7w2jj2s/8Er9P8W/shL+zv8T/AIgw3OsWOiw6foGraXYGO10wRSiU OkLMSzyyLumckF84G0ACvUf2Z/2XvHPw6tdB1r45fEe38Ua34X0UaR4d/s+xNtZ2NqFClxGWJad1 VQ0hxwNqgDOefH55l06M5U2m+e1tdYRjaEVtZJ6vbXU6cHk+YQqQjUVly3vppJu82+76LfQ+cf8A gpp4svPB/wAAfE3xj8f/AA7t7fxV48az8L+BdI1KKG5u9LtNrvK3y7lSZy0jHYTt/dgkla+ffjB4 N8aeHvgv8I/+CUPw6Am8SeIryLXfHUiy5W0lmYyLbt2CxoS757xqe9foT+2f+yBrX7TurfD/AMUe GvGVlpGo+BPEh1KBdU003dtOrBQQ0QZdzqURlycdQetcRc/8E0Y7X9pe2+OXhr4pTWtvdeGZdL8S edal9Qu5ZZA81xFPuAhkkGULBTsViExwVWV53l+FwNOM370eadtWlJLlgvRK703e4sxybHYjGTlB aPljfS/K3eb9W9PJbHzufs/7d/7ePhn9kjS7iS6+E/wZ02MalbNMfK1aW2VIyzgH5laQhB1yiseN 2Bi+Lbf4XfGv/gqBda94H0uz0H4c/BuRtb8X6xDuW3kvIFUSSdSAS0UUSqoGRCSB1r6h0r/gnBrn wt/aV8Q/GT9nj4tw+FdF8aaWll4k0n+yvOnt1G3c9nIWCxu23IZ1bazE4PAGD4L/AOCSWl+FPD/x K+HEvxUk/wCEV8bXUt1Y2NvZn7TFMYysX2iYsTPHEzF1QbdzHLE9K6IZ1ldN3hUaXs1GKs95P95J 6WctXbp5mMsnzOpG0qd3zuUndaqK9xLrbRXPKP8AgnjLqXjX4q+Nv+Cg3ivw59q8RfELxQ2hfDjT 7zJYwlh5soxkhI4YwrOOiwuO/P6TW+duW698V4d+xx+yHdfs2+B9E0Lxl4xt/EGqaDo50zS57Ww+ z29lbGTzHEaEsfMkbDPITlsAYAGK9ziGK+UzzHUsfmEp0/hWkf8ACtEvkvxbPp8jwVTBYFRqK0nq /V6u/wA9vKw6iiivHPZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigCvfWFlqNrNY39rHNDNGY5YpF3K6kYIIPUEV+TP7dHg4f8Evv jXD8XP2OvEuqeHbjXpmTUNHmmSfT2Q5bYIimdoPQFjt7Yoor7bgf95j50Z6wlF3T1T9Vs/mfG8Zf u8LTqx0kpKzW69Huj7W/YxtdQ/aE8N6L+0H8ZvEN7r2tWsW7S7W58tLLTpGXDSwwxoo8wgkeY+5g CQCAa+lIlVo8kUUV8/nkY08znCKslslsvRdD3snblgYzlq3u+r9WP2L/AHaTy0/u0UV5CPUDy0DD C0BV447UUUuwC7VznFII0HRaKKYA6KB92kCqzciiigGOCKOi0oAHQUUUwCiiigD/2Q== ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/image011.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAGhAh0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAoorx7xl/wUN/YD+HPiu/8CfEP9uH4QaBrmlXLW2q aNrfxK0q0u7OZfvRywyzq8bjurAEUAew0V4Uf+Cof/BNAf8AOQ/4Gf8Ah2tG/wDkmt/4aft3fsQf Gjxhb/D34Oftj/Cvxbr94rtaaF4Z+IWm395OEUsxSGCdnYBQScDgAk0AerUUAg9KKACiiigAoooo AKKKKACiiigAoopryIgJY4wMmgB1FRx3VtNzFOjDOMqwNPBB6Uk09g6i0UUUwCiiigAooooAKKKK ACiivIfHX/BQX9gr4X+Lr/wB8S/22/hF4d17S5vJ1PRNc+JGl2l3ZyYB2Swyzq8bYIOGAPIoA9eo rwv/AIeh/wDBM/8A6SIfAz/w7Wjf/JNbPw8/b7/YT+LvjKx+HXwn/bT+E3ijxDqbsmm6F4d+I2mX t5dsqM7COGGdnchFZjtBwFJ6CgD1uikVgwyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4Z+O3/BuV/wSg/aS +MfiX48/F74EanqXibxbrE+p65fL4svohNcysWdgiyBVGTwAAAMV9zUUAfy4/wDB0l/wSs/Yx/4J oal8Hm/ZF8AX2gp4xi1k63Fd61PeLIbY2nlbfOYlMec+cdcj0ryL/g1gw3/Ban4Zgj/mG610/wCw dPX3R/wfFf8AH/8As6/9cfEv89Pr4X/4NXv+U1Xwy/7Butf+m6egD+upQAPxpaB0/GigAooooAKK KKACiiigAornfAfxe+FvxSvNa0/4b/ELR9dn8Oao+m6/DpWoRztp14n3reYISY5B3VsGuioAbIxR dwx171+ZX/BQj9vT4j+J/iDqXw4+HniKew0XTrmS1SPT5ijXbKQrSSMpyRuBwOmK/TO5QSQNG2cM CDivxW/am+Ffin4PftCa/Z+ILKR1g1CV03g4eNm3I4PcEEGvyrxVx2YYbLaFKjJxhOTUmtL2Xuxv 2er87H6x4TYHLsVmlerXipVIRTinra796ST6rReV2S/Bb9pz4/fCnxLFruneNtRglEgbynuGaKUd SroxIYH0xX6HfsKf8FLvhP8Atk+LPEnwVht30T4g+DIIbjXfDt0c/aLORU8u+tmH34WZgpH3kYhW 6qT+X+m+I/8AhLL0SR2xRI+CeleU/wDBLX4y6x43/wCDjjQpfhFetPp1v4c1DRNfmtiGjntIbOR5 t56bVnEeD/ejXFcPhLLHOhiPaXULqy6J+X6noeL8MBHEYf2SXPZ3el2vP06ep/RhRRRX7Gfi4UUU UAFFFFABRRRQAV8zftM/8Ecf+CZP7XV9rPiH46fsa+C9S17Xpmm1TxTZaWLLVp5iu3zWvLfZK7AY +8xHAyDivpmigD+NT/guv/wS+sP+CVX7ct38EfB+q3uoeDfEGjx6/wCC7rUWDTpZSSSRtBIygBni kidN2ASApI5rV/4Nr+f+C3PwGXpnWdVH/lFv6/QL/g+D8OWMXj79n3xikarcy6Rr9nK4Xl41lsnQ E56As/H+2a/Pz/g2t/5TefAX/sNar/6Zb+gD+xZBgEZ70tIvf60tABRRRQAUUUUAFFeZ/tj/ABWm +B37Lnj34sWt2YLjQvCl7c2kwbBWcREREe+8rj3xX5h/sW/8HD3jrwp9m8Dftk+G38QWW4IPGGjR JFeRDpma3UBJR6lNh9mNceIx+GwtWMKrtfr0+Z9dkXA/EHEuV1sdl1NTVJpON7Sel3yp6OytdXvq rJn7EUVwfwE/aU+B/wC0x4Nj8efA/wCJWm+IdNcDzHs5f3kDEA7JY2w8Tc/dYA13BuIcH94OldcZ RnHmi7o+Wr0K+FrSpVouM4uzTVmn2aeqJKK+MP24f+C1H7M37JYvPB3g28Tx34zhBT+xtIu8W1pJ j/l4uQGVcd0Tc3GDt614d/wSL/4KufG39rb9rzxP8Nv2gfEVsLfXtEN14R0qyt1it7GW3fLwJgbm LxOzFnZifJ9wBxSzHCRxEaKleT002Xqz6/D8AcUV8grZxKjyUaceb3tJSV1dxja9ktbuysnZs/UC iiiu4+LCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig D+fz/g+K/wCP/wDZ1/64+Jf56fXwv/wavf8AKar4Zf8AYN1r/wBN09fdH/B8V/x//s6/9cfEv89P r4X/AODV7/lNV8Mv+wbrX/punoA/rrHT8aKB0/GigAooyD3pCwHU0ALRSb19aXIxmgAryv8AbY/a o8FfsVfsreOv2oPiBPGuneDfD8995TyBTczhdsECk/xSStGg93r1GWaKKMyyyBVUZZmOAB65r+a3 /g6w/wCC0fhb9qLxhF/wT5/Zl8Yx6h4L8Kap9o8e63p8weDWNViJEdtG6EiSGA5JPIaXGP8AVgkA +xP+DNzx94o+K37N3x9+J/jXUPter+IvjM2papc9PMuJrKKSRsdssx47V+yNfil/wZIf8mV/GP8A 7KjB/wCm2Cv2toACAeory79pT9lP4a/tKeFrjSfEtilrqwtXj0vXYYszWjnoSMgSoDjKNwQTjBOa 9RJA60h2g8gflXNi8HhMfh3QxNNTg91JJp/JnThMZi8BiI18NUcJx2cW0180fhr+1B/wRQ/4LeeL NVu/h18K/il8Ih4WvZWi/t3Q7m5025kgbALTLKsrxHBOVhZuhwxr7G/4Ijf8ELPBX/BKzSdW+Jvj zxpa+L/ip4lsxZ6prdjAyWenWhZJGtLXf87BpFVnlYKX2J8q4wf0E+U8cUKVI+XH4UsHgsJl+HVD DQUILZIrG47GZjiHXxM3Ob3bFooorqOQKKMj1pNwPQ0ALRRRQAUUdKQyIOrUALRSb1PO6gMCcA0A fz+f8HxH/H9+zz/1x8Q/zsa/Oz/g2t/5TefAX/sNar/6Zb+v0T/4PiP+P79nn/rj4h/nY1+c3/Bt 5f2+m/8ABbP4C3NyxCnX9RiXAzlpNJvUUf8AfTCgD+xxe/1paRRgf40pIHJNABRSb19aN6+tAC0U Ag9DSPnacUAfEf8AwcAfE9PAn/BPvUvCUdwEn8X6/Y6cq7sFo0lF0+P+/Cg+xr8HMHoxz6n1r9l/ +C5fwm+PP7YfxU+Fv7LH7P3gq61e4tLe/wBZ1ycAraWQkMcFu88p+WPiO4wDy27gGof2Wv8Ag3N+ DPhPT7bxB+1L47v/ABRqgAaTRdCnNrp6HrtMhXzZfTIMY9q+WzHB4rH5g1TWkUld7dz+m/D7i3hn gbgWlLHVf3taU6nJFc07X5VddLqKacmlqfkt8IPjX8WPgJ4wh8e/B34gap4f1eD7l3pt0Yy4yDsc fdkUkDKsCD3Fe/ftE/8ABY79uH9pH4dW3wu8TeP7bRtPW18rVpPDNqbOXVefvTOrEgEcFI9iHJyu Div20+HH/BPX9iH4WWyW/g/9lPwNE0Ywl3e+HYLu4/7/AE6u/wD49XX6p+zP+zjrNkLDVv2fvBF3 AkZRILnwpZyIF9ArR4x7VpTyXGU6bgq1k91rb9Dz8x8YeEcdmNPFVMp9pOHwzk4cy/B/LXR6rU/l 2JYks5+Ynk46++a9D/ZM+N+ofs3/ALSngn422EzBfD3iK2ubxFbHm228LPH/AMCiZ1z/ALVfux8a P+COH/BPz402syXXwCsPDV1KDtvvB2NOeM+qpGPK/NCPavzx/bS/4N+fjh8GNPvPHP7NHiN/HeiW ytJLo9xGI9WhjGT8qqNlxgf3drHjCHtwVsoxuEfPD3rdt/uPu8p8WOC+KKUsDiW6LqJxtUSUWpKz Skm0t/tcp+0vh3xBpvinRLPxFotyk9nf2sdxazoeJI3UMrD2IINXq/n2+DP/AAWa/wCCgf7NOh6f 8MLXxXp97p/h22j0+30jxRoKyPbxwqEWJmXy5RtChcFsjFfQXw9/4OXfjBY+XD8Vf2cPD2oD/lrP oGp3FofwSYy/+hV7dLPcFNLnun6f5XPxbMfBTjPCzk8NGFaPTlmk2umkuXX0bP2Hor8+fg7/AMHE X7LPxL1/TfB/iH4T+OdF1PVb2K1tlt7a3vYTLI4RV3LKr8sQOENfoHbsXTJz1/ir0qGJoYlN05Xs fnmdcO53w7WjSzKhKlKV7XtrbezTaY+iiitzxQooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKAP5/P+D4r/j//AGdf+uPiX+en18L/APBq9/ymq+GX/YN1r/03T190f8Hx X/H/APs6/wDXHxL/AD0+vhf/AINXv+U1Xwy/7Butf+m6egD+usdPxrmPi/8AGT4ZfAP4b6x8XvjH 4z0/w74Z0G0a51fWdTuBHBbRrjlie5JACjJYkAAkgHpx0/Gv5s/+Dw//AIKO+L/H/wC01Yf8E5/B esy2fhjwHaWuqeL7eCTA1LVbqBJ4Elx1WG3kjZR03TsTyowAfRfxA/4OXf23f29f2kJ/2XP+CIn7 JFt4j8rcx8Z+MIGJMIbabtomeOKzgyRhp3LNkDap4r3nw1+zB/wdJeI9CHiLxZ/wUT+Cnh7UZIxI dBtvBQuoo2xnZ5ot+eeM818of8GbP7b37MmieH/Ff7CV74Ni0T4m67qc+v2XiEnd/wAJDaRxIv2X J5R7cB3VM7WV3YfMGz++yLtQL6CgD8H/ANpv/guH/wAF2P8Agjr8U9N8Jf8ABRb9nT4efEPwvqsr DSPFHh1JbGHU0UDcsNzFlYpRuBMc0G7HQY+av0Q/4Jsf8FyP2RP+CnPwo1vxH8F/7RsfG3hjRpb/ AF74a6iq/wBpoqITut8fLcxswCB05DEBgpIzW/4OJP2fPCv7Qn/BID4yaVr2lxS3fhnw7/wkmh3L KN9td2MiThkPGC0ayRnn7srV/Jf+xv8AtWfE39in9pjwf+0z8I9cmstZ8K6zFdqsL4W6gDYmtnHR o5IyyMp4IagD9e/+Cp//AAUr/wCC/v7demap8HvgJ+wN8VfhP8N75XgubbSfDN4+r6rbkMClzdBB 5aMD80cQUdizjOfxR+J/wz+Inwc8fal8NPix4N1Hw/4i0mZY9U0bVrZobm1dkVwro3KkqynB7EV/ d98L/HWj/FL4b+HviZoBBsfEWh2mp2RHeKeFZU/8dcV/Hl/wcOAf8Ppfj+Mf8zhD/wCkNtQB9P8A /BvH/wAFPf2zP2Dv2e/Hngf9mf8A4JjeJ/jtpuueMo7/AFDXNB1i4tk02cWkcYt2EVlcAsVUPksv DdO9ffGof8HJ/wDwVE0qc2t9/wAG9fxHSQAEqPEOot+o0Yisf/gyRO79iv4xbuf+Lowdf+wbBX7W bV9KAPxtvv8Ag5J/4Kiadoj+I7//AIN7/iJFZRx+Y8zeI9QO1fXaNHz+ldf8K/8Ag5E+IvxX+GWj fECP9kjTdDn1KBpLnTLzxVLcNbsHK+WW+zRnIKnOQOvQY5/WKYZTg8g8V+AX7aHjbwf8RP2tPiP4 t8BQxLpc/jG/jgaBQEkaKZopJBj+/Ijv/wACr43jXNcflOX06mEnyycrPRPSzfVM+34FyjLs4zGr SxkOeKhdK7Wt0ujR9h2H/BfL416lBeyeG/2Ml8V3trYyT23h7w3rEzX1+64xFCDE2WJI4x615v8A Fv8A4Oh/2jfgH4Tn8d/Gj/git8WvC+i2237Tq+tai9vbRbmCLukazCrliAMkZJFc3/wSe0UH9qDw 94hdOf7Zht4zj2Zm/wDZa+u/+Dk7SrPU/wDgi78aRdpkW+l2M8eOzpf25Brm4FzvH51hsRLFT5nC fKnZL7MX0S7m/H2SZdkmMw8MJDkU4cz1b+1JdW+x+fL/APB8RpJnKQf8E67kpuwhf4kqCR6kfYTj 86/WT9pr/gqV+yh+xb+yr4e/ao/am8bxeGrLxNoNvf6PoMBNzf6hNLBHKba2iUBpmXzFUvhUXILF Qc1/ErCT5oJbHua/UT/gnD/wTt/bQ/4OMv2jIvjH+0x8S9U074Y+BtO0/RNR8SC2wqW1tAkcWl6b GfkEhRAzvyEMhd9zOA33Z8CfQP7UX/B6p+0H4g8Q3Olfsefss+GtA0dJCLbVPGtzNf304zw/lQNF FF/ukyfWvH/DP/B4/wD8FUND1yK+8R+Dvhhq9rG377T5vDc0Ik55G+O4DDj0r+hL9lP/AIJb/sE/ sZeBbXwD8Bv2XPCemwwQhJ9SvtLS9v7tsDc81zOHkckjJy2OwAAArwf/AIKpf8G+/wCw5/wUG+Eu rP4U+Emg+AviXb2ckvhvxn4Z0xbQm4AJWK6ih2x3ETtgMWBdc7lYHIIBxX/BIX/g5d/Zc/4KWeIb H4FfEbw0fhn8UruMDT9Bvb7z7DWnCsWWzuSq/vAFz5UgVjnCl8Gv0uRtwzjFfwTavp/j34IfFO60 Wa5utF8SeE9dkgeS1mKS2V7bTFSVdTkMrpwR6V/ZD/wSA/b+tv21f+CXngf9r74l61bW2o2+h3Nv 45vHIRIbvT2eK5ncDhQyxefjHSQYoA9m/bF/bL/Z9/YR+BWr/tEftKeOYdC8OaSoXeyl57y4ZSY7 a3jHMsz7SFUehJIUEj8Bf2tf+DxL9tP4xePH8DfsGfArR/COmXF19m0i51ixbV9Zv2Y7VxEpEUbN xiMLIQf4jXxX/wAFxf8Agrf8Q/8Agqn+1bf+Io9TubX4beFLyex+Hfh/ftRbYOR9tlUcNPOAGYnJ VdqA4XJ/Uv8A4M7/APgmp8NIfg9q/wDwUl+JHh221PxTqOt3GjeBJLmLcNJtYVC3NxGDwJZXcpux lVjOD85oA8V8N/tIf8HmPiDSk+LOm+DPHT6Uief/AGZd+BNEhMideLd4VuCMdhzXqX7B/wDwdufG T4f/ABot/wBnH/grf8B4/Dci3iWWoeMdK0mewutJlZgu+90+TJMYzuZ4tpVeQj5r97UACgAYx0zX yD/wWA/4JFfAP/gqf+znqvg7xR4asNP+IWm6fLL4D8bR24W5sL1UcxRSuuGltXY7XiYkYbcMMoIA Pyn/AOD1Pxn4V+I2gfsz+PfAviC01bRdZ0vXL3StUsJxLBd28gsGSSN14ZWUggjsa/Or/g3f/wCU 0nwA/wCxvm/9IbmvD/2jPiN+0r4a8NWH7DXx/wBRuli+DfibWLPTtF1AbpdHuZZI0u7ZWPPl+Zb7 gvQFmI+9XuH/AAbv/wDKaT4Af9jfN/6Q3NAH9llfMf8AwUl/4K1/sb/8EuPh/F4q/aS8cOdZ1GJ3 8O+DdGQT6nqhGRlI8gRxbhgyyFUB4yT8p3P+CnH7fHw+/wCCbH7HHiz9qbx6i3UulWvkeHdHMm1t U1OUFbe2B7Atyx7IjHtX8immeI/2kP8AgsX/AMFHvD9j8WPHV1qvjL4s+N7TTp9Ql+aPT7eafBWK MEBIYIi5WNcAKh7mgD9fPBf/AAc4f8Fav+Cg3xNu/h5/wTC/4JwaPe29u+GuNUkn1GW3Q52vcXAe 2tbbIB+VifZjXrHiP9sD/g7f/Z/0H/haPxL/AGEPhj4y0e1h83UtD8PXFtc3cSDO4COzvjKxwP8A lmJB7Gv1I/ZB/ZG+BX7EXwH0T9nf9nzwTa6LoGiWyRgRRjzrybYA9zO/WWZyMs7ZJ+mK9NkQOpXH XrQB+XX/AATZ/wCDpT9kX9sXx9afs/ftIeDrz4L/ABHurv7Fb6fr12ZdNurwME+zrclEMEpYkBJk QZG3cWwD9bf8FIf2yf2jP2Ovhjonjf8AZs/Yf8R/HS+1LVmtdT0XwzqBgk06ARlhcMRDLuUthcYH Jr8zf+DuT/glF8Mdd+BLf8FL/g34Pi0zxj4e1O2tviCbKPYmq6dKTEl3Io48+KUxKXxlkc5J2LXM /wDBr1/wXu8VfEDXtI/4Jr/tk+MZtRv3gMPwt8YajNullWNP+QVcORl22qTFIxydvlkk7KAO+/aA /wCDpv8Aah/ZRt7XXP2kP+CK/jTwRDqc/wBns73xF4se2S5kVd/lrI+n4YhSTtz3Nef+H/8Ag9sl 8T65ZeGPD/8AwTZu7u/1C6jtrK2h+JKlppZGCoi/6D1LEAfWv1W/4K1f8E+/Cf8AwUu/Yf8AF37M utrBDq9zbC/8IanKP+PDVoPmt5M9lY5if/Ylbviv4ufiJ8PfH/wX+Jer/Df4gaDeaN4i8N6tNZap Y3CGOW1uYZCrqfQhl6j6igD+rH9n7/gtJ/wUj+MHxt8KfDHxp/wQv+JXhLRdd121s9X8VX+vu8Gk W0kqrJdupslDLGpLkbhkL1FfpSrbk3AfhX59f8G5P/BUKx/4KOfsIaZpXjvxBHP8SvhrFBoPjOKZ x516iRKLbUccZEyDDH/nrFJ6jP6BzTQQwNLNKqxqpLMzYAHuaAPyV+MX/Bw//wAFFv2fPh5qHxa+ Nv8AwQc+IHhnwzpMXmanrmreM/LtrZSQAXf7DgZJAHuQK5L4A/8AB0P+2F+1f4Zu/G37N/8AwRP8 c+NdIsbz7Jd6j4f8XPcQxT7QxjLrp+N21lOPcV4N/wAFMv2qPjV/wcU/8FC9H/4JY/sKeIJI/g14 R1X7V428Z2wL2l68JAm1CQjG63hO6KBM4llbfyCpX9x/2QP2T/gz+xJ+zt4Z/Zo+A/hmPTPDvhqw WCEYzJdy9ZbmZv45ZXy7N6tgYAAAB+cfxD/Y8+JX/BXf9mnWv2sfEn7EWrfs+fGTStYntbXwrrl3 vPie0jijdZJWMUIV2Z3RJCucxYYkEFfyw1rRNX8N6xdeH9f02ezvrK4eC8tbmMpJDIhKsjA8gggg g+lf1aSoCuNmeeRivx6/4OFv2HrHwN4u079sr4e6MIbLxDcCx8ZxwphUvQo8i5/7aKrK3T5o1JyW r5vOsvhyPEU1qt/8z+hvBvj/ABMMZHIcfPmhL+E3vFpX5L/ytfD2ei0at8w/8EfPg4fjP/wUI+H+ mT2nnWmg6g2vXi44AtAZUz/21Edf0R24Ij5HU561+Rn/AAbQ/CBLrxj8Rvj1fwDFlp1todhI3Yyv 5836RQ8+5r9dhgj5cfhXXkVL2eC5n9pt/ofL+Nma/X+M3h09KEIx+b99/wDpSXyCiiivZPyEKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+fz/g+K/4/wD9nX/rj4l/ np9fC/8Awavf8pqvhl/2Dda/9N09fdH/AAfFf8f/AOzr/wBcfEv89Pr4h/4NS9MbU/8AgtT8Owsu wwaFrs3TO7bps3FAH9cI6fjX86P/AAdA/wDBEn9sv4p/tw6n+3F+yr8DNe+IOheN9LsV8Rad4SsH vr/T7+0tYrTJtYgZHjeGGEhkVsMH3Y4z/RavSsP4kfEX4ffCDwNqnxM+J/i/TdA0DRrR7rVdY1a6 WG3tYVGWd3YgAf570AfgN/wa8/8ABEL9sP4J/tej9t39rn4Pav4A0rwvot1b+GNE8SW5ttQ1C9uE 8oyG3Yb44o4jJy4UszLgEAkf0KryAfavxE/bq/4PLfgV8ONZvvAf7BPwMufiBfQSNCnivxYz2WmS ScgNDBGfPnTOMbjCTzjjBPz34V/4LWf8HTX7Wdr/AMJL+z5+ytdWukXg3Wlz4e+D0os3U8jyri+M gcYxyHP1oA/ab/gs7qFrpf8AwSi/aCvb2TbEnwr1fcwGetuwH6mv4nl4YfWv2a/bo+OP/B03r37D 3xGX9tT4byaZ8KbzQlg8a3F/oOk280Vo80a/L5TeYMuUU7RnDEV+Mp+/x69qAP7if+CY97dal/wT c/Z81K9l3zXHwR8JyzORyzto9qSfzNfyi/8ABw7/AMppfj//ANjhD/6Q21f1bf8ABLn/AJRnfs6/ 9kL8I/8ApltK/lJ/4OHf+U0vx/8A+xwh/wDSG2oA/X//AIMj/wDkyv4x/wDZUYP/AE2wV+1tfil/ wZH/APJlfxj/AOyowf8Aptgr9raAPM/2zvjxpn7L/wCyZ8R/2hdWkQR+DvBmo6pGsjYEk0Vu7RR5 /wBqQIv1av5uP2Rtf1bxX+zn4X8Ua/ePcX2pWkt1e3Ehy0ksk8jux9yxJ/Gv1I/4O5v2nv8AhR// AASquPhRpWp+VqnxS8WWWioivtY2UJN3ct7j9zFGR6TV+WH7CdlNq37M3gHTLYnfcaesS/VpnFfn niO0sppN/wA//tsj9J8MU3nFZLrD/wBuifo9/wAE09Kj8O/Ff4emcbXu9dSZwe5ckL+m2vpf/g5A /wCULnxwProVp/6XW9eEfsjWUWn/ALQfgLT4UxHDr9miD0AYAfyr3b/g49/5QufHH/sB2v8A6X29 eF4PVZV8rxc31q3++MT2PGOkqObYSK6UrfdJn8dSEBhmv7f/APgl18Fvhn8BP+Cevwd+H3wo8KW2 kaUPh9pV89vbpzLc3VrHcTzOeru8srsWPJJ9q/h/XqPrX91X7DX/ACZR8H/+yW+H/wD02wV+wH48 epUjjPHr60tIfvCgD+Ib/gq7YWmlf8FNfj1YWUWyGL4s66EQHoPtstfph/wTx+OXiX4Rf8GlH7S2 oaPqskM9146vNDsWViDGmoR6ZbzgEcjMUkv4nNfmp/wVv/5SgfH/AP7K3rv/AKWy19z/ALMl3a2v /BpF8eEuZdpm+ONrHEP7zZ0w4/IGgD8kicPk9jzX9bP/AAahalLqP/BGHwNHJGqi18R63CpUfeAv XbJ9/m/Sv5JSMHGK/rS/4NMv+UMvhD/sbNc/9KzQB+lVIy7hilooA/kx/wCDsf4O+HvhT/wWG8T6 x4dtYoV8Y+F9K128SLvcvE0Ejkdixg3H1znvXkP/AAbwf8ppPgB/2N83/pDc173/AMHf7P8A8Pgb wbjgfDrRce3yy14J/wAG8P8Aymi+AHOP+Kumwf8AtxuaAPvL/g9O/a61TxV+0X8OP2K9H1Bv7L8J +H28Sa1bJJ8sl9eM8UO4d2SGJiPQXB/vV8B/8EDvi78B/gH/AMFVfhj8Z/2kviHpnhXwp4cnvry7 1vVy3kQSiymWLO0E5LsoHHU12v8Awc6eL9Q8Xf8ABa74xTXkjlbCTSdPgVm4WOHS7VMD0BILfVj6 1U/4N4P+Ce37Pn/BS39vq6/Z4/aVttVm8NWvw/1HWfL0XUTazvcQz2saDzADhf37EjHOBQB/SKv/ AAcDf8EaAOf+Cgngb/vu5/8AjNL/AMRA/wDwRn/6SCeBv++7n/4zXg1j/wAGiP8AwRwtblZ7jwN4 9uUXOYZvHU4VuO+xQ35GtD/iEo/4Iuf9Eb8Yf+HAvv8A4ugCp/wU4/4LJ/8ABH39pb/gnh8bPgZ4 c/bj8E6tq/iP4Y6zbaBpkbXBa41IWcj2armLG77QsOPfFfys/D34geK/hV4/0b4k+AtYl07WvD+q wahpN/bSbXguIZBJG4Psyg1/V9pf/BqJ/wAEXdMjaP8A4UL4inJOd1z45v2I+h8wVZP/AAaqf8EX M7h+zrrOc/8AQ6X/AP8AHaAPsf8AYr+Pa/tW/si/Db9pA2iW7+N/BWm6zNBGPljkngSR1UegYtj8 K/FL/g70/wCCTAja3/4KgfA7wuW3GHTfirZ2cP3cAJbamQo7/LDI3r5R/vGv3P8AgD8C/hv+zN8G /DvwC+D+iPpvhfwnpcen6FYSXLzGC3TO1C7ks2M9Sav/ABX+FngL42fDTX/hF8TvDdtq3h7xNpM+ m61pt1GGS5t5kKOhB9icHscHtQB/Gn/wRv8A+CkHir/gmB+3F4c+PtrLcz+GLxhpPj3SIm4vNJld fMIUkAyRFVlTOPmjxkBjX7V/8HFn/BaRbr4V+Hf+Ce//AATt8TN4q8e/GjTLR7/U/Csnnz2uk3oU wWsPlnP2i7RwPVYmJ4Lgj8RP+Cuv/BOrxz/wTD/bW8S/s5eIEnn0N5DqXgfV5U/5CWjyyOIJCcAF 12tE+OA8bdsV7t/wbK/tG/ssfAP/AIKjeF/EH7V+j280msWD6P4K8T6pOrQeH9VkAjhlcPwN6Zt1 k/5ZmQdBkgA/oR/4Ib/8EnfB3/BKv9kay8DX8NpffEXxPHHqHxE8QW+GE11glLSNuvkQK2xf7zb3 43YH2qoIGCaFCAZTHPpS0AFeO/t8fA6w/aK/ZF8f/Ca8tRNJqPh2aSwXbkpdwDz4GX3Ekafy717F TXijkzvXORgg96ipBVIOL2asdOCxdbAYyniaTtKnJSXrF3X5H82f7C37dvxh/YN+LEXjbwJeSXej 3Mix+JvDM8pEF/CD83HRJVGdsgGVxzkZFfv9+yl+1p8If2wPhHZ/F34P60Lm1nAS/sJXAudOuMAt bzKCdrrkexBBGQa/mt+KulWmhfFLxHoliCILPXryCAHqESd1H44Ar0H9i39tH4wfsQ/Fy3+Jnwu1 Ey2shWPXNAuJW+y6nb5GY3UdGH8L4yp6cEg/GZbmc8DP2c9YX+7zR/X3iF4cYTjLB/X8GlDFpXT2 U1bSMvPtLps7rb+mEHIB9aK85/ZX/aJ8PftVfA3w98dPCmi6lptlrtp5qWOqWxjliYEqw5GHXcDh 1+Vhgg16NX2kZRnFSi7pn8f4nDV8HiJ0K0eWcG4tPo07NfeFFFFUYBRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQB/P5/wfFf8f/7Ov/XHxL/PT6+Lf+DTL/lNZ4E/7FfxD/6b Zq+2P+D4ywuEX9nLVGUeVJ/wk8SHPO5f7NJ4+jCvif8A4NMv+U1ngT/sV/EP/ptmoA/rRubqCzhe 4uZVSONC8jscBVAySfav5JP+C+n/AAW9+LP/AAUp/aA1n4S/Dbxjcab8EfDOrPb+G9GspCi628RC nULroZSzAtGh+WNCMDcWY/0u/wDBVzxX4o8Ef8E1fjp4p8F+b/adp8LtZNqYThlLWrqzA9iFZjn2 r+IhGYuMevpQB/RP/wAGsX/BET4D33wA0X/gpN+0r4KtfEvibX72eT4faNq9uJbPSbSGXy1vvLbK yXDvHIVLAhEwQNzZH7nxQrEAqAAAYAAwAK+Mv+Der4leDviZ/wAEdfgdqHg26hePS/Cp0m/jibPk 3dtNJFMh9DuUn/gQPevs9jgcHmgD4r/4OKRn/giz8fDn/mVbb/04WtfxsgENg+tf1K/8Hdv7aHhz 4Qf8E7V/ZA0bUY7jxf8AGPWrS3h0yBt06abZXUN1NMEHIDSxQRA9/MYDpx/LW3Eh7c96AP7hP+CX P/KM79nX/shfhH/0y2lfyk/8HDv/ACml+P8A/wBjhD/6Q21f1af8Euz/AMazf2dsMMj4F+EuM/8A UGtK/lP/AODiazubP/gtT8forqFkZvFdtIA3919PtWU/irA/jQB+vf8AwZH/APJlfxj/AOyowf8A ptgr9rT0r8Sf+DI7WbCT9kn40+HY5P8ASbf4jWdzKvoklgiqfzif8q/bbI9RQB/NF/wei/tNHx5+ 2t8Pv2XtH1EvZeAfBZ1HU4VbhdQv5WOCPVbeCAg/9NTWZ/wSu0T+2fgx8PpWQslnozzycccO4X/x 5h+VfDn/AAWz+ON1+0P/AMFXvjv8Rpbgy28fxF1DSdOYtkG1sJDZQkegZIA2P9o1+iP/AASH0Zo/ 2SPDfiCQAeZpiQRE+gkdm/Ur+Vflni3W9hw3GXVzt98Wj9W8IaXtuJJxe3Jf7pRZ92/srHH7SHgj /sZLX/0MV7R/wcfanpyf8EbvjZo0l/Ct3P4eglhtmlAkeNNQtQ7hc5KqXQEgYBdc9RXyyn7Q/g39 k5h+0t4+trq40fwQDrF/bWChpp44AXMaAkDc2MDPAzntXxh8VvE//BQ3/god+yr+1H/wWD/al0Q+ Hvhnqnwfk8HfC3w7M5RY7aXxDpV2GtY8DfGotWEly2DLI425CYXzPBZf8IuJf/Txf+ko9Hxr/wCR 3hv+vb/9KZ+Mw6j61/dT+w1/yZR8H/8Aslvh/wD9NsFfwrD7341/dT+w1/yZR8H/APslvh//ANNs Ffsx+MHqVIfvClpD94UAfxF/8Fb/APlKB8f/APsreu/+lstfZPwb/tI/8Gl/xY/s9XK/8NH2P2nY M4j8qyzn2ztr42/4K3f8pP8A4/8A/ZWtd/8AS2Wv2F/4N8v2QNN/by/4N3fjz+yreukdz4q8c6pH o1zJ0t9RjsbGa0kPsJ448+q7h3oA/n0YYbGfxr+tH/g0yx/w5l8HkH/ma9c/9KzX8o/xF+H/AIw+ FPxA1r4Z+P8AQp9M1zw9q0+navp9yhWS2uYZGjkjYeoZSK/pq/4Mzfi9a+M/+Cafin4Vm4X7T4L+ Jd2jQ7huEN3bwTo+MdC3mge6GgD9eKKKbI4VN/mKoHVj0AoA/lG/4O7tVF5/wWP1uzEJQ2XgPQoi 277+YGfPt9/H4V4b/wAG8RA/4LRfADP/AEN83/pDc1Y/4OGf2pvDX7XX/BWz4rfETwTexXei6NqU XhzS76AgpdJp8YtnlUjhlaVJCrd12nvUH/BvAAf+C0nwAz/0N03/AKQ3NAHo/wDwdT/DW/8Ah/8A 8FpfiNqE9r5dt4l0jRNXsX248xH0+GF2/wC/0Ewz/s16P/wZvXNvb/8ABXDUIpplVp/hDrKQgnl2 +1WDYHvtVj+FfXv/AAeifsMav4k8J/D79vzwVoMlwugI3hjxpLChJhtpJDLZTv6IJWmjJ7GVPWvz X/4NrP2itE/Zt/4LCfC3W/E+ora6d4nnuvDNxNLIFTffQNDACT/038nHvigD+wmikRiwyR+dLQAV Q8SeKfDfg7Q7vxP4s16y0zTbCBpr7UNQukggt4x1d5HIVFHck4q+SB1NfkD/AMHRf7a3ibxN4Y8I f8Eev2YZG1X4mfG3V7KPXbKwkzJZ6WbgeXE+PuefKoJzjEULk8MDQB+t/hnxR4b8aaJb+JvCGv2W qabdpvtNQ066SeCZckbkkQlWGQeQT0rg/wBr39rD4N/sS/s8eKP2lvjt4hXTvDvhfTXubkrzLcyY xHbwr1eWR8Iq+rdgCaofsgfs/eCf2Hf2P/A/7O2i6jBBpHw/8JQWVzqEzCONjFHuuLly2NoZzJIS f7xz3r8Vv2jvHHxZ/wCDpD/gpRB+y58C9c1DS/2Wvg7qS3PifxJbqVTVZQxR7hTxummAeK3Uk7I9 8xHLLQB4r8LP+Cf/AO27/wAHQXxY+LH/AAUI+K/iqbwZ4U0/TbvS/hRaXUfmQSXUO57XS4t2MW8e 8me4A5llJAyWC/kh8TPhv48+C/xI1r4X/Efw/caN4j8NatNYavpt0NstrcwuUdD7hlPI9iK/uu+C HwU+Gn7PPwo0H4IfCHwla6J4X8MaXDp+i6VaphIII12qCerMerMSSxJJJJJP4rf8HbH/AARyTxz4 Zm/4Ke/s9eFSdY0W2jg+Kum2ceWvLNdscOpBR1aIYSTA5j2sf9WxIB9E/wDBsj/wWTj/AG/v2dW/ Zo+OniTzfiz8N9OjjmurqXMviHSgdkV5/tSx/LHL1JOxz984/U1W3LuAIz61/Cn+x3+1h8Xf2Iv2 kPCv7T3wU1prLxB4U1Fbm3Df6u5iPyy28o6NHJGWRh6NkcgGv7P/APgnt+3N8Iv+Cin7KXhj9qL4 NX6/Y9atQmq6YZA8ukaggH2izlx/EjHr/EpVhwwoA9uqh4j8Rab4W0O+8Q6vMI7XT7OS6uZGOAsc aFmP5A1fJA6mvkv/AILRftLWX7Ov7Dfia3tL0R634xi/sHRUBG4mb/XuP92ASH6layr1Y0KMqj6K 56eS5ZXzrNqGBpL3qs4x+96v5K7fkfgH4x1u48TeLtU8TXABl1DUZ7lwo6tJIznH4mv0W/4JK/8A BGG++MT6Z+0p+1f4fkt/CmUuvDnhW5Xa+sDhknnGcpB6IRuk74X73Pf8EDv2M/gL+0t8U/EXxJ+L 8Q1e78CSWk+l+GZ0/wBHkkkLlLmXn94FaMgRkbc8nPAr9t4YIY4wkcQUAYAAxwK+byjLIVksRV1X Rfq/8j+ivFbxKxOUVJ5DlV4TSSnPZpNX5YebTV5dNlrqodJ0jTtEsINL0iyhtbW3iEcFtbxhEjQD AVVHAAHYVaoAwMCivqdj+Y223dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAK+NP2vv+C+H/AATP/YX+Oepfs5/tHfGHU9I8V6Tb2819ZW3hm7uURJoxJGRJGhU5VgeDxX2X XPa78JPhV4p1J9Z8TfDLw/qN5IAJLu/0aCaRgBgAs6EnA4oA/mi/4OlP+CsH7E//AAU30L4KWP7I PxGvdek8GXfiCTXxe6JcWYhW6TTxDt85Rvz9nlzjpgetfK//AAb8/ti/Ab9g3/gpt4U/aQ/aU8T3 Gj+E9L0LWLa8vrbT5bl0knspIogI4wWOXYDOOK/r5/4UF8C85/4Uv4T6dvDtt/8AEUf8KD+BX/RF vCf/AITtt/8AEUAfn943/wCDnr/gh38SPCOq/D7xb8cdVv8ASNd02fT9UspvBN+UuLeaNo5Iz+76 FWI/Gv51/wDgqT/wTM+K/wDwTn+OD6VfaHqOofDfxOi6n8M/HDWji21fTJlWWFWcqAtxGkiLJEfm DDP3WUn+yn/hQfwLzn/hS/hPj/qXbb/4in/FL4F/Bf44eBJvhf8AGT4UeHfFXhueMJLoXiDR4bu0 YD7v7qVWUYwMEDIxxQB/Iz/wSJ/4L1/tU/8ABJGPU/AvgnQNK8ZeAdbvReah4Q1yaSMQXO0K09rN GcwuyqqsCrK20cAjNfoN8Rv+D3DxJq/gGXSfg3+wfDYeLJ4zHaXuueLzd2cUhGFbyIoI3fDY+XeM 9M96/QT4jf8ABrv/AMEXviLqU2p/8Mu3GhNM25ovDfim+tY1Oc/KnmkL9BgV6P8Assf8EGv+CU37 H3ia38c/CT9kjQrjXrOQSWWt+KHk1W4tXBBDxfamdYnBGQ6qGHY0AfCX/BEn/glv+0v+2T8eJ/8A gsj/AMFePt2s+KdUQt8N/B3iOyMQs4WRkW8e0ZQsESo3+jwgDGTKfm2mv5/f2xP2a/HH7I37UXjj 9nL4haXc2eo+FPEt1Yj7ZEUaeBJWEM4yBlZI9rhhwQ2a/usWKNMBFwAMADpivEP2r/8Agmr+wh+3 E8N3+1T+y94U8YX1vH5dtrF9YeXfxJ2RbqEpME/2d+32oA+Lf+CXX/Be3/glx4e/4JqfCjQPi9+1 f4b8IeIvAnw60vw/r3hzWmkS9Sews47YtHEFLTK4iDqY92d+OCCB+Kv/AAXt8KfE79qL9oLWf+Cs PgX9nvxNofwX+JmsLpvhXxRq1k0Z1RrK3itxeyRkZt47gITDv++ImxyCK/oj+Fv/AAb6/wDBHX4Q eLIPGvhb9hbwndX9rIHtjr7XGpwxsDkHybqWSIkEAglTjHFfUvjz4NfCX4o/Dq5+EPxH+Gmha74V vLQWtz4c1XSop7GSEDCxmF1KbQAMDHGBjFAH8s//AAbF/wDBXD4Sf8Ezf2jfFvgX9pDVJtN8A/E6 xsob3Xo4WlTSL+0aYwTyKuW8plnlRyoJHyEjCmv3D/ai/wCDjf8A4JkfArwcJ/hH8aLX4x+MdSUR +GvA3wxzqV3qFy4xFEzxgpDlioOSXGThGOFMmr/8Gyv/AARZ1fXpNeb9j63tvNl3tZ2fiTUI7cH0 CCfgewr3n9lz/glp/wAE8/2L75db/Zo/ZH8GeGNVVQo16LSxcaiBxwLucvMoyAcBwM9qAP4yP2s/ DfxU8MftJ+NbX42/DbU/B3ii78R3V/q3hrWbdormwe5ka4EThgDwsq8kcgg1+p//AATN+MU/gP8A ZD8H6FJoz3qS6dvtxDJhg5dwR0Oc8dOa/c/9sr/gj/8A8E6f2+vE8Hjr9p/9mjR9c8Q28CQL4htp ZbO+kiXO2OSaBkaVRk4D7sdsU34Tf8Egv+Cf3wQ8LWHg/wCG/wADIrGy02HyrPfqlxLJGuScB3cn qT3r43jfhyvxNlcMNS5bqXN7zaWzW6TfU+14G4kw3DOaTxNfms48vupN7p7NpdO5+Zfgjwl4T+JX i3S9b/bFvNM0v4bxX0UniXTNWuBBZrpwcfaGu3YgLEIt24sRxnpXtf8AwW+/4KJf8E0Pil/wSB+K /wAAP2dP2y/hFqmqSeGbW28O+FfDPi+ykkkSK6tyILeCFyTtRThVGAF9q+7PEX/BNn9jbxfoF74U 8WfCGHUtL1K1e21HTru/naK5gdSrxON/KspII9DXmH/EP7/wRqPX/gn54GP1S5/+O1zcCcN5lw1g 61HGOHvSTioXsla3VI6OPuJst4nxtGthFNcsWpOdrt3v0bP4yFU7sZH51/YJ+xF/wWz/AOCTlh+y n8MPA+tft7fDrS9W0j4f6NYanY6zrQsnt7mGxhjljbzwgyrKwz044Ndl/wAQ/f8AwRn/AOkfXgX/ AL93P/x2j/iH7/4I045/4J+eBj7lLk/+1a+7Pgj6db41fCRfhC/7QB+I2jf8IPH4fbXX8W/2jH/Z 40xYTO155+dnkiIGTzM7doznFfPUv/Bcj/gkKjsjf8FEfhblc5x4niI/DHWvfofgF8Grf4Fn9mZP h3pp8At4Ybw6/hWSIvaNpTQG3azZWJ3RGElCpPKkivAB/wAEL/8AgkAP+cd/wwPufDqE/wA6AP5H P+CjvxG8I/GP9vv4yfFPwBrMGoaJ4h+JOsX+k39tJvjuLeW7kaORT3VlIIPoa/bb/g0+/wCCgX7D /wCy1/wT38VfDz9o/wDay8AeBddufibeXtvpPivxRbWM8tu9naIsqpK6llLIwyO6mv0t/wCHGH/B ID/pHd8L/wDwnEpk/wDwQq/4I/XEDW0n/BPH4ZBXUqSmgKrAH0YEEfUGgD8pf+C7/wDwTP8A2dP+ CpOva5+3h/wSD+Lvgr4neOdCsYm+LHgX4f67Bf3GoQ4fytQhigLFrnC7Gj4MoQFQXVg/5u/8Eiv+ Csvx7/4I2/tI6j4isPCk2p+G9aaOx+IXgXUd1vJcJEzbXTdgw3MRZ9pYEYZlYc5H9Y37Kn/BPD9i r9h681i//ZO/Z40LwNN4giij1mTRRKDdrEWMYbe7fdLNjHrXnv7bn/BFz/gm3+39dSa/+0P+zXpM viGVNreLdAzp2qMO2+eDaZsdvMD47YoA8l+Gv/Bz3/wRl8e+BIPF2pftSt4auZLbzJdB8QeHb1L2 FucxsIo5ELD/AGXIPY1+d/8AwVe/4OpNc/ad0a7/AGN/+CUngfxI0/i1v7IuPHFxpzLqV952Y/s+ mWqEyI8m4KJXxJyQqA4evpuX/gzC/wCCXMmuHVk+MHxoW23ZGmr4k00xD23HT/M/8er6/wD2Ff8A gh1/wTa/4J5a9H43/Z/+AVvJ4qgjZIfF/iW6bUdRhBxnypJflgJxyY1UkZGccUAfzJ/8FKP+CO3x Z/4Jj/sz/CP4pftEeJVHjn4oXV/PqPhW3+ZNEgiigdIZZCMvckyt5gHyrgKCxBNct/wQ8+Lnwy+A n/BV34K/F/4y+ONO8N+GND8Tyz6xrmq3Ait7SM2dwgZ3PCjcyjPqRX9fH7TP7DX7If7Zcekw/tT/ ALPfhnx2mgtKdHTxHYC4W0Mm3zCgJwN21c/QV5P/AMOMP+CQP/SO/wCF/wD4TiUAc98VP+Cnv/BF f9r/AMA6n+y/46/bX+FniXSfHtqdEu9CPiGNnvPtB8tUQdpNzKUYcqwUjBAr+cX/AILC/wDBF39p L/gkX8df+Er0a11PWfhjd6v9p8D/ABB06JyLXEheG2unUAQXSBQeyvt3Ieqr/SvoX/BCr/gkX4Y8 W2Xjrw5+wb4GsdV02/ivbC7tLaaP7PPG4dHRVk2qVZQRgY4r6c8aeAvBHxI8M3ngr4h+ENM13RtR iMV/pOs2MdzbXKHqskUgKuPYg0AflN/wRi/4Oef2Wf2l/hFovwe/bq+Kmk/Dv4o6Rax2d3rviW6S z0nxBsUKLlbmRhHBK2MvHIVBY/ITnA/SST9tH9j2Lw03jOX9qz4bLo6R731VvHOni2VcZ3GXztuM d818d/tDf8Guv/BHn4+anPrVp8Ar3wLeXDl3k8A63JYwhicnbbsJIVH+yqBR2FeJWP8AwZe/8Ev7 bWV1K4+NfxruIA5Y2EviPSxER/dyunB//Hs0Adr/AMFDv+Don9ir4DaJc/DL9iTVP+F4fFPUibLw 7Y+EoHutLhu3yqNJcR/8fA3YxHb7y5wMqDkeFf8ABKj9ljw7+w38TLz/AILHf8F3vjponhL4u/FG 8uU8E6d47vlgk0tJIw0rsjj9zc+URGkK/wCph+U4LFV/RX9h/wD4Iv8A/BOH/gn1dp4g/Z2/Zv0q HxEibR4u14nUdVUHGQk82TCDjkRhM984Fev/ALRv7I/7Mf7WPh6y8PftLfAXwn48s9Jne40q28Wa HDfR2kzrtaSNZVYKxAAJHUCgD8Rv+Dhb/gvn8P8A9pnTNJ/4Jz/8E+/jroU2g+NJYoPiN8Tf7RNv p0du8iBbNLk42xdWuJAMbAEGcvX2N/wTD/a9/wCCFf8AwTG/Zf8AC37Kvwr/AOCgXw11DU5JEm8Q 65b6kHl1vVZdokmkZFO1d2EjViAiKo7EnnP2XfA//BFHxl8Wtd/ZV/aU/wCCeXwP8IfEXw3r1zpS S3XgKxisNZMcrKjxO6YjkZQpMbEZLfKT0H2Np/8AwRx/4JPQSQ6lYf8ABOz4ORyRuskE0XgGxBVg chgRH1yAc1lRr0q8eaDv+nqenmuTZlkmIVHGU3FtJp9JRe0ovZp9189T6UtLu3vrdLu0lEkUqB45 FPDKRkEexFeQ/to/tbfsefsk/C/+3/21fifofhrwp4gkfSj/AG/byTQ37PGxe3McaOXzHuyNpBGa 9ftra3s4EtbWFY440CRxoMBVAwAB2GK4P9oH9lb9mz9q7w7Z+Ef2mPgZ4W8eaXp939rsdO8V6LDf Q28+0r5qJKpCttJGRzg1qeYfxb/8FHvhf+y98Jv2ufFfhv8AYu+NGn+OvhhcXn27wjrFis6mC2lG 77JKJ40bzIWzGTghlVWzzgfT/wDwbt/8FiL3/gl/+09/wiPxY1u4/wCFQePp47XxdF8zrpFxuAi1 REHeMZWQAEtGx4JRRX9KB/4Iy/8ABJg4Df8ABOX4NHA7/D+x/wDjdcr8Xf8AgmX/AMESfgN4Nu/i J8W/2G/gVoOj2SFpr3UPA9gi9Cdqgx5djg4VQST0FJyUVdmlKlVr1FTpxcpN2SSu2+yS3Ot+CP8A wWA/4JmftMeIz4L+B37ZvgvXtXWxnvjp0V80Mq28ETSzSlZlQhUjVmY/wgHNfjx/wVk/bzn/AG5P 2i3vvDF1J/whPhUSWXhOF8r5yttMt2y9mkZRj/YVOhzXO/ty/Gr9irxl8QBpX7B/7HHgP4ZaBp5m hbxL4f8ACVtp+q6wjqUcPJEoaO3ZSR5Wfm6v2A+fVBY7VGSewFfI5vmccT+5pP3er7/8A/qzwo8N a3D/APwrZpG1eStCP/PtPdv+81p/dV1u3b7v/wCDef4tL4A/bnn8C3VwVtvGXhW5slQtwbiFkuIz jPJ2xyAf75r90EcOMgHr3r+aL9hHxV4u+FH7YPw3+JWj6DqMy6X4usnvBa2cjs1q0ojnHyjvE7j8 a/pbgIZNw7816WQVObCuD6P8/wCmfnvjtl8MPxRRxcNqtNX9YNr8nEfRRRXun4iFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUVkeN/Hfg74beGrzxn4+8VaboukWEXmXup6tepbwQLnG55JCFUcjqe9AGvRXg3w+/4Kgf8E8/ it4ps/BHw6/bN+HWr6tqM5h06ytPE9uWvJAcFIiWAlbOBhSete7o28ZyPwoAdRXjvxw/b8/Y/wD2 cfGEfw6+MXx60XTPEctt9oTw3bebe6l5P/PQ2tqkkwTp8xXHvWn8BP2zv2Wv2opr6y/Z++O/hvxT eaWxXVdN02/H2uxOcYnt2xLCc/31FAHps0sUETTzSBURSzsxwAB1NY/w8+Ifgr4seC9O+Ivw68RW +r6Hq1uJ9N1K0bMVxGSQGU9xkGvzl/4L2/8ABcj4HfsW/AXxd+zV8GPiDZa38ZvEWmT6RHp2kziQ +GUnjZHu7l1yI5VRiY4vvlirFQvJ7v8A4Ip/txfsfWn/AATs+APwRvv2pPAa+NT4I0/T28LSeKrU ah9sIx5Hkb9/mZIG3GeaAPveZgsTMxAAUkkngV+Tl3+zb+0P/wAFvP2/bj9o3XPij4r8EfssfDu4 bR/Blt4f1y4sJ/H00MpF1cIYXR1tnmUqJyPmjRRGclmH6T/tHfFn4BfCP4T6r4g/aX+IWh+G/CNx CbPU77XtUW0hkSUbTFvLKSzAkbVOTnivM/hv/wAFM/8AgnXrGsaP8K/Bn7R3hfSLq8RLXw7pGqwT aQt0qhVSK1F3FCsoA2gCPcMYxxQB71o/hnRfD/he28H6RaeRp9nYpaW0CSN+7hVAiqGJ3cKAM5z3 zmvwj/4OhP2d/AP7Bvwv+FvjH9k7XfG3hDUvFHijUIdcuYfiZrt39pRIEdV23V5IqYZiflA/Kv3q Vg8YcMCCMgg8GvxQ/wCD0L/khPwO/wCxw1P/ANJY6AP2M+C881z8HvClzczPJJJ4asWkkkYszE26 Ekk9SfWulrl/gkcfBfwif+pXsP8A0mjrifip+3v+xl8EfGrfDf4q/tMeDtG8RJF5kug3GtRtexpj O5oEJdVx3IA5oA9eorg/gf8AtO/s+ftL6HP4l/Z7+NHhnxnY2sgju7jw7rEV0Ldz/BII2Jjb2YA1 295eW1hbPe3k6RRRKWlllYKqKBkkk8AAdzQBLRXzJr//AAWY/wCCV3hjx4fhnrn7fPwwg1lZzBJb DxRCyRyZxseVSYkbPGGYGu2/aZ/4KAfsh/shfAy3/aP+Pfxz0PR/CF8UXSdViuftP9qO67kS1SHc 1wzDJ+QHABJwASAD2WivJv2a/wBt79mH9rb9n6H9qH4F/FzTNW8ESCb7RrU7NapZtCcSpOs4Uwsn UhwOCDyCDXLJ/wAFVv8AgnGZEB/bV+HQie6+zLeHxJCLYzdNgnJ8vdnjG7rx14oA+gqbKcRscZ46 VX0PW9I8SaTb69oGqW99ZXcKy2l5aTLJFPGwyroykhlIOQQcGn6nciz06e8YgCKFnJJ6YGaAs3oj +f8A/wCC0/h/Q5/2yLn4z+D0C6X49sBeIVHAu7SWTTrpfqJbRifUsfWue/Zg/wCCuH7bn7LVrb6B 4W+J767oEGAmg+KIvtcKL/djZiJYh7K4HtzT/jV4lT9oj9i+8+IcchmvPh78XtTWZj1XTtc3XMRO P4RcWs2M8Au3rXg/wu+D3xT+NXiJPCXwl+H+reIdQfGLbSrF5SgzjLEDCL6sxAGOTXwFWrVjivaU W05a6ee/43P7pyvK8pxHDMcBm8ITjh7037S1ko/C7vZ8jg7767n6d/Dz/g5kQ2kcHxV/ZVc3CgCW 68P+JPkc9yIposp348xvrXV6j/wcvfAn7Gz6T+zV4smmPRbjVLWND/wJdxH5V+fUf7KHwO+CKfbv 2vP2hrKDUYRmTwB8PPL1bVCw/wCWc9wG+y2pzkEF5GH93vU8B/4J8/HqP/hC9E8P6z8GNXg/d6N4 j1bWZda07UByQNQwivbOTx5sKlADynBJ7lmWZxVnUV+ztf8A4HzsfG1vD3w3xFX2tHA1ZU1vKDqc i80nLmmvOmpJH0t8Z/8Ag5E/aD8VWkum/BP4KaB4TDKVj1DU719TuF91G2KMH2Kt+NfC/wAdv2l/ jz+014lPi346/FDVfEd4GJhF9cfuYAe0cS4SIeygVP8AHb9mL4x/s8X1uvxB8Ng6ZqALaN4i0yZb rTdUj7Pb3MZMcgxjjO4HggUfsu/BeT4//HXw/wDDV7r7NptxdfaNf1BjhbHTYAZbu4Y9gkKO31xX DXxGNxU1Tqyd+234H3OSZDwVw5gXjstowjBRbc170rJa++25eqT30sfqV/wRR/4JkfBPW/2XIvjl +0h8GdE8Sap4vvPtegxeIdOS4Fnp6DZGyq+QDI29845Up+P3r4b/AGVP2a/B8ax+GPgD4NsQuNv2 bw3bLj/xz2rE/Yb+LPgv42fsv+EPiD8OtEXTNCn0+S20jTlP/Hva280lvEh9wkS/nXrlfZYPDYel hoKCT0Wttz+PeLOIc9zPP8VPE1JwfPJcnM7Rs7KNk7aJJee5U0rRNJ0OIW2j6XbWkX/PO2hVF/IA Vboort2Pkm23dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigBJBlcZI9xX4zftgfGyb/gp3/wAHC3gb/gmF4uvHu/g1 8K2n1Txj4aVz9m1/U7fTmvCLlQcSxpK1vDsbgfvu7c/sxJ93/wCtX4N/sS6BqXww/wCDvn4qeH/F ySQ3GtyeIrvTfOH+tiubGO9i2nAyPJz06bcdjQB+vf7VH7B/7On7VH7Nus/s1eM/hZoUGj3umPBo 72WmRQNo9wFIhubYooMMkbbWBTHTHQkV8Mf8G737f/7Qfx7+B3xX/Y0+N2sPrnxL+BN7Npej6tqL ky31ovm28Edy5yWkjnt3Rn6lSmclSW/VCT7h4rwX9p39pn9nL9iH4a/En4v3fhrTYtU8IeBpvFGu 2OkackU97EZHjt1klVQA01wGRS5yTvboGIAPz/8A+DZz4Xft9eEfi9+0H42/bm/Zs1nQNT8Ta9Dq Evjbxn4fntNU1PUGeVZYIJZlHn2aqNymPKKThSQePGv+CyHjJv2S/wDg44+APxm+C94dG1bxLbaH F4uGnp5Y1KKW+ksnSYDAl3wfIc84Ve6gj0b/AIJjfCf45/8ABfrw/wCJ/wBtn9vP9pTxxp3gZfFF xpXg34Q/D3xPPpOlWyxIjPJMYiHmI8wICTuO1iWwQtfGf/BWn9lv4Jfsgf8ABcn4JfB/4FRanFpi XPha7uodX8QXGozrPJqjAkyXDu65VVO3OOc45oA/Rz/g6+8AeBdN/wCCV2r+LtP8FaRb6tP4+0Yz anBp0aXEhaR87pQu4575POK92/4ImfAL4HT/APBMP4AfECf4MeFH14/D/T7ptafw7am7M+CfM84p v3/7Wc+9eQf8HZv/ACiO1H/sftE/9GSV9Hf8ERv+USv7P/8A2TXT/wD0E0AfDf8AwVa+Gn/BR74i f8F2/gD4i8B/s06r49+EnhSaxm003Wgz3nh2zlmZ49Qub2RVMUE8aFXjaUggxRFd3Svdf+DoL4fe BvEv/BInxl4l8QaXbNqHhrVtJvPD14YR5ttcG8jiPlsOUzHJIDg8j868J/a5/b4/aZ/4KSf8FfW/ 4I5fsrfG/VvhR4F8MXF4nxG8deFZjFrOoNa24kuoYZeDCqyYt124JZmdiygLXHf8F8f+CTf7IX7G n/BMXxH8WfAOseOdR8Upr+l20WreLfiDfag1y0s4Em6OSTy3YjJ+7xjIxigD7s/4N+/jh47/AGgP +CTHwo8b/EbXLnU9VtNOuNKnv7x90syWlzJBGWYkliI0Rdx5O3nnmvh7/g9C/wCSE/A7/scNT/8A SWOvq/8A4NiBj/gjX8N/+whrH/pwmr5Q/wCD0L/khPwO/wCxw1P/ANJY6APsj/grB+3hr3/BPX/g kQfjP4Du0h8Xan4c0nQ/CErrkQXtzAimfB6mKISyAdCyKDxmsr/g3P8A2e/CHgv/AIJoeD/jfq2n Q6t41+Kct34l8X+LNSQT3+pTzXMioJZ3y7KqIoAJxkserMT8+f8AB0b4J8QeI/8AgjT8NPE+lQO9 p4f8R6DcamVBOyOTT5IVY46DfIoye7Ad6+yf+CEGvWniL/gkV8CLy0aL914JS3lWHorxzSowPvle fegD89/+C8PjPV/+CRP/AAVB+DP/AAUT/ZptF0a38c2s9h8TNA08iG115LaaLzGmjUBHkkgmxvPI eBH65Jzf+DrH/gpx8R7zSvhn/wAE9/2WPFV1ap8VtItda8TX2nztHNf2V1KiafZKyNkJKwd5F/iA jXkFxU3/AAej6xZ3Phn4CeC4I1e/udW1m4iUH5ygS2jxj0LOo+tfHX/BdX4deLf2Xv8AgpN+yx8R PirbzQ6bYfDDwM08k6sAraZOi3aZPdSBkdRkHuMgH7J/Af8A4Nyf+CZXw+/Y3sf2afHv7OOgeI9X u9BWHxH47vLRTq89+8Y825guSN9vtckoiYUAAEHnP4n/ALE37HngK+/4Kr+PP+CMX7aPiLV/Eeja dY+LfC/wfuNU1ec2fh7WpYhJZarHbBgoZ4YlfYBje44I5r+qfTby31Cxiv7OVZIZ41kikRsh1YAg g9wQetfzZ+HtOuf2jP8Ag8XvL/4ZK09voHxUlm1K4tv4I9N0/wAq6YkekkTRnn+dAHEaJ+y18eP2 T/2kvhR/wb+fE74y2GpaH4w+K9l4i+KcPg++n+yX/wBrMCQWJeRInaNba2ErKVA8y4zzsVq/pS8Q /s5fA3xN8Ibr4C6v8JPD8ng670ltNl8OLpcS2gtWTZ5axhcKAOmMY6jmvwk/bT0XU/hl/wAHdXgD xR4phjSz13xb4au7Ca5U7DC9kltuU+qyRvj/AGhX9CTY2n0xQB+J/wDwbt/tUfED9nX/AIKA/Gf/ AII2/ELxfd6r4Y8La5rVx8N31GcvJafY7zY9shJyEkt2E+wcK0chH3uf1e/bZ+JcXwl/ZE+JHxB+ 0GKTTfBt+1tIDjbM0LJGf++2WvxD/wCCcGlXvxS/4Oxvip4v8JxFrDQPEHiy51OaJcrHHGhsySR0 zNIi/U1+k3/BwF8YE+Hf7CFz4ItrrZeeM/EFppyIGwfIjY3EpHqMRIp/3658XV9jhZz7Jnv8K5c8 24lweDSvz1IJ+l05fck2fkH+y/8AtI+FPgbo3jXwj8RfhPF418P+MtJtYLvQ7jUpLSL7Ta3SXFvK zx/PhSrKQCCVdhkAmpvih+3H8dviF4dfwB4bvdO8D+Em4HhDwHZDTbFlxjEvlnzLk+pmdyf0rx6i vgFWqqHInof3hLJMrnjJYqdNSm2nrdpNJJNRbcVKyS5kk7Ja6Csd7F2JJJyxJ6mppdMvY9Li1d7c i2nuJIIpexdFRmH4B1P41BXsOl/D7+2v2CtX+I0dsSdE+KdraSS4zhLmwkOPbLQr+VRGHPc6MZio YOMHLaUox/8AAnZfjYzfgR+1v8WfgTZT+FbCay8QeE79v+Jt4J8U232zS7wdyYmP7p+4kjKODzni vTNY/aC/ZH8E/A/xnrP7NHhDxH4a8d+P7SLQdU8P6pOtzZaPpjsZrxrK5GHZZmSGLZINyqXGWGSf mSg9K0jXqRjbf16enb8jixWQ5fia/trOLbTlyuynZprnW0tUtWr9L2bT/cP/AIN2fi5beOP2LdR+ HE1wGvPBvimeAxlssLe4VZ42x2BczKPdDX37X4Wf8G/n7TUPwZ/a/n+Euu34i0r4h6abOPe/yLfx EyW59PmHmp65cCv3RjYuu4ivssnrKtgI946fdt+B/H3ixk08n42xDt7ta1SP/b3xf+TKQ6iiivUP zYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAMA9RXwv/wUd/4Jb/EL4rftT/Dv/gpb+xLrWi6N8b/hrNsksNdZotP8 VaeUaJ7S4lQMYX8mWeMSBWyspU4wpH3RRQB8s+IP2nP+ClWueEDoXgD/AIJkXOj+LbnbCmq+LPil ob6BZOcBp2ezuZLyeNckhBbIzYwdmc1Cn/BNaT4lfsa/E34AftN/FSXxX41+M+nzf8J943trFYFj uWjC20VpDk+Xa2m1BFET821mfLSOT9WUUAfiT+wX/wAE8f8Ag4h/4JQzeIvgD+y/YfCPxp4A1vWm vLfU/EetbILWZlEZulj3JPGSqIWjw4yoxk5J1v23f+DfT9tL4hfED4VftpeBfiboHxK+OOj+KV1r 4r3HiG/Ol2msPHNbyWlvYkKy29vbxwmBUIBK4fBbK1+0FFAHwl+37+wn+1z/AMFSv+Cffjj4KfHC Dwn4A8V6pd2Oo+CPDOlaxJqdrptxZ5fbd33lRGYzszKdkO2JQpHmHJrm/wDgmR8Ff+CxH7Pv7Jvg n9iz4l/DX4ceD7XwZKLIfEoeLjq1xJpSXBkEUOmxwqhnKExrJJOFVdrGMkba/RGigD8a/wBt7/gi N/wUN+Dv/BUG4/4Kkf8ABKvxZ4bvdY1nVZtU1Twx4l1BbYwXdxCYbxMy/u54Jt8jlSysjOdvKqa9 K+MX/BMH/gpf/wAFUfgP4l0//gpr498FeFb608OXMfww+HfgZnk06x11oyseq6jNuYzMozGkasyo ssjD5sCv1KooA/PT/gjN+yx/wUr/AGLv2ePCP7HHxm+GvgLw/wCG/COu3t7qHjTTfGDanc6zayyy yi0hshboLdmeQZneU7UTiPc3y+If8F6P2Gf+CmX/AAVf8J+CvAPws/Y2tPDsfgnxHe3f9pav8StL dL+KRBGhREcMmQobDcjOK/XqigD5Y0b4S/Ej9s/9mjXP2Nv23P2Op/CHhLUPBcGlXF8fG9hqJu5U WNQ0S2pLQujIsqu3AZBXzN+wl8Af+Csv/BHvwpqX7Jvgn9mSw/aL+ElvrV1d+Bte0Dx/puhaxpEM z+Y0E8GpSRxupYs3ySEq7tglSAv6gUUAfmXN/wAEuf2l/wDgpB/wUO8Mft2f8FJvh/pPgnwZ8N7C KH4e/Byz8QQ6vcSTpMZvtF/cwDyBmTa7RxFw3lxqW2qd3Bf8HQukfAP9qTwj4D/YJ8L/AAc1/wCI X7SPiCefUvhTpXhSSKKbSYBt+1T3c037tLWRIiChI3GDduTZur9ca/AT/gtT+198bv8AgkV/wcCe Hv8AgoC3wj/4Srwt4h+F0ekWVld3LW8V7bhWjuYYZ9jiGaOQRSfdbhxkYbNAHrv7MN5/wdj/AAi/ ZG0v9lD/AIZI+Hpv9P0saTonxI8S+PtLlv8AR7YLsiaSO3vJEneJMBW2OcKNyua+mv8Agib/AMEO fDn/AATGttc+Ofxi8cR+Ovjb44SRvFPivyj5NnHK4mltrYv8zb5RvklbDSMBwoGD8L3P/B8J4dFq 66f/AME37xZdvyNN8VUZQfcDTRkfjX0T/wAE8f8Ag7V/ZC/bM+MekfAX4xfBzWPhRrviG9Sy0K/v tai1LTLm5dlSOF51jieFnY7RujK5xlhmnawHvH/BZz/gj/P/AMFEbDwr8c/gN40g8HfG74aXMdz4 J8S3AIt7lUnWYW1wVBICuN6PhtjFvlIY1Po37VX/AAWwm+HE3gXX/wDglLpUXjsWTWkHja1+Muin w49ztwt60Bk+2rEGO4wiJmONuQOR9xRsXXJFOpAfDv8AwRp/4JCwf8E3/C/ib4p/Fvxhb+LfjL8S bx73x34lt4yIIvMlaZrSDdgsnmsXeQgF3wcAKAPkH/g5A+Oi+K/2h/CfwG0y9zbeE9Ca+1CNWP8A x93T8Bh/sxRoQf8ApoRX7K65rNj4f0u41rU7hYba0t3nuZX6RxopZmPsACa/mV/bI+Ot5+0v+1D4 4+N1zMzRa94huJtPVjnyrRW2W6D6RKg98Zrws+r+zwqpreT/AAWv+R+2eBuSPH8T1MfJe7h4Oz/v z91f+S8x5pRRRXyB/XAV9u/sv/DmHx7/AMEV/wBoC7gsw93ovjnStTgkx0EAtw/5RSTfnXxFX6yf 8EZfhhJ8T/8AglT8c/AZjVzr+qapDbp1y/8AZUAQH/gYFehltP2tdw7xl+R8F4jZh/ZeRUsVf4K9 B/JVIt/gj8m6KvnRLYHjxFYY9d7/APxFH9i23/QxWH/fUn/xFefZn3PtYf0mJ4X8Ta54K8S6f4w8 L6lJZalpV7Fd2F3C2HhmjYOjg+oYA1/SX+wX+1p4W/bK/Zm8P/GfRZ40vp4fs3iCwQnNlfx/LLGR 2BPzr6q61/NVdQJbTGFLqKcAffiJ2/qBX1V/wSY/4KF337C3xzNp4tuZZPAXil4rfxPbKu77Ky5E V4g9Y9x3AfeQnuFr1cpxqwmItJ+7Lf8ARn5d4rcGS4syJV8LG+Io3lH+9F25oersnHzSXVn9CVFU PDfiXRPF2i2fiTw1qlvfaff26z2V7ayh45o2UMrKw4IIIOav19unc/jGScZNPdBRRRQIKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Fn/grF+0V45/4Kx/8ABTmw/wCCDHwV 8P8Ahew8MaQPtvxO8f65oEOo3lj5dql1L/Z5kBFs6I8cO9QHaWUKWVFbd+01fhx/wU6/Zs/a3/4J U/8ABYyL/gtn+zP8GtT+JHw+8TwlPiP4f0ON5LjTw9pHa3IdY1ZkjcRpcJNhlWRGD7VxkA+vPhV/ wa+/8Eb/AIb+E4fD2ofs03Pii5SAR3Gs+JvEl3NdTtjlz5TxxoTjOERQM8AV+Y3/AAcif8EG/wBm b/gnv8HPD37a/wCxMuq+HbL/AITC20jX/ClzqT3MMMsySyQXVq0mZEw8OxkLMPnQqBhq/Q7wz/wd of8ABJPVvCkWr6zrPxE0jVDFul8O3XgK5kuVfGSgeItExzwDvA9cV5V4vg/ad/4OPP2gfh/Bqv7P Hij4X/sifD7xJB4kvrnxxafZdT8dXsORDGkGflgaORlyMqqySnzCxRQAfqr+zZq/iLX/ANnnwJrn i8yHVr3wdpk+pmViXNw9pG0hYnvuJzXbEhRkniorK3gs7WO0tYUjiiQJHGihVVQMAADoABT5mCxl iR+NAHx7/wAFu/2n4v2eP2IdZ0XR9UEOuePGPh7TljbEiwzIxuZBz0EIZcjoZFr8AzwcV9p/8Fz/ ANrFf2if2w7r4f8AhrVfO8O/DyJtJtgjZSW93Zu5B2zuAiz/ANMveviz6DHsK+GzfE/WMY7bR0X6 n9seE/Dj4e4SpurG1Sv+8l3V/hXyjbTu2FFFFeYfpgV+4P8AwbraUtr+wxql6Yk/0zxveMcHrtig Xn8q/D6v3o/4IGaK2k/8E6dEunX/AI//ABHqdwD7eds7f7lezkSvjvk/0Pxzxyq8nBKj/NVgvwk/ 0PxG/aA8BH4V/HTxj8NRCyJoXia+solbskc7qv8A46BXIV9V/wDBYvwJoPw2/wCCi/xF0+XR7zbq d5bapFJDeJGsgubWKVyAYjj94zjqfu18x/avDXfS9Q/8GSf/ABmvLxFN0q8odm1+J+k5DmDzLI8L i+Vv2lOEunWKfcz8jPT9KDtPUfpX6o/8EdP+CRPwl+MXwxuP2iv2q/hu+qaX4ghEfhDw/f3ksYEC kbr1mhMbHeQQg6bQW53A19qf8Oav+CZ//Rqulf8Ag41D/wCSK9KhkuLr0lUTSv3v/kfnmd+M/C+S ZpVwMqdSpKm7NwUHG/VJuavZ6Ppc/N//AIJC/wDBXm7/AGXru2/Z1/aH1W4ufAN1Pt0fWJGLvoEj HkHJ5tSSSQOUOSAQTX7XeHNf0XxTolt4j8Oaxb6hYXsKz2d7aTrJFPEygq6OpIZSCCCOtfN7/wDB Gn/gmkR+7/ZY0pTng/2vqH/yRXt3wQ+Avwt/Zz8Dp8Nvg74dk0nQ4p2lt9ObUbi5SAsBkR+fI5Re M7FIXJJxkkn6PLsPjcLT9nWaaW29/TbY/nvj3O+EOI8b9fyqjUpVpP31JQ5Jf3lyzbUu+lpb6Pfs KKKK9I/PAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApBGi9FApaKAMY/D n4fNq/8AwkB8C6N9v8zzPt39mRedv/vb9u7Pvmtjav8AdFLRQAAAcCvnr/gph+1/ZfsZ/sn+IfiV b3iLr97EdN8KwE8yX8oIVvpGu6Q+yY719C18A/8ABRv/AIJn/tRf8FGPj5ZTap8V9A8I/Dvwzb+T oVs8ct5dzSyBTcXDRKEQEkBBmTIVB/eIrkxsq8cO1RV5PRf5n0vCOGybEZ9Slm1VU8PB8073fMlt FJJtuTsnZbXfQ/EK+vr3Vb+fVNSuHmuLmZpZ5pGyzux3MxPckkmom+Xlhj61+23wg/4NzP2PvCPl XfxY8b+KfGE6EGSD7Wthbt6giH95j6SA19S/CH/gnv8AsYfAkRSfDH9nTwvZXEIGy9uNNW6uAR38 2fe+ffOa+ZpZDjJ6zaj+L/r5n9I5n468K4NOODpVKzW2ihH75a/+Sn89Pwm/ZF/ad+Oksa/CT4Ee KNcSUjZc2ekSeTj181gEx15Jrh/EvhzXfB3iG98KeKdKmsNS067ktr6yuU2yQTIxV0YdiCCK/qsi sYYUEcMaIq/dVEwBX5O/8HAX/BPs210P23fhVoRKyFLbx5a20f3TgLFfYA78RufXYf7xq8bkv1bD e0hLma39Dl4P8Z48QcQxwGMoRowqaQak37/RSbS+JbWW9lrfT8p29A2M+tf0P/8ABGvw2PDv/BNb 4YRNH813pt3dt7iW+ndT/wB8Fa/nhPXBHfnnFf0z/sIeEn8CfsWfC3wlNHtksvAemJKPVzbozH8W JP40cPRvipvsvzf/AACfH3EKPD+FofzVb/8AgMGv/bj8qf8Ag5C8ALoP7WHhT4hRw7U17wasMknY vbzyDH12yL+leE/8Er/2DdX/AG5P2i7XSNatpYvBXhxo7/xbehSBJEHG20U/35cFcj7qh26gV+gv /Bwp+zz4v+Nvhr4On4daBNqOuT+M59CsraBCWka8iV1yR0UG2JyeACSeM19XfsAfsZeE/wBiT9nH SPhFoXkzao+LzxNqaR4N9fuo8x/XauAig9FUdya6XlrxGbTlJe4rN+d1t/n5HgUvEX+wvCnB0sPL /apqdOPeKjJpz+UbKPm79Gey6DoeleGtJtfD2habFaWVjbJb2dtAm1IYkUKqKB0AAAA9qu0UV9Kf zq25Nt7sKKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABTfKjznYOOlOooAAAOlFFFABWX4z8G+GfH/AIT1PwT4w0eG/wBL1exltNRs7hNyTwyKVdGB 6ggmtSkYEqQO4pNJqxUZShJSi7Nar1P51f25f+CfvjD9k39su1+A1lZz3eieKNYhbwRqDIWF1az3 HlpExAwZY2Oxh9DjDDP9DnhXRLXw14Y07w5Y/wCp0+xitof92NAo/QVwvx5/ZY+FP7RGq+D9f8f6 MsmoeB/FFtrmg3sajzIp4jnYSQcxscZX1VT1Ar0eNCiBDjj0FedgcBHBVajjtK1j77jLjivxflmA pV1+9oxmpvpKT5UpL1UbvzuV73RdI1Ka2uNR0yCeSzm820eaIMYZNpXehP3W2swyOcMR3qyFCjAF LRXpHwDbYUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q== ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/image012.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCACgAeYDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK Y5YZwaACVtpGTSLIucg/nXyT/wAFIv8AgpPafsm2cfwz+Gtta6l441CATMLob4NJgbpJIoILSN/A mQMfM3GA35l+MP20f2tPH2oPqfif9ozxfJI7bjHZ65NawhvURQlEX8FFe5gchxWOpqpdRi9r9T8j 4x8YuHeEse8CoSr1Y/Eo2Sj5OT6+STt11P3s3r6/rRvX1/Wv5+v+Gk/2i/8AovnjX/wqrv8A+OUf 8NJ/tF/9F88a/wDhVXf/AMcru/1Urf8AP1fcfFf8TGZX/wBAE/8AwOP+R/QLvX1/Wjevr+tfz9f8 NJ/tF/8ARfPGv/hVXf8A8co/4aT/AGi/+i+eNf8Awqrv/wCOUf6qVv8An6vuD/iYzK/+gCf/AIHH /I/oF3r6/rRvX1/Wv5+v+Gk/2i/+i+eNf/Cqu/8A45R/w0n+0X/0Xzxr/wCFVd//AByj/VSt/wA/ V9wf8TGZX/0AT/8AA4/5H9Au9fX9aN6+v61/P1/w0n+0X/0Xzxr/AOFVd/8Axyj/AIaT/aL/AOi+ eNf/AAqrv/45R/qpW/5+r7g/4mMyv/oAn/4HH/I/oF3r6/rRvX1/Wv5+v+Gk/wBov/ovnjX/AMKq 7/8AjlH/AA0n+0X/ANF88a/+FVd//HKP9VK3/P1fcH/ExmV/9AE//A4/5H9Au9fX9aYXUtgGv5/f +Gk/2i/+i+eNf/Cqu/8A45W78M/jJ+2X4/8AHem+CvhZ8ZPiFqWvalceVp9jYeKbwySNgsf+WuAo UFmZsKqqzMQATSlwtVhFt1V9xrQ+kNl+IrRpQy6o3JpJKSbbfRK2r8j96Im3dKdXnH7K3w/+L/wy +Dem+F/jt8VZ/GHiZQZdQ1OaFVWIsB+4RgoaRU6eY+WYkngEKvo+4ZxmvmKkVGbine3Xuf0Hg69T FYWFadNwckm4yteN+js2rrrZhRRRUnSFFFFABRRRQAUU13K8E18s/t7/APBTTRf2KfGGieArD4b/ APCVapqmnve3lv8A219jFnDv2RtnyZdxdlk4wMCPvmtsPh62KqKnTV2zyc6zzK+HcvljcwqKnTi0 m3d6t2Ssrt/JH1RRX5sr/wAHAl+Bg/spRn/ueD/8g0o/4OA9QJwP2UY//C4P/wAg16X9g5p/z7/F f5nw/wDxGLw7/wCg3/ySf/yJ+ktFfBv7PX/BbjSPjL8Z/D3wr8W/AxfDdrr2oLZJrC+KPtXkzP8A LEDH9mjyGk2pncMbs84r7xQ5UH2rgxWDxGDko1o2b1R9dw/xRkfFOHlXyysqkYvlejVna+zSfz2F ooormPoAooooAKKKjuGkVdyUASUV+eHj7/gu5feB/HeteCh+y/HdDR9WubL7UfGmzzvKlaPft+xn bnbnGTjPU9ayf+IgS/8A+jUY/wDwuD/8g160cjzOUU1T381/mfmtXxc8P6FSVOeMScW01yT3Wj2i fpLRX5tf8RAl/wD9Gox/+Fwf/kGvs39jT9peb9rX4D6d8a5PBv8AYJv7u5gOmrqH2ry/KmaPPmeX HnOM/dGOnPWsMTluNwdPnqxstt0exkHH/CfE+OeEy3Ee0qJOVuWS0TSbu0l1R6xRSZ+bFLXAfZBR RWR4y8Z+GPAPhy88X+NPEdnpOl6fCZbzUL+4WKKFB3ZmIAoV5OyJqVKdKDnNpJatvRJd2a9FfF3x S/4Lgfsu+CdWuNG8C6B4g8WNAdq31lbpb2sjf7LTEORnjOzB6jI5rzPUf+DgCKKfbpH7Lkk0P964 8XiNvyFo3869Snk2ZVFdU387I/P8Z4qcAYGs6dTHRbW/KpSX3xTX3M/R2ivza/4iBL//AKNRj/8A C4P/AMg0f8RAl/8A9Gox/wDhcH/5Bq/7CzT/AJ9/iv8AM5P+IxeHf/Qav/AJ/wDyJ+ktFfn38If+ C4998VPix4X+GTfszx2K+JPEVlpX24eMDL9n+0TpF5mz7Gu/bvzt3DOMZHWv0BhZ2GXrixWDxGDk o1o2bPrOHeKsi4qozrZZV9pGDs3Zqzte2qXQfRRRXKfQhRRRQAUUUUAFFFFABRRRQAUUUUAFNZST jNOo70AfgT+198QNe+J37UPj3xh4huvOmm8UXkMW7+CCKVook+ixoi/h615zjPXt0rqvjuAPjj4z wP8AmbNS/wDSqSuVr9aw8YxoQS7L8j/NPOq1StnGIqTd25zbfduTCiiitjywooooAKKKKACiiigA oorY8A+APGfxT8Y6f8Pvh74dutW1jVLgQ2NjaR7ndj3PZVAyzMSFVQWJABIUpRjFt7I0o0a2IrRp UouUpOySV229kkHgDwD4x+KfjXTPh18P9An1TWtYult9PsbcDdI59yQFUDLMzEKqgsSACR+x/wDw T6/4J9eDf2OfBg1vXEttV8datbr/AG1rPlhltFwCbS2JGViB6twZCAzAAIiO/wCCff8AwT78Hfsa eDf7W1lrfVfHeq2wTXNcjyY4U3ZFtbbgCsQ4yxAaRlDMAAiJ7H8afjV8Of2fvh3qHxP+J/iCPT9L 0+PLM3LzSH7sUa/xyMeAo/QAmvhM4zepj6n1fD/D/wClf8D8z+xPDHwxwfB+D/trOrfWLc2tuWjG 2t3tzW3fTZdW3fGf41fDr9n74dah8T/ihr0en6Xp8eZJG+Z5X/hijXq7seAo6/TJrF/ZS+Plp+09 8DdF+OGn6E2m2+tSXfk2Mk3mNEsV1LAAWwASfLycDGTxnrX46/ttfttfET9sz4iNrWuSS6f4c0+R l8O+H1lylqnTzJMcPMw+83QdBgDn9PP+CRS4/YA8B8/x6r/6dLusMblP1HLY1aj99yXyVnoetwn4 mf648dVsvwSthaVKTTa1nJTgubyjZuy+b6JfS1FFFeEfsQUUUUAFFFFAFPWNSstH0y41fUbhYbe1 haWeZ2wqIoJZj7ADNfgr+1t8d739pL9ojxR8YJJpvsupaky6TFP1hso/3cCY5CnYqkgcbix6kmv1 A/4LB/tFv8F/2W7jwTompPDrXjiZtLtjH95LUANcv9ChEXr++BHTj8eR7CvtOF8HywliJddF6Lf/ ACP5R+kFxN7bG0MkpS0p+/P/ABP4U/RXfzQcjoKMt6CiivrD+bSS0urqwu47+wuZIZoZFkhmicq0 bg5DAjoQeQexr94P2Kv2hLP9pf8AZr8L/FOOUte3FgttrSMoUpfQ/u5+B0UupZfVWU8ZxX4N197f 8ENv2jD4Z+Iuu/s26/qcgtPEEJ1PQo3+6l5EuJkHoXiAb0/cep5+f4iwft8D7SK1hr8up+1eB3E3 9i8WfUasrU8SuX0mtYP56x+aP1FVt3alpsZyOtOr8/P7WCiiigApk4yh/wB00+mzfcP+7QtxS+Fn 8+Hx5z/wvPxof+ps1L/0qkrlMt6Cus+PP/JcvGn/AGNmpf8ApVJXJ1+t0f4MfRfkf5oZr/yNK/8A jl/6Uwy3oK/ZT/gjef8AjBHw/wD9hbUv/SuSvxrr9k/+CN//ACYj4e/7C2pf+lcleFxN/wAi9f4l +TP2D6P/APyW9T/rzP8A9KgfVPG6gnAzSfx/hQ33a+BP7QIru/trG1kvbuVY4YkLySSMFVVAySSe gxX4q/8ABRL9uXxX+1r8UrrSNF1aSHwLot9JHoGmxyEJdYJH2uXgFnfqoP3FIA53E/p5/wAFIPib c/Cb9ivx94qsc/aZ9HGm25U4KtdyJa7x7qJS3/Aa/DfHYHjtX13DGDhPmxEt07L9WfzP9IDinF4X 6vklCTjGceepbRtXtGL8rptrroAz0oGR0xR+FBOOtfZH8sBlvQUZb0FGRnGaMj1oGoSlsj0L9kj/ AJOu+GPH/NRNF/8AS6Gv34j9a/Af9kg/8ZXfDD/somi/+l0NfvxE6sPlNfD8U/7zTt2f5n9bfR2j KOR426t+8j/6SOooor5c/ogKKKKACiiigAooooAKKKKACiiigAo70Ud6AP57vjv/AMlx8af9jZqX /pVJXKV1fx3/AOS4+NP+xs1L/wBKpK5Sv1yj/Bj6L8j/ADPzb/kaV/8AHL/0phRRRWh54UUUUAFF FFABRRWx8P8AwB4x+KnjbTfh18PtAn1TWtXult9Psbdfmkc9yTwqgZZmYhVUFiQASJlKMYuT6GlG jWxFaNKlFylJpJLVtvRJLuHgH4f+Nfip4z074efDvw5catrWrXHk6fp9qo3ytgk9SAqhQWZiQqqC zEAEj9kf+Cfn/BPrwV+xv4N/tjVjb6v461S3261roi+W3jO0m0t89IlZRlsBpGG5gAERD/gn3/wT 88GfsbeC/wC19YW31Xx1q1un9ua1tDJbDGfstsSoZYgercNIwDMAAiJ7H8avjX8Ov2ffh1qHxQ+K Gvx6fpenx5ZvvSTSH7sUa9XkY8BR+gBI+EzjN6mPqeww/wAP4y/4H5n9ieGXhlg+DcH/AG1nXL9Y UebW3LRjbV325rbvpsurZ8a/jZ8Ov2fPh1qHxQ+KHiCPT9LsI8szcvNJj5Yo16vIx4Cjr7AEj8Xf 22f22fiJ+2Z8Rjr2uyyaf4c0+R18O+Ho5spbIePMf+/Mwxubt90cdW/trftsfEf9sz4itr2vNJp/ h3T5GXw/4eSYmO2Q8eY/Z5mH3mxx0GAOfFlHHIr28myWODiqtVXm/wAP+D3PyPxT8U8RxVXll+XS ccJF6vZ1Gur7RXRfN9El79K/aj/gkX/yj+8B/wDXTVf/AE6XdfivX7Uf8Ei/+Uf3gP8A66ar/wCn S7qeJ/8AcI/4l+TOz6Pf/JZV/wDrxL/0umfSlFFFfBn9kBRRRQAU132dRStnHFeQftxftAWv7M/7 M/ib4oC78vUo7JrTQ12hme+mGyHAPUKTvP8AsoxwcYrSlTlWqRhHduxx5jj8PleAq4yu7Qpxcn6J XZ+Xf/BV39osfHr9rHUtM0bU5JtC8HhtH0xd37szI3+kyKOmWlyu7+JYk9OPmcU64uLm7nku7y4k mmlkLyzSsWZ2JyWJPUk96bX6phcPHC4eNKPRWP8AOPiDOMRn+dV8wrfFVk5eib0XyVl8goooroPH Cuj+EHxN8Q/Bn4paB8U/Cty8V/oOqQ3kJjbBdVb54z/sum5GHdWIrnKPmOQOpFTOMakXGWz0+83w 2IrYXEQrUnaUWmn2ad0/vP6Hvhh8QPDfxV+H+j/EjwhdedpmuadDe2UjLhjHIgYAjswzgjsQRW9X wj/wRB/aLPjb4P6t+z7r+ptJfeErg3WkxyHk6fOxJUHuEm3degkQDjAH3Yh3AEV+V47DSweKnSfR /h0P9FeEc/o8TcO4bMYfbirrtJaSXyafyHUUUVyn0gU2b7h/3adTZvuH/doW6FL4T+fH48/8ly8a f9jZqX/pVJXJ11nx5/5Ll40/7GzUv/SqSuTr9co/wY+i/I/zPzX/AJGlf/HL/wBKYV+yf/BG/wD5 MR8Pf9hbUv8A0rkr8bK/ZP8A4I3/APJiPh7/ALC2pf8ApXJXg8Tf8i9f4l+TP2H6P/8AyW9T/rzP /wBKgfVH8f4UrEgcVxvx0+Onw0/Z08CSfE34ta7JpujW9xHDLcx2cs7B5G2qNkSsxyfavE2/4LAf sDdP+Fu3n/hM3/8A8Zr4mnhcTWjzU4NryR/W2YcScP5TX9jjcVTpzte0pxi7PZ2b20Zl/wDBaC7e D9h3VIE6XGu6ej/QTbv5qK/HU+1fo1/wUz/4KD/sqftHfsv3Xw1+EnxAuNS1iTWLSeO2k0W7gBjR yWO+WNV4HbOTX5ymvuuHaNSjgWpxad3v8j+PfG/NMvzbi6FbB1o1YKlFXi1JXvJtXXqFOgguLqdL W0haSWVgkUarksx4AA9c02tbwFqlhofjvRNa1V9trZ6vbT3LbS22NJVZjgcngHgc17k21FtH5Dh4 xnXjGTsm0m+yufsd+xz/AME3fgH8APhpo58YfDbRfEHjBrdZtX1rVrJLporlhlkg8xSI0XJQFQCw GWJJr3yP4a/D+FFii8DaOqqMKq6bHgf+O189p/wWA/YGA/5K/ef+Evf/APxmnf8AD4P9gX/or19/ 4TN//wDGa/M61HNsRUc5Qk2/Jn98ZXmvhtlOBhhcNiMPGMUkvep626vXVvq3q2fQcPgHwRbTpc23 hDS45Y3DxyR6fGGRgcgg7eCD3rYhQICAK+dfBv8AwVT/AGJPiB4w0nwJ4W+Kd1canrepwWGmwN4d vYxJPNIscalmiCrlmAySAM84r6JByMqa461KvSaVVNPzPrMpzHJcwpylltWE4p2fs3Fq/Z26klFf OXjL/gqt+xF4A8Yar4E8U/FS7t9U0XUp7DUrdfDt64juIZGjkUMsRVgGUjIJB7Vnf8Pg/wBgX/or 17/4TN//APGa0WAx0ldU5fczhqcZcJ0qjhPHUk07NOpG6a36n09RXzD/AMPg/wBgX/or17/4TN// APGaP+Hwf7Av/RXr7/wmb/8A+M1X9n5h/wA+pfc/8jP/AF24P/6GFH/wZH/M+nqK+Yf+Hwf7Av8A 0V69/wDCZv8A/wCM0f8AD4L9gU/81dvf/CZv/wD4zR/Z+P8A+fUvuf8AkH+u3B//AEMKP/gyP+Z9 PUV826P/AMFa/wBgfW72OxT42m3kkbajXnh++ijz7u0O1fxIr2TwD8dfgx8VU3/DT4r+Hte/d72T SdYhnZV91RiR+IrGphcTS1nBr5M9DA8RZDmUuXCYqnUfaM4t/cnc66io1kBP6U8Lg5FYnsC0UUUA FHeijvQB/Pd8d/8AkuPjT/sbNS/9KpK5Sur+O/8AyXHxp/2Nmpf+lUlcpX65R/gx9F+R/mfm3/I0 r/45f+lMKKKK0PPCiiigAoorZ+Hvw98a/Ffxppvw7+HXh241bWtWuBBp+n2uN0r4JPJIVVCgszMQ qqpJIAJqZSjGN5OyNKNGtiK0aVKLlKTSSWrbeyS7sPh98PvGvxW8Z6f8Pfh34autX1nVLgQ2NhZx 7nkbqSeyqoyzMSFVQWYgAkfsl/wT9/4J/eDP2M/Bjapqklvq3jrVrcJrmuRhjHEm7d9ltwwBWIEL lsBpGUM2AERF/wCCf3/BP3wV+xt4LGraoLbVvHWq24/trXfK4t0IUm0t88rCrDJbhpGG5gAERPXv jb8b/hx+z18Or/4ofFHX49P0vT48kscyTyfwxRr1eRugUfXgAkfC5vm9THVPq9D4fzf+R/Ynhl4Z YPg3B/21nPL9Ytza25aUba67c1t302XVtfjb8bfh1+z38Ob/AOJ/xP16Ow0uwTLZwZJ5D92KNc5e RjwFH44AJH4uftr/ALa/xF/bM+IjeIPEBk0/w7p8jL4e8PpJmO2j6eY/Z5mH3m7dBgDk/bW/bX+I 37ZfxGPiDX5JLHw9YSMvh7w8kuY7WM/xuRjfMwwWbt0GAK8XGele3k2TRwUVVq6zf4f13PyPxS8U 6/FdeWX5e3HCRer2dRrq/wC72XXd9EjHvRRRX0J+JhX7Uf8ABIv/AJR/eA/+umq/+nS7r8V6/aj/ AIJF/wDKP7wH/wBdNV/9Ol3XzfE/+4x/xL8mfvH0e/8Aksq//XiX/pdM+lKKKK+DP7ICiikZtvWg Ac4Qmvyy/wCC437RL+Lvilon7OegawWsfDMP9oa5DGvym/lX90rH1jgJPHH+kHqRgfpZ8VviT4b+ Enw31z4l+LrrydN0PTJry7ccsVRSdoHdiflA7kgd6/AT4p/EjxH8X/iPrnxP8XXXnalrmpy3l027 IUu2Qg/2VXCgdgoFfS8N4P2uJdd7R29Wfgfj1xN/ZvD9PKqMvfxDvL/BF6/fKy80mYAGOKKKCfav uz+OybTtN1DWdRt9I0m0e4urq4SG2t41y0sjMFVR7kkAe9dt+0r+z54z/Zg+Ll98I/G7JJdWcFvN HdQqfLuI5YlfcmeoBLIT/eRvSvZv+CR37Pg+Nv7WOn+Jda0X7VongmL+17xpGIj+1KcWi8dW8394 B0/cHPHB+kP+C6X7Pg1jwb4d/aT0DR2a50eb+yfEFxGDkWsjbrd37bUlLoD1zcAc9vHrZnGnmsMN 0a19en9eZ+oZX4f1sw8OcVxBZ88JrlXenHSb+938uVn5m0EZoor2D8vPYf2Dv2hZf2Z/2oPDfxDu tUe10ea6Fh4jwu5XsZiFcsOpCHZLxzmPv0P7q2s8VzGs8MisjLuRlOQwI4Ir+cg46kV+1P8AwSx/ aNX9oH9lLRxq+qfaNe8Kj+xta8zh28sDyZTzk74dnzd2V+4NfH8UYPSOIj00f6fqf059HziblqV8 jrS0f7yHroppfKz+TPpSimiTJxinV8ef1IFNm+4f92nU2b7h/wB2hboUvhP58fjz/wAly8af9jZq X/pVJXJ11nx5/wCS5eNP+xs1L/0qkrk6/XKP8GPovyP8z81/5Glf/HL/ANKYV+yf/BG//kxHw9/2 FtS/9K5K/Gyv2T/4I3/8mI+Hv+wtqX/pXJXg8Tf8i9f4l+TP2H6P/wDyW9T/AK8z/wDSoEH/AAWg z/ww5qwB/wCY5p3/AKOFfjmR29K/Yz/gtBn/AIYc1Ygf8x3Tv/R1fjnnJ54p8M/8i9/4n+SDx+/5 LiH/AF5h/wClTAcdBQOOBRnNFfQn4eFFFFAAAB0HSijnpiigNT0L9kjP/DV3wwyf+aiaL/6Xw1++ 6RgDIJ+bmvwI/ZH+b9q74Y4/6KJov/pfDX78K+BjFfD8Vf7xT9H+Z/W/0df+RHjf+vkf/ST8B/2u M/8ADV3xPOf+aia3/wCl81ee16F+1wR/w1d8T1z/AM1E1v8A9L5q89r7DC/7tD0X5I/mDiL/AJH2 L/6+T/8ASmFFFFdB44UfUUfjRmgAwM7sVY0jVtV8P6nBrWg6ncWN5ayCS2urSZo5InHRlZSCp+hq uTg4NFDV9GXGdSnJSi2n3PuL9iT/AILD/EL4bapZfD39p29uPEfh2R1hj8REbr/TwSBvkP8Ay8Rj POf3gHILYCn9SvDPiLRPFmiWniXw3q0F9p9/bJcWd5ayB45o2GVdWHBBHNfzp85zX6Kf8ESf2v72 LUrr9knxzqu+3eGS+8GvPISyMPmntFJ/hxulUYGMSewHyOfZPTVN4mgrW3XS3c/pXwf8UswqZhTy PNqjnGelOctZKXSLfVPo3qnZbPT9KKKasm4Z20V8af1QOo70Ud6AP57vjv8A8lx8af8AY2al/wCl UlcpXV/Hf/kuPjT/ALGzUv8A0qkrlK/XKP8ABj6L8j/M/Nv+RpX/AMcv/SmFFFFaHnhRRW18PPh5 42+LHjPT/h58OvDV1q+tapP5Vjp9omXkbGSfRVUAszMQqqCSQATUylGMXJ9DSjRrYitGlSi5Sk0k krtt7JLqw+Hnw98Z/Ffxrpvw7+Hvh+41TWNWult7Gytlyzse5PRVUfMzsQqqCzEAE1+yP/BP3/gn /wCDP2NfBX9p6oLfVfHWrW6DXtbVdyQDr9ltSwDLCDjJ4aRgGbACIi/sA/8ABP8A8F/saeDDqWov b6t461W3267r0aNtjjyGFrbhuViUgZbAaRhuYABET1744fHH4c/s7/Di/wDih8UdejsdMsY88sPM uJP4YYl/jkY8BR9TgAkfC5vm9TMKn1fD/D/6V/wD+xPDPwzwfBmD/tnOeX6xyt6tctKNrvXbmtu+ my6tnxv+N3w5/Z4+HGofFD4oa9HYaXp6ct96SeQ/dijXq8jHgKPqcAEj8XP21f21viN+2X8Rm8Qe IXksPD+nyMvh/wAOpKTHax/337PMw+8/4DAGKT9tT9tT4i/tl/EZvEXiOR7Dw/YSOvh7w/HJmO0j J++/9+Zhjc34DAArxn3r28myaODj7Wsrzf4f8HzPyPxS8Uq/FdeWX5dJxwkXq9nUa6v+72j83rZI 69qKKK+hPxMKKKKACv2o/wCCRf8Ayj+8B/8AXTVf/Tpd1+K9ftR/wSL/AOUf3gP/AK6ar/6dLuvm +J/9xj/iX5M/ePo9/wDJZV/+vEv/AEumfSlFFFfBn9kBTXOOTTqhvrqGytnu7mRUjjRmkkdtoVQM kk0CbSV2fCH/AAXF/aLfwf8ACvR/2dvDmrrHfeKbgXmuQx43CwhbKIf7oeYKRjqIWHQkH8uOcZxX rf7cv7QU37TH7T3ij4mW2o/aNKN4bLw+wjKqLCElYiAeRv5kOed0h6cAeSV+nZTg/qeBhBrV6v1f +R/n94lcTf60cXYjFQd6cXyQ/wAMdL/N3fzCjI6EUV3P7M/wZvP2hPj54V+DdoZlXXdXjhvJrdfn htV+eeQe6xLI3pkc16FSpGnTc5bLU+LwODr5hjKeFoq85yUUu7bsj9Tf+CO/7Pp+D37Klv431nTH h1jxxcf2nP50YDragbLZf90pmUd/31fQHx++EWj/AB3+DHiT4Ra8u2317SZrYTY5hkIzHKPdHCsP dRXUeH9E0/w3pFroGj26Q2djbpBawxj5Y40UKqj6AAVdflCDX5VXxVSvi5Yi+rd/8j/RbJ+HsHlf DdLJ+VOnGnyNd7q0r+rbb9T+dHxP4d1jwd4j1Dwl4hs2t9Q0m/ls76Bx80c0blHU+4ZSKpV9ff8A BZ39n+P4VftPx/E7SYpF03x5Y/bGzHhI72HbFOqkDnK+VIc87pG7Yr5B6cV+m4LERxWFjVXVfj1P 8/8AirI63DfEGIy2p/y7k0n3i9Yv5xaYH1r64/4I4/tGN8H/ANpxfhtresC30Tx1bixkjlwI1vky 1s+T0JJeIAfeMq55Ax8j1Y0jWdT8O6ta+INEvHt7yxuY7izuI/vRSowZXHuCAfwoxmHjisNKk+q/ 4b8SeGc8r8OZ9h8xo705JvzW0l81dfM/ouicleGqavOP2VvjjpH7RnwB8L/GDS7iGR9V01DqEcKl VgvF+SeLB5G2VWA5ORggkEE+j1+WVKcqc3CS1Tsf6MYPF0MfhKeJoSvCaUk+6auvwCmzfcP+7Tqb N9w/7tQt0dMvhP58fjz/AMly8af9jZqX/pVJXJ11nx5/5Ll40/7GzUv/AEqkrk6/XKP8GPovyP8A M/Nf+RpX/wAcv/SmFfsn/wAEb/8AkxHw9/2FtS/9K5K/Gyv2T/4I3/8AJiPh7/sLal/6VyV4PE3/ ACL1/iX5M/Yfo/8A/Jb1P+vM/wD0qB7r8ePgV8N/2jPAE3wx+K2iyX+j3E8c0lvFdSQsXjbcp3Rk Hg+9eHr/AMEef2ECvPww1D/worz/AOOV9R/x/hS18TSxmKox5ac2l5Nn9a5hw1w/m2I9vjcLTqTt a8oJu3a7Wx+bX/BTD/gnr+y3+zf+zDdfEv4TeCLqx1aPWLS3S4m1i4mHlu5DDa7lentxX50D2r9h f+C0v/Jkd9/2MWn/APow1+PVfdcPVq1bAuVSTbu9/kfx343ZXluU8YQoYKjGlD2UXyxSirty1skt dArX8AaVZa9480TQ9Si8y3vdXtoLhAxBZHlVWGR04JrIroPhN/yVTwz/ANjDZf8Ao9K9yp/Dfofl GCjGWMpqSunJfmj9eF/4I9fsIk8/C/UP/CivP/jlL/w55/YN/wCiX3//AIUd5/8AHK+ol6Utflv9 oY//AJ+y+9n+hn+o3Bv/AEL6P/guP+R83eDf+CU/7F3w/wDGOk+PPCvw4vodS0TU4NQ02ZteunWO eGRZI2KtJhsMoODkHFfRkYbGHU1LRWFWvWryvUk366nsZbk+U5PTlTwNCFJSd2oRUU33aXU+bfGX /BKf9i34geMtW8eeKfhtfS6lrepXF/qEy69doJJ5pGkkYKJAFyzE4GAOlZ3/AA55/YN/6Jff/wDh R3n/AMcr6hc4XOKx/FXj3wV4H05tX8aeLNN0e1jXL3Gp30cEa/8AAnIFbxx2P0jGpL72ePiOD+DO aVavgqN3dtuEN+rbaPnb/hzz+wb/ANEvv/8Awo7z/wCOUv8Aw54/YO/6JdqH/hRXn/xyvQL79vr9 izTZTb3X7Tng1mBx+41qOUfmhI/WoR/wUJ/Yl/6OZ8Kf+DD/AOtXR7bOOjn/AOTHjPKfCyLs6WE/ 8pHCf8Oef2Dwf+SX6gP+5ivP/jlUde/4IzfsPatp0llp/hHWtMlkUhLyy8QTNJGfUCUupP1UivSf +HhP7Ev/AEc14T/8GH/1qG/4KE/sSYwf2mfCn/gw/wDrVSr51HrP8SJZR4VVIuLp4TXzpfoz8sP2 8/8Agn942/Yp16xvBrn9u+FNYkaPTda+zeXJHMBuMEy5ID7cspBwwDcDBA+eq/Vj/gph+1Z+yN8b f2PfE/g7wd8avDuta0slpcaTY2l0HlaVLmPJTjr5ZfPsTX5TjpX2mT4nE4rCXrpqSdtVa/mfyZ4o cP5Hw/xJyZRUjKhUippRkpKLbacbpvtdX6OwV237NnxKvfg98f8Awb8TLJ2H9j+IrWa4VTzJB5gW VP8AgUZZfxriadBK0E8c6D5o5Ay49Qa9KpFVKbi+qPhMvxVTB46liIOzhKMk+zTTP6NLZ1kiWRBu VlBBoqr4YmM3hvT5ieXsoj+aCivyGXuyaR/pjSk504y7pGhR3oo71RZ/Pd8d/wDkuPjT/sbNS/8A SqSuUrq/jv8A8lx8af8AY2al/wClUlcpX65R/gx9F+R/mfm3/I0r/wCOX/pTCiitr4d/Dvxr8WfG unfDv4d+HbjVNY1W5WCys7WPczMerE9FRRlmc4VVBYkAE1UpRjG8nZHHRo1sRWjSpRcpSaSSV229 kkHw7+HfjX4s+N9N+HPw68PT6rrWr3Ag0+wt8bpWxknJICqqgszEhVUFiQATX7Jf8E//APgn/wCC P2NfBf8AaWppb6t441S3X+3Nd8oEW6kKTaWxI3LCGGSeGkYBmwAiI79gH9gDwX+xp4Ia/wBQNvqn jjVrdV1/XFBZIhnP2a23AFYgepwGkYBmAARE9b+OPxv+HP7O/wAONQ+KXxR11LHS7Ffm7yTyH7sM a5y8jHgKPcnABI+FzbN6mPqewofD5bv/AIH5n9ieGfhnguDcH/bOc2+sWvrblpRtrrtzW3fTZdW+ tJGCF7VwXxn/AGZvgn+0Qtinxp8Bx69Hpu42MN1dTLHEWxuYIjhdxAA3YzjjNfl/8Sv+Czv7XXiP xzqGs/DrWdP8P6HJP/xLdJbSYbhoYhwN8kiks56t0GTwAKxP+Hwf7d//AEU7T/8AwnbT/wCIqaXD uZxtOLSfrqjTMPHLw/rKeGrUqlSF7P3IuMrdbOS0e6uj9If+HY/7CmOf2d9J/wDAq4/+OUv/AA7H /YU/6N40n/wKuP8A45X5uf8AD4L9vD/op+n/APhO2v8A8RR/w+C/bx/6Kfp//hO2v/xFdP8AYuef 8/f/ACZ/5Hh/8RY8JP8AoXP/AME0/wD5I/SP/h2P+wp/0bxpP/gVcf8Axyj/AIdj/sKf9G8aT/4F XH/xyvzc/wCHwX7eP/RT9P8A/Cdtf/iKP+HwX7eP/RT9P/8ACdtf/iKP7Fzz/n7/AOTS/wAg/wCI r+En/Quf/gml/wDJH6R/8Ox/2FP+jeNJ/wDAq4/+OUf8Ox/2FP8Ao3jSf/Aq4/8Ajlfm5/w+C/bx /wCin6f/AOE7a/8AxFH/AA+C/bx/6Kfp/wD4Ttr/APEUf2Lnn/P3/wAml/kH/EV/CT/oXP8A8E0v /kj9Ij/wTH/YUHP/AAzvpP0+1XP/AMcr1j4W/DHwJ8GvB1l8OPhn4bi0nQ9PMps9PgZmWLzJGkbB Yk8u7Nyepr8hf+HwP7eHX/hZ+n/+E7a//EV+mX/BPH4xePfj9+yP4U+LXxO1SO81zVGvxeXMNskK v5V9cQp8qAKMJGo4HOM15+ZZfmOFoKdefMr2tdvX5n23AfG3A3EmbTw2TYX2VVQcm/Zwh7qcU1eL b3a08j22iiivEP1oY/XrXzL/AMFXf2jm+AH7KOp2WiajHDrni5v7H0sFvnWORT9okHf5YtwDdAzp 6jP01Jk54r8dv+Cwv7RI+NH7UU3gHQ9WjuND8DQHTofJbKm9JBumz6hgsR7AwnHcn1slwf1zHRT2 jq/lt+J+a+LHE3+rPB1acJWq1f3cO95bv5Ru/Wx8n852kYxRRRX6UfwUwrsPgj8evir+zn4zb4g/ B3xKuk6w1m9r9sbT7e4xE5UsoE8bqMlRyBn361x9GT2NTOEakXGSumb4XFYnA4iNfDzcJxd1KLaa fdNapn0h/wAPbv8AgoEOP+F8Ln28MaZ/8jUf8Pbv+Cgh4/4XwP8AwmNL/wDkavm/8KK4/wCzcv8A +fUf/AUfS/6+cbf9DGv/AODZ/wCZ6p8ef22v2lP2mvDtn4V+N3xDj1uxsL0XdrD/AGJZ25jl2su7 fBCjfdYjGcHv0GPK+lA44FFdVKjTox5acUl2R4GYZlj82xDxGMqyqTdk5Sbk2ltq9dAoJ7UUVocJ +h3/AAQv/aLks9Y8Rfsw+ItThWG4U6z4djkbDGUbUuYlPfKiOQKORskPPJH6XDpX8+v7P3xg134A fGvw38X/AA8/77Q9Ujnkj/57Qn5ZYj7PGzL6jdkc1++3g7xfonjvwpp3jPwxqUV5p2q2MV5YXUJy s0MiB0cexUg18DxJg/YYtVVtP81/Vz+zvAnib+1uGZZbVl+8wzsvOEtV9zuvSxqU2b7h/wB2nA5F Nm+4f92vnVuj9xl8J/Pj8ef+S5eNP+xs1L/0qkrk66z48/8AJcvGn/Y2al/6VSVydfrlH+DH0X5H +Z+a/wDI0r/45f8ApTCv2T/4I3/8mI+Hv+wtqX/pXJX42V+yf/BG/wD5MR8Pf9hbUv8A0rkrweJv +Rev8S/Jn7D9H/8A5Lep/wBeZ/8ApUD6o/j/AApaT+P8KWvgT+0D5I/4LS/8mR33/Yxaf/6MNfj1 X7C/8Fpf+TI77/sYtP8A/Rhr8eq++4a/5F7/AMT/ACR/F/j9/wAlvD/rzD85BXQfCb/kqnhn/sYb L/0elc/XQfCb/kqnhn/sYbL/ANHpXv1P4b9GfjOB/wB+pf4o/mj+htelLSL0pa/Ij/TYKjmkVOGq SvmT/gq5+0tqX7Of7Lt4nhW9kt9f8WTf2PpVzDNsktldGM06kchljBCsCCrOpyMVth6M8TXjSju3 Y8vO82wuQ5TWzDEP3KUXJ+dtkvNuyXmzwf8A4KEf8FddV8I+INQ+Cf7LGoQm8s2aDWPF5VZVglB+ aK1VsqzDlWkYEAghRkbh+dnjXx744+JGuzeKPiD4u1LW9QuG3TXmp3jzSMfqxOB7DgdBgVksxdtz MWJ5yaOPSv0vA5fhcDTSprXq+rP4F4s44z7i/HSrYyq+S/u002oRXRJbX7t6sKKOByTxR+Nd58dr uFFAyegowe6mgQe1FHQZNFABR1ooOe1A4/Ej+ijwn/yKel/9g+H/ANFrRR4T/wCRT0v/ALB8P/ot aK/Hanxs/wBPMN/u8fRfkalHeijPNUWfz3fHf/kuPjT/ALGzUv8A0qkrlK6v47/8lx8Z/wDY2al/ 6VSVnfDr4deNfi344034b/DrQJtU1rVrkQWNjb43O3Ukk4CqACzMSFVVJJABNfrVOUY4eMpOySX5 H+aePo1sTnVWlSi5SlUkkkrttydkkHw7+HXjj4teNNP+Hfw38NXGr61qk3lWOn2qjdI2CSSSQFUA FmZiFUAkkAEj9lP2Av2APBP7GXgv7ffNbav441SDbrniBYiFjQkN9ltw3KxKQMtw0jKGYABEQ/YA /YB8E/sbeCP7Q1AW+reONWt1/t7XPLBEAIBNpbEgMsIYZJOGkYbmwAiJ618cfjj8N/2dvhxffFH4 o68tjptimB/FJcSHO2GJeryMRgD8TgAkfEZvm9TMKn1eh8O3+L/gfmf1t4Z+GeC4LwP9tZy4/WOX m1ty0Y21125rbvpsurZ8cvjn8OP2dvhxf/FD4oa8ljptjH8q8GW5lIO2GJc5eRiMBR9TgAkfi3+2 l+2j8Rv2yviO3iTxIXsdBsXdPD/h+OTMdnET99j/ABzMMbn9sDAAFH7aH7afxH/bK+I7eJvE0slh oNjIy+H/AA7HMTFZxnjc3Z5WABZyPYYAArxvvXu5Pk8cFH2tXWb/AA/rqfj/AIpeKWI4srPL8vbj hIv0dRrq/wC7/Kvm9bJHWiiivoD8VCiiigAooooAKKKKACv2o/4JF/8AKP7wH/101X/06Xdfivmv 2n/4JFkf8O//AAGP+mmq/wDp0u6+b4n/ANxj/iX5M/ePo9/8llX/AOvEv/S6Z9K0UUm9f71fBn9k Hmn7XHx20/8AZu/Z+8UfF67mhWfS9NYaXHcZ2zXsnyQR4HJBkZcgdsnjGR+C2qapqGt6pcaxql00 9xdzvPcTSfekkY7mY+5JJr9Af+C6v7RZ1TxP4f8A2ZfD2pQvDpqrrHiFIm3Mtw4ZbeJsfdIjLuVP JEsZ4GM/nueDgV99w5g/YYP2slrPX5dP8z+LvHTib+2OKFl9KV6eGXL5c7s5fdpH1TCiijtmvoj8 QDnGcUbTX6m/8E0f+Cd/wS1n9lrS/H3x9+D2m6xrfia4k1G3bVIdz21mcJAgweFZU871/fc+g+gR /wAE5/2In6fs2+G//AVv/iq+br8SYWjWlT5W7O11Y/dMn8B+Is2yujjfrFOn7SKkoyUrpPVJ6WvY /DHFGK/c7/h3L+xH/wBG3eG//AY//FUf8O5P2I/+jbfDf/gMf/iqy/1qwv8AI/wPS/4l14i/6DKX 3S/yPwxxRnAya/c7/h3J+xH/ANG2+G//AAGP/wAVWL8RP+CZf7HnifwFrXh3w38DtD0nUb7S54NP 1S1gIktJ2QhJlOeqsQ3px3px4owspJOD/Azq/R54jp05SWKpNpNpWlr5bdT8S/bFFXvE3hrXfBni TUPCHijTJLPUtLvJLTULOX70M0bFXQ/RgR1IqjmvpoyUopo/AalOpRqOE1Zp2a7Nbi7mxjNfrL/w RS/aHPxK/Z5u/gxr19C2qeB7zyrWNeHfT5iXjY+u2TzU46KEB5OT+TNe8f8ABN79og/s3/tXeH/E mo6hDb6LrUn9keIJLl9scdvOygSs3RRHII3JPGFbOM5HmZzhPrmBlFLVar5H6H4V8Tf6scYUKs3a nUfs5+kmrN+jsz9w1+70pJvuH/doiYNGrA/eGaJT8jf7tfmkeh/e7+E/nx+PP/JcvGn/AGNmpf8A pVJXJ11nx5/5Ll40/wCxs1L/ANKpK5Ov1yj/AAY+i/I/zQzX/kaV/wDHL/0phX7J/wDBG/8A5MR8 Pf8AYW1L/wBK5K/Gyv2T/wCCN/8AyYj4e/7C2pf+lcleDxN/yL1/iX5M/Yfo/wD/ACW9T/rzP/0q B9Ufx/hS0n8f4UtfAn9oHyR/wWl/5Mjvv+xi0/8A9GGvx6r9hf8AgtL/AMmR33/Yxaf/AOjDX49V 99w1/wAi9/4n+SP4v8fv+S3h/wBeYfnIK6D4Tf8AJVPDP/Yw2X/o9K5+ug+E3/JVPDP/AGMNl/6P Svfqfw36M/GcD/v1L/FH80f0Nr0paRelLX5Ef6bCFgOa/L3/AIL3eLLy9+LngPwUZD9msPD9zeqm esk04Qn8oB+dfqCQdpr8sf8AgvNot5a/HnwVr7xt9nvPCjwRvjgvFcuWH4CVPzr2+HlF5pG/Z/kf k/jZKtHw9xHJ1lTT9OdHwmMgfWg9OaMg8iiv0U/hg9o/YL/ZTh/bB+P1v8MdT12bTNLtdPl1HWLm 2UNN5EbKuyPcCAzO6DJGAMnBxg/plov/AAR6/YK03TIbK/8AhTfajNGoD3l54mvlkkPqRFMiZ+ii vzZ/4J3/ALVmgfsg/tDx/EfxhpF1eaLfaXNpuqfYVDTQxuUdZFUkBsPGgIyOCSMkAH9VPDn/AAUh /Yi8SaVHqtl+0X4fhSRQfL1CZrWRfYpKFYH8K+Pz6pmkcUlR5uSy+G/z2P6d8HcN4d1uH5SzJUXi eZ83tXG/Lpy2U9LenXfoc4P+CRX/AAT+/wCiHzf+FVqn/wAk0v8Aw6L/AOCfvX/hR83/AIVWqf8A yTXY/wDDwP8AYs/6OW8I/wDg2T/Gj/h4D+xYwx/w0v4R/wDBtH/jXh+1znvP/wAmP2D6j4W/yYT/ AMpHzV+31/wTf/Y6+CX7Jfi/4o/DL4USabrek21u+n3jeIL+byma6ijPySzsp+V2HIPX1Ar8va/W r/gox+2L+y98Tf2NfG3gfwD8dPDeratfWtqLPT7HUkeaYrdwuQq55wqk/QV+So6V9dw/LFSwsvb8 17/av2Xc/mbxqo8P0c/w6yhU1D2evsuW1+Z78ul7BQaKK94/G4/Ej+ijwn/yKel/9g+H/wBFrRR4 T/5FPS/+wfD/AOi1or8dqfGz/TzC/wC7x9F+RqUx+Wp9Ryru7mqLPwR8e/Cz4g/Ev9rPxR8LPAfh e61PXb7xxqNrBp9rGWYSC7kDFj0RFwWZ2wqqCzEAE1+s37AP7Afgr9jLwQ17eNb6p431a3UeINdQ Eoig7hbW4YApEpxk4DSMoZsAIieleAP2avg78OPit4o+Nvhnwfbw+JvFkytqmqMoLhAkYMUf/PNG aMSPjl3OWJ2qFufHT48fDb9nX4bX/wAUPifr8djptihCLkGS5lwdsES/xyMRgD8TgAke9j82rY+E cPRVlZJ92/8AL+mfjfBvhplPBeKxGc5lOMqnNOUZP4acLvXX7TW76bLq2745/HP4cfs6/Di/+KPx R11LHTbFeBwZbiQ/dhiX+ORjwFHuTgAkfi3+2h+2f8Sf2yviQ3ibxPI1joNizJ4f8PwyZjtIs/eb s8zDG5/wGFAFJ+2h+2h8Rv2y/iRJ4n8USvY6FYyOnh3w+ku6OziJ+83TfK2Bucj2GFAFeNAjrtNf Q5Nk0cFFVaqvN/h/Xc/DfFLxSxHFmIeX5fJxwkX6Oo11f93tH5vXZw+lFJu/2TRu/wBk19CfiotF Ju/2TRu/2TQAtFJu/wBk0bv9k0ALRSbv9k0bv9k0ALRSbv8AZNKPm5zQAA4PNfth/wAEodLudJ/Y J8AWt2mGeG/nXj+GTULmRf0YV+Uf7JP7JXxL/a8+JkPgnwPp8kenwyI2ua5JGfI06A5+Zj3cgEKn Vj6AFh+5Xwz+H/hn4V+AtG+G/g+z+z6Xoemw2VhCzFmWONAq5J5Y4HJPJOSetfI8UYqm6caCet7v y0P6Y+j5w7mFPH4jOKkHGk4ezi3pzNyjJ27pcqTfmbx54rG8beLNC8AeD9U8beJr6O103SLCa8vr iRsLFFGhZmP4CtmviH/gtn+0O/w8+AFh8E9Eu4/t/ji8xfLuG+KwgKuxAzwWl8pcnII3gc8j5bB4 eWLxUaS6v8Ov4H9EcVZ7R4a4fxGZVf8Al3FtLvJ6RXzk0j8zfjt8Wtb+O3xi8SfF7xCu2617VZLr ylORDGTiOIeyIFUZ5IXnmuToDA8k0ZX+9X6rCMacFGOy0P8AOfFYivjMVPEVneU25N923dv7wxng 13H7NXwY1L9oT48+F/g/psUjf21qscd48Jw0NqvzzyZ7bYldvw7nAPDkrj735d6/Qz/ghR+z6b7W PE37S2t2M22zQaJoLMo8tnfbJcSDuSFESAjgb5Bz248yxSweCnV62svV6I+q4B4dnxRxVhsDb3XK 8/8ABHWX3pW9Wj9IvD2gaZ4X0Sy8OaDZR21jYWsdvZ28a4WKJFCqgHoAAKvUiDCgYpa/LXrqz/Qy EY04qMVZLYKKKKCgqOUAZOKkpCqt1FAH5Af8FmP2fo/hN+08nxM0TT2i0nx5aG8Zl/1Yvo9qXCj0 yDFIc9WkY+uPkPtmv2c/4K2fAO0+NP7IOtatbQN/aXgwHXbFo8cxxKwuFOe3kGRuMHci9eQfxjJG csa/RshxX1rL0nvHR/ofwv4ycN/6v8ZValNWp4j95H1fxL/wK79GgyRyKCeMAdT1oyv96jKf3q9r Rn5TG8dT9wP+CcH7Rh/aQ/ZT8PeKdTu45ta0mP8AsjXtjZb7RAABI3oZIzHIe2XIHSveH+43+7X5 Lf8ABE/9oMfDj9oi9+DOs3MUemeN7PFu0hwUv7cM8QBz0eMyrjqW2Ae/6zlkAYZ/hr8zzfCfU8wl FbPVejP788MeJv8AWjg6hiJu9SC9nP8AxRS1+as/Vn8+vx5/5Ll40/7GzUv/AEqkrk66v49Ef8Lz 8ac/8zZqWf8AwKkrlMr/AHq/R6P8GPovyP4RzVf8Klf/ABy/9KYV+yf/AARv/wCTEfD3/YW1L/0r kr8bMr/er9k/+COBH/DCPh7/ALC2pf8ApXJXhcTf8i9f4l+TP2HwA/5Lep/15n/6VA+qP4/wpaT+ P8KVulfAn9nnyR/wWl/5Mjvv+xi0/wD9GGvx6r9hP+C0h/4wkvv+xisP/Rhr8ewVxy1ffcNf8i9/ 4n+SP4v8fl/xm0P+vMPzkFdB8Jv+SqeGf+xhsv8A0elc/lf71dB8KGQfFPwz83/MwWX/AKPSvfqf w36H43gE/r1L/FH80f0Nr0pajDe9SV+RH+mgV8cf8FpvgBqHxW/Zqt/iV4e09ZtQ8C3jXlxgfP8A YJAEuMf7pWOQ/wCzGx7V9j1V1XT7LVbObTdStI7i3uIWiuIJkDJIjDBUg8EEcEV0YXETwuIjVjum eHxJkmH4jyPEZbW2qRav2e6fyaTP5zcZ5or7C/4KE/8ABLrx/wDATxJffFD4IeHLzWvAtw0lzNb2 cZluNE7skij5mhGSVkAO1VO8jAZvj0jBwCT6+1fp2FxVHGUVUpO6/FeqP8+eIuG824XzKeCx9Nxk no+kl3i9mn/WoUUZy3Boyvc11HghRRlf71GV/vUAFFGV/vUZX+9QAUUZX+9QSmOvagqN+ZH9FHhP /kU9L/7B8P8A6LWijwkf+KT0vH/QPh/9FrRX4/KPvPU/06w8ksPD0X5GpTSpPenUUGg0pnvXnfxz /ZP+A/7Sb2LfGrwUdcXTd32GKXUbiOOIt95gkciruOAC2M4AGcDFejUVVOcqcuaDs+6OfFYTC46g 6OIgpwe8ZJNP1T0Pnn/h1V+wXj/kgdr/AODS8/8Aj1H/AA6p/YL/AOiB2v8A4Nbz/wCO19DUV0fX sZ/z8l97PF/1Q4V/6AaP/guH+R88/wDDqn9gv/ogdr/4Nbz/AOO0f8Oqf2C/+iB2v/g1vP8A47X0 NRR9exn/AD8l97D/AFP4U/6AaP8A4Lh/kfPP/Dqn9gv/AKIHa/8Ag1vP/jtH/Dqn9gv/AKIHa/8A g1vP/jtfQ1FH17Gf8/Jfew/1Q4V/6AaP/guH+R88/wDDqn9gv/ogdr/4Nbz/AOO0f8Oqf2C/+iB2 v/g1vP8A47X0NRR9exn/AD8l97D/AFP4U/6AaP8A4Lh/kfPP/Dqn9gv/AKIHa/8Ag1vP/jtH/Dqn 9gv/AKIHa/8Ag1vP/jtfQ1FH17Gf8/Jfew/1Q4V/6AaP/guH+R88/wDDqn9gv/ogdr/4Nbz/AOO1 LZf8Etf2D7G5S6i/Z/09mjbcqzX91Ip+qtKQw9iMV9A0UfXsZ/z8l97CPCPCsXdYGj/4Lh/kY3g7 4f8Agv4eaFD4Y8A+FtP0XTbcYhsdLskghT6KgAFa6Js75p1Fczk5O7Pep06dGmoU0klskrJeiCvm v9qX/gl78FP2ufif/wALV+JfxC8ZWt6unxWUNppN5aR28MMZYgKJLZ25Z2Y5Y8scYHFfSlFa0a9b D1Oem7PucOa5PlmeYX6tj6SqU7p8strrZ/I+JP8Ahw9+yj2+JvxD/wDBlYf/ACHR/wAOHv2Uf+in fEP/AMGNh/8AIdfbdFdf9rZl/wA/X958z/xDXgP/AKF1L/wH/gnxJ/w4e/ZR/wCin/ET/wAGVh/8 h19Rfs6/s/8Agr9mX4S6Z8G/h/c3k2m6X5pjuNRZGuJmkkaRmcxoik5bHCjgD613NFYV8di8VHlq zbXmerlHCPDOQ4h18uwkKU2rNxVnbR2/BAKKKK5T6MKKKKACiiigCG9sbfULeS0ukDRyxlJEYcMp GCK+Lrz/AIIS/sn3d5Ldp8RfiBCJJGZYYtQsdseTnaM2h4HQV9r0V0UMXicLf2Umr9jw844ayHiD k/tLDxq8l+XmV7Xte3rZHxJ/w4e/ZR/6Kd8Q/wDwY2H/AMh0f8OHv2Uf+infEP8A8GNh/wDIdfbd FdP9rZl/z9f3nh/8Q14D/wChdS/8B/4J8a+Ef+CIv7NHgfxZpfjXw/8AFX4hx3+j6jDfWMh1Kx+S aKQOh4sx0ZRX2L9lGMbzUtFc1fFYjFNOrJyt3Peyfh3I+H6c4ZdQjSU2m1FWTa0ufGvi7/giF+y9 4z8Wap4w1L4j+Po7jVtRmvLiO31CxEaPLIXYKDaE7QW4yScdzWd/w4e/ZR/6Kd8Q/wDwY2H/AMh1 9t0V0LNsxirKqzw6nhxwLVqOc8vptt3btu38z4k/4cPfso/9FO+If/gxsP8A5Dr6a/Zn/Zx8G/ss fCSz+DfgLV9UvdNsbieaG41iSN5y0shkbJjRFxliBhRx616DRWVbH4zEw5Ks215npZTwfwvkOKeJ y/CQpTaa5oqzs7Nr8EGOc0EZGKKK5D6Q85/ag/Zl8EftYfCuX4R/EDWdWsdPmvYblrjRpo45g0bZ AzJG64Pf5c+4r5qH/BB79lH/AKKd8RP/AAY2H/yHXrn/AAVJ8V+KvA/7A3xK8V+CvEd9pOp2mixm 11HTLt4J4S1zCpKSIQy5UkHB6E1+aH7I/wCzf+2Z+1h+z1efH6w/4KP6x4ajtL66tTpWueLr8Mxg RW3mTz8Kp3YztOMHrXVRzDF4WPLSm0vI+bzbg/hfPcV9YzDCQqzsleSu7LZfifaf/Dh79lH/AKKd 8Q//AAY2H/yHVzw9/wAEOP2W/DXiCx8R2XxK+IDzafeRXMKTahYlGZHDANi0Bxkc8ivm3/glP/wV T8T/AA3+BnxIn/a58aeIfE2h+CptNuNL1Rt19fp9rneBrYySODIu8I67m+UeYBxtUfbvxj/4KR/s 6fA/9nLwb+1B4xGvt4b8dNbjQ0stLWS5/ewPMPMQyKEwqEH5jyRjI5rZ5tmLWtVnmx8N+BISUo5f TTXl/wAE+gljC96dX5F/Hn9vm+/Z1/4LU33j/wAd/FDxjN8MdPtrO4m8O6bfTSQPHc+F4fKK2jSL H/r5kkOQCGy33hX11p3/AAU5/Zm/a5/Z9+J1h8A/iFqFl4m0f4f6tfR6ZqFu1lfRKlrJ+/iIJDbW 28oxKkjOOK8659sfXVIy7u9fil8P/wBrv45eGv8Agnh4V8Za3+2V428M6lefFLWrNtYjgk1a4u4U srB1gZpJlZURnZhyRl2+p/R/9qD/AIKhfsjfsf8AiS38AfFrxzez+IJLFLmbR9E09rqeCNlyplII SNmA4VmDYYNjac09APoySBZF2t+NeNfFz/gnr+x/8b9SfW/HnwT0s6hJkzX+l77KaU/3naBk3n3b JrynSP8AgtT+xtq/wZ1j47QQ+Lk0PQ9es9Huo5NDT7Q9zcxTyxhF84grst5CSWGMAc5FO+Dv/BbD 9hL40+OtJ+Hej+L9c0fUtavxZ2H9v6K0ELTMVWNWlRnRN7NtBJHKndtypbSlWqUZc1OTT8nY4cfl mXZpR9ljKMake0oqS+5plHXv+CG/7HGrSvJput+NNLVjlY7PWIXCew86ByfxJrNH/BB39lEDA+J3 xD/8GVh/8h13n7TH/BXL9jL9lT4hXHwq8feLdU1LXrHaNU0/w7phuTZsQGCSOzIm7B5UMWHcA8V8 8/tcf8FLvC/xp8K/Cv4p/s4ftK+L/h/pOpeML7StQtV8LiSTUZofsLFJQJcKgWdcEFs+YeOCD2f2 tmS/5ev7z5eXhvwHOV3l1L/wG35Hpf8Aw4e/ZR/6Kd8Q/wDwY2H/AMh0f8OHv2Uf+infEP8A8GNh /wDIddz+1f8A8FcP2RP2P/Hj/C3xvqeu6/4kt9n2/R/Cenx3ElluUMolaWWKNWKkNsDFgCCVGRmx 4X/4Kw/sgeMf2avE37UPhzxFq11o3g6Wzj8SaQumbdSsmurhLeHMLOFYF5B8yuVwrYJKkUf2xmX/ AD9f3k/8Q14D/wChdS/8B/4J59/w4e/ZR/6Kd8Q//BjYf/IdH/Dh79lH/op3xD/8GNh/8h0nh/8A 4L7fsA67rNvpV1qPi7S47iTa1/qHh0eTD15fypXfGeMhT+XI9Y/al/4Kdfsg/skx6Tb/ABI+IMl9 e65p0eoaXp/hu3+2ST2b/cuNysIxG38JLjcASMgE0f2vmX/P1/eH/ENeA/8AoXUv/Af+CeUf8OHv 2Uf+infEP/wY2H/yHSH/AIIO/soEf8lN+If/AIMbD/5DrqPh9/wWb/Yp+Ifw58W/FeLXPEOlaP4N axTUpNW0XbJPLdtKsEUCRO5kcmF8ggBQMkgAkcfa/wDBwD+whf3kVjb2XjrdLIqKzeHY9uScZOJ/ 6Zo/tfMv+fr+8P8AiGvAf/Qupf8AgP8AwT7c0zTYtL06DTIJGaO3hWOMt1wBgZ96Klt5FmgWVG3K y5U+oorgu2fbxioxsh9FFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHzj/wVwP8Axrm+KX/YFh/9 K4K/On/gmv8A8EffhN+3D+zi3xr8Z/FjxBo97/b91p/2PS7eB49kSxkNl1Jyd5744r9mNd0LSfEu mTaJr2lWt9Z3EZS5s7yBZIpVP8LIwIYexGKr+FPBnhXwLpv9jeDPDGm6RZeY0n2PS7GO3i3HGW2x qBk4GTjnFAH5z/ts/wDBN/4ZfsV/8EuPiJ4U+BtprWtXuoavpOo+JNW1BlkuJYLe6Xb8saqqxRCS RsAcb3YnHI+Tv2uf22fgh8bv+CcHwZ/Zu8G3epDxV4Hmthr1reaeY40EVpNAWSQEq4LMCMc7TyAQ QP3YurSG8ia3uYY5I5FKyRyLuVgexB6iuOf9nD9n6Rmkl+BXg1mY5Zj4ZtOSep/1dFgPyH8b/Gn4 W/s8f8FrbP4xfGoSN4Z0fw7pP9peXY/am/e+DbeGPEQzu/eyR9uOvaqvhPxH4Z/ag/4KF/Fv9oj9 mTwLeaT4Bsfhr4juNSP9mC3i2P4entN7qmVjM10RIqk7mAJIBDY/YzXfgT8FfFGoya14l+EHhfUL 6ZVWW8vvD9tNK4VQigs6EnCqqjJ4AA6CtLRvh34F8O6FN4Y8P+C9IsdNuY2S50+z02KKCVWBDBo1 UKwIJBBHI61PKB/Pz43P/Gr34fkn/msniH/03abX0t448f8Aw7/Yt/4LO+KvjF+2L8Or7UPDus2r 3XhzUG0sXSw+dDCsN3GrECQRrHNAduSh3YGVxX6uy/Aj4L3GjQ+Hbj4Q+Fm0+3maa3sG8P2xhikY AM6oU2qxAALAAkAZ6VqeJ/AHgvxrbJZeMfB+k6tDHny4dU0+O4RMjHAdSBxRygfml+3v/wAFbbXW f2crfxF/wTuuL3SbVvEiaf4u8UL4cFtJYM0LSW8Cb12gyhJvnxkCEgYLZr4l/aW+KGofFTxd4F1j Wv20Lv4uXlvfbNt94curGTSULwnbvnUCQMcjCkhSh7MM/vxp3wX+EmkaPd+HdK+Fvhu10/UGU31j b6Hbxw3JXO0yIE2vjPGQcdqpQ/s3/s9wsssfwK8Gq6sCrL4XtAVI6Y/d0WA/Jj4M/GH4VfsDf8FT /i/4g/bZ8D31z/bGoao+i6xJpP2sxi5vPtEdyqNyUmhwA6BmUnbjBcjb/wCCrP7S/wADf2qtD+A/ xJ/Z8nkk0O38a6pYSRy6W1mY7hG05mGxgP4ZEO4ZBz6ggfrH4r+GXw88eCP/AITjwHouteT/AKn+ 1tLiuNn08xTj8Ko/8KM+DQsLXSx8I/C/2WxuGnsbb+wLfy7eVtu50XZhWO1ckAE7R6CjlA/Lv4Q/ GL4cfsCf8FfvjF40/bGivNDtfE39pT+G9en0Wa5UwXN6s8Lp5SO5RolMe9FIDKyNjDY+dbrSNT+L HhH9rX9qf4Y+GLrSvhvqPkwWnmgRK0t34q0y5t4RGDjcsMbuwXIi3KucOuf3W8c/CL4X/E+CO1+J fw38P+Io4WzDHrujQXixn1USo2KmX4X/AA6Xwj/wr9fAWi/2CQo/sT+y4fseFYMB5O3ZwwDDjggE dBRygfkD8YfDXhw/8G93wp8RHQbP+0P+E7uB9u+yp52P7S1dcb8bsYAHXoAK8O+M/hf4h/CX4/8A wl+Kvinx1feDNN1z4Z+Er7wv42j017wWUcWg2cBdI15LRTRsCq5dcq4BJXP71y/Cn4bXHhGLwDcf DzQX0OGQvDoraTCbSNixfKw7NgO5mb7vVie5qbVPhr4B1zw/beE9c8D6NeaXZxrHaabdaXFJbwIo 2qqRspVQFwAAAABgU2rgfknP49+BP7Qf7G3xA8J/tQf8FLNa8XWlr4m0OXRfEDeBdRYaNfNHfeWh hdA0ySok4O0jb5Yy2SoPlOtft3ftAfAW38OXHwA/4KPal8RHs7uG2j8KzeD7q3t47dFwqsLuPa6n CxbV+bDcEYzX7XQ/AD4H22nz6RbfBnwnHZ3Ukb3Vqnhy1EczJu2My+Xhiu98E8jc2OtO0n4CfBDw /qMOs+Hvg54VsLy3bdBd2fh62iljb1VljBB+hpcoHQeGL7UNT8NafqWr6c1ndXFjFLdWrHJhkZAW T8CSPwoq6i7V20VQH//Z ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html





www.alfapublicaciones.com

ISSN: 2773-73= 30                        =                                       =                      Vol. 1, N° 2= , p. 17-29

                        =                                       =                                       =           julio-septiembre, 2019

Educación = Continua                        =                                       =                     =                                       =      Página 10

 

------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/image013.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkI CQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQ EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCAD9Av8DASIA AhEBAxEB/8QAHQABAAIDAQEBAQAAAAAAAAAAAAgJBQYHBAMCAf/EAGAQAAEDAgMCBQsMDwQIBAcA AAABAgMEBQYHEQgSFCEiMUETFxhRVldhlJW00hUlMzc4QnFzdYGEswkWJDI0NTZDVHR2kbLT1CNG hcRSU2JygpKhpXexwuFjZYOitdHw/8QAHAEBAAICAwEAAAAAAAAAAAAAAAUGBwgBAwQC/8QASBEA AQIDAQkMBwcEAgIDAAAAAAECAwQFEQYHEiExQVFxwRMUFSJSYXKBkZKx0RYyNDVUc6EXMzZTgrLx QqLS8COzQ+FEYpP/2gAMAwEAAhEDEQA/ALUwAAAAAAfKpqaajp5KqsqI4IImq6SSR6NYxqc6qq8S Icuvu1JkTh+d1LU4+pqqVq6KlBBLVN+Z8bVYv/MdkOFEi4mNVdR45yoydPRHTcVsNF5TkTxU6sDi fZjZC901b5Mn9EdmNkL3TVvkyf0Tt3nMchexSN9KaJ8XD77fM7YDifZjZC901b5Mn9EdmNkL3TVv kyf0RvOY5C9ij0ponxcPvt8ztgOJ9mNkL3TVvkyf0R2Y2QvdNW+TJ/RG85jkL2KPSmifFw++3zO2 A4n2Y2QvdNW+TJ/RHZjZC901b5Mn9EbzmOQvYo9KaJ8XD77fM7YDifZjZC901b5Mn9EdmNkL3TVv kyf0RvOY5C9ij0ponxcPvt8ztgOJ9mNkL3TVvkyf0R2Y2QvdNW+TJ/RG85jkL2KPSmifFw++3zO2 A4n2Y2QvdNW+TJ/RHZjZC901b5Mn9EbzmOQvYo9KaJ8XD77fM7YDifZjZC901b5Mn9EdmNkL3TVv kyf0RvOY5C9ij0ponxcPvt8ztgOJ9mNkL3TVvkyf0R2Y2QvdNW+TJ/RG85jkL2KPSmifFw++3zO2 A4rHtiZBvejXYrqo0X3zrZU6J+5iqdCwdmfl9mA1Vwdi623R7U3nQxTaTNTtuido9E8KofD5eNDS 17VRNR6pWt0yefuctMMe7QjmqvYi2m0AA6SUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhMZ4wsOAsN V2LMS1iU9Bb49+R3O568zWNTpc5VRETtqZshnt4Y8qZbxY8uKSdzaang9VKxrVXR8r1cyJF/3Wte v/1D1ScvvqMkPNn1FfuoraXP0uJPIlrkxNTS5cSdSZV5kONZz594yziu0rq+qlobHG/7ktMMi9SY 1F4nSf6yT/aXm6ERDmQBc4cNkJqMYliGqs9PTNSjumZt6ue7Kq/7iTQiYkAAPs8gAAAAAAAAAAAA AAAAAAAAAAAAJrbK+zFLhp9JmfmJRvju2nVbVa5EVFo0VOKaZP8AWqi8li/ea6ry9Ej/ABsubLnq DwTMvMu3eunJntVqnZ+B9LZ5mr+d6WsX2PnXl6JHKsrtSqWFbBgrizrsQzhcFcHuOBVao3jZWMXN oc5NOhM2VceQAfCirqK5UsddbqyCqppU1jmhkR7Hprpqjk4lIEzJalth9wADkAAAAAAAAAAAAAHP c+sxo8r8r7xiWOdsde+Pgdtaq6K6qlRUZp291N6RU7Ubj7hsWI5GNyqeacm4UhLvmoy2NYiqupEt I+5pbauMsN4/vWHcE2fDtVabZUupI56yCeSSV7OTI7VkrW7u+jkTROZEXVdTVOzvzd7nMH+J1X9Q RwBb2U6Wa1EViKawzF3VejxnRWzDmoqqqIlliWrkTFkTISP7O/N3ucwf4nVf1A7O/N3ucwf4nVf1 BHAH1wfLchDp9NboPin/AE8iR/Z35u9zmD/E6r+oJC7M2fdfnXaLvHiKkt9HerTOxXxUTHsjfTyJ yHoj3OXVHNei8a+95tSus6fs4ZjR5ZZs2m9Vs7YbbXKtsuL3KiNZTyq3lqq8yMe1j18DFPNN02C6 C7cm2OzE7czd1U4NUg8IR1fCcuC5FyJbit6lsXVaWXgAqhsgAAAAAAAAAAAAeG+10tsslwuVO1jp aSllnYj0VWq5rFciLppxaoQe7O/N3ucwf4nVf1BNnF35KXr5Oqfq3FS5N0iXhR0fujbbLNpiS+bX KjSIsskjFVmEjrbM9mDZ4kj+zvzd7nMH+J1X9QOzvzd7nMH+J1X9QRwBM8Hy3IQxb6a3QfFP+nkS P7O/N3ucwf4nVf1A7O/N3ucwf4nVf1BHADg+W5CD01ug+Kf9PIt4pJXT0sM70RHSRteqJzaqmp9j zW78X0vxLP4UPSUxcptWxbWoqgAHB9AAAA0PMfPDLTKtvU8W4ijZWubvMt9M1ZqpyKmqLuN+8Reh Xq1F7ZyLah2nZcCSS5fZf1Ua35zNK+ubo5KBHJxMZ0LKqcevvUVOleTCCsrKu4VUtdX1U1TUzuV8 s0z1e97l51c5eNV8KkzI0pY7UiRVsT6qYtutvjQ6PFdI05qPipicq+q1dGLKqZ8aInOtqEv8Qbfd GyR0eFsuppY/ezXCuSNfnjY138ZqlZt6ZkvT1vwhhqFdeeZtRLxdrikbx+EjKCYbTJVv9HiYtj3f 3RTCqqzKpzIjU8EtJH9nfm73OYP8Tqv6gdnfm73OYP8AE6r+oI4A++D5bkIeb01ug+Kf9PIkf2d+ bvc5g/xOq/qB2d+bvc5g/wATqv6gjgBwfLchB6a3QfFP+nkSP7O/N3ucwf4nVf1BNHAN+rMVYFw5 ie4Rwx1V3tNHXzshRUjbJLC17kaiqqo3Vy6aqq6dKlT5adk57UWB/wBm7Z5rGRFXloUBjVhtsxmS 72deqVXm47J6Mr0a1FS3NjNwABBGYgAAAAAAAAAAAAAAAAAAAAAAAAAAAV47Zb3Oz3ujXKqoyjo0 b4E6ii/+aqWHFeG2T7fF2/VKP6lpL0X2hdS7DGl9X3G35jfBxxAAFpNdQAAAAAAAAAAAAAAAAAAA AAAAATT2XNlz1B4JmXmXbvXTkz2q1Ts/A+ls8zV/O9LWL7Hzry9EjbLmy56g8EzLzLt3rpyZ7Vap 2fgfS2eZq/nelrF9j515eiRyrK7UqlhWwYK4s67EM4XBXBbjg1Wqt42VjFzaHOTToTNlXHkAEOdq Paj4XwvLTLS4/c/Kgut1gf7L0Oghcnvehz05+ZOLVViZaWfNPwGfwZKr9flLnZRZqaXotzuXQm1c w2o9qPhfC8tMtLj9z8qC63WB/svQ6CFye96HPTn5k4tVXtmylVS1mQGEpptN5sdVEmn+iyrmY3/o 1Ctsse2SPc94U+nefTkxUpaHKyjWM09uJTF9wdfnLobpI0zNu/8AE6xuZqYbLETzznYAAV8zWAAA AAAAAAAAACD23LmKt5xjbsu6CdHUlhiSqrEa776rlTiaqf7Ee6qfGuToJl4sxJbsHYZumKbs/dpL VSyVUvHxuRrVXdTwquiJ4VQqpxJiC54rv9xxLeZuq110qZKqdya6b73KqoiLro1NdEToREQmaNL4 cVYq5G+Jiq+pWt6SDKbDXjRVtXot81s7FMaACzmv4AAAAABZbs25irmTlLaLpVzpJcre1bbcOVq5 ZokREevhexWPXwuVOg6iQN2JsxHYazFqMFVtSjaDE0O7E12ujayJFdGqdCbzOqNXtrudonkUyoS+ 95hWpkXGhtRcTWuG6NCjPW17eI7W3P1pYvWAAeItoAAAAAAAABicXfkpevk6p+rcVLltGLvyUvXy dU/VuKlyxUL1X9W0wfff++lNT/FoABPGGgAAC3W3fi+l+JZ/Ch6TzW78X0vxLP4UPSUBcpumz1UA AOD6Bpub+Pocssub1jJ6NdNRwbtKx3M+oeqMiTTpTecir4EU3Iixt74ifS4TwxhaORUS4181bI1F 52wMRqIvg1n1+FPAemTgpHjthrkVSBunqbqPSJicZic1uLWvFT6qhDC4V9Zda+pudxqX1FXVyvnn leurpJHKqucvhVVVTzgF3RLMSGpLnK5Vc5bVUAAHAAAAAAALTsnPaiwP+zds81jKsS07Jz2osD/s 3bPNYyDrn3bNZl29F7bM9BPE3AAFbM8AAAAAAAAAAAAAAAAAAAAAAAAAAAArw2yfb4u36pR/UtLD yvDbJ9vi7fqlH9S0l6L7QupdhjS+r7jb8xvg44gAC0muoAAAAAAAAAAAAAAAAAAAAAJp7Lmy56g8 EzLzLt3rpyZ7Vap2fgfS2eZq/nelrF9j515eiRtlzZc9QeCZl5l27105M9qtU7PwPpbPM1fzvS1i +x868vRI5VldqVSwrYMFcWddiGcLgrgtxwarVW8bKxi5tDnJp0JmyrjyACHG1HtR8M4Xlplpcfuf lQXW6wP9l6HQQuT3vQ56c/MnFqqxMtLPmn4DP4MlV+vylzsos1NL0W53LoTauYbUe1HwvheWmWlx +5+VBdbrA/2XodBC5Pe9Dnpz8ycWqrEgAuEtLMlWYDP5NX69Xpu6GbWbm11JmamhNq5wWPbJHue8 KfTvPpyuEse2SPc94U+nefTkfW/Z06WxS7XpvfUX5Tv3sOwAAq5sKAAAAAAAAAAD8ySMiY6WV7WM Yiuc5y6IiJzqqgEW9urMRLbhq1Za0FUrai8SJX17Gqn4LG5eptcnadKm8mnTCQnN6ztzDfmhmXes WMkc6jlm6hQNcipu0sfJj4l40VUTeVO25TRS6SMvvaA1i5cq6zVC7Cs8O1iLNNW1iLgt6LcSduN3 WAAewrIAAAAAB6rXc6+y3OkvNrqXU9bQTx1VNM3TWOVjkcxya8WqKiL8xapl/jG35gYLs+MrYreo XWlZOrUXXqcnNJGvha9HNXwtUqhJkbCeY/V6K8ZXXCdd+l1uluRf9Wqo2ZidrRyscic67716CHrE vukFIqZW+Bk69dWt41N0hEXixkxdJuNO1LU51sJbAAq5sOAAAAAAAAAYnF35KXr5Oqfq3FS5bRi7 8lL18nVP1bipcsVC9V/VtMH33/vpTU/xaAATxhoAAAt1t34vpfiWfwoek81u/F9L8Sz+FD0lAXKb ps9VAADg+gQk2+Kt78b4YoVXkw2qSVE8L5lRf4EJtkENu/23bR+zdP51VEnSEtmk1KY/vmPVlz0R Ezuan1t2EcAAW01qAAAP3DDNUTMp6eJ8ssrkYxjGq5znKuiIiJxqqr0EncvthjFN8t8N0x3iWOwd Waj0oIKfhFQjVTme5XNbG7wJv+HRebA7FWBaXFOakuILjA2Wnw1ScLiR3GnCnuRsS6eBOqOTtK1p Pwg6nUYkB+5QsS51MvXAXDyVXlFqVSRXNVVRrbVRMWVVssVceJEtsxLbbaRhi2Ccv0bpPjTEL3dt jYGp+5WKfvsC8uO7HEn74P5ZJsERwjNctTJiXDXPJ/8AFb9fMjJ2BeXHdjiT98H8skPhewU2FcM2 jC9HNLNT2egp6CKSXTfeyKNrGudpomqo1FXRDKA6Y0zGjoiRHW2EnTLn6bRnufIwUYrksWy3GnWo AB0EwAAAAAAAAAAAAAAAAAAAAAAAAAAACvDbJ9vi7fqlH9S0sPK8Nsn2+Lt+qUf1LSXovtC6l2GN L6vuNvzG+DjiAALSa6gAAAAAAAAAAAAAAAAAAmnsubLnqDwTMvMu3eunJntVqnZ+B9LZ5mr+d6Ws X2PnXl6JG2XNlz1B4JmXmXbvXTkz2q1Ts/A+ls8zV/O9LWL7Hzry9EjlWV2pVLCtgwVxZ12IZwuC uC3HBqtVbxsrGLm0OcmnQmbKuPIAIcbUe1HwzheWmWlx+5+VBdbrA/2XodBC5Pe9Dnpz8ycWqrEy 0s+afgM/gyVX6/KXOyizU0vRbncuhNq5htR7UfDOF5aZaXH7n5UF1usD/Zeh0ELk970OenPzJxaq sSAC4S0syVZgM/k1fr1em7oZtZubXUmZqaE2rnAAPQQoLHtkj3PeFPp3n05XCWPbJHue8KfTvPpy Hrfs6dLYplC9N76i/Kd+9h2AAFXNhQAAAAAAAAAcV2tcxnYBylrKOhlVlyxG/wBS6ZWrorI3NVZn 86LokaK3VOZ0jVO1Fem2DmK/G2bNTZKWZr7bhZq26BGu1a6fiWof4F39I1Tj9iRelSQpsvviYS3I mNSl3e1rgaixFYtj4nEb15V6m249NhwwAFwNXgAAAAAAAAAbZlVjyqy0zAsuM6ZJHst9Si1MTF45 qd3JlYnGiaqxXaa8SLovQamD5e1HtVrsindLTESUjMjwVsc1UVF0Ki2oW80lVT11LDW0czZYKiNs sUjV1R7HJqip4FRUPqcF2NsxExjlVHh2sqeqXHCsiUL0cqby0ztXQO+BGo6NPijvRRo8JYER0Ncx t7SKlDq8jCnoWR7UXUudOpbU6gADqJIAAAAAAxOLvyUvXydU/VuKly2jF35KXr5Oqfq3FS5YqF6r +raYPvv/AH0pqf4tAAJ4w0AAAW6278X0vxLP4UPSea3fi+l+JZ/Ch6SgLlN02eqgBXbtKY0xjbs8 MV0VvxZeaaniqYmxww18rGMTqEfEjUdohzLrg497t7/5Sm9ImYVGfEYj8PKluQxVP31JeRm4sqss 5VY5zbcJMeCqpbk5i18ght3+27aP2bp/Oqo4f1wce929/wDKU3pGMul4u97qG1d5utZXzsYkbZKq d0r0YiqqNRXKq6aqq6eFT3SVMdKxd0V1pULq74MG6OnLIsgKxVVFtVyLk6jxgAmDGAAABL77H41q ux49UTeRLWiL4F4V/wDpCYBUjasQX6xdV9Q73cLd1fd6rwSpfDv7uum9uqmumq6a9tT39cHHvdvf /KU3pELN0p0zGWKjrLfIytc1fGgUGlwqe+XVyswsaORLbXK7JZz2Fr4KoOuDj3u3v/lKb0h1wce9 29/8pTekebgN/LTsJ37Xpb4V3eTyLXwVQdcHHvdvf/KU3pFmeUlRUVeVOC6urnkmnmw9bpJJJHK5 73rTRqrnKvGqqq6qqninae6TajldbaWu5S7WFdTGiQYcFWYCIuNUW21bNCG2AFZmbeOMa0ma2NKS kxhe4YIcQ3GOOOO4TNYxiVMiI1qI7RERE0REPiSk1nHK1FssPZdXdTDuWgw40SGr8NVTEtlliW6F LMwVQdcHHvdvf/KU3pDrg497t7/5Sm9IkOA38tOwpH2vS3wru8nkWvgqg64OPe7e/wDlKb0h1wce 929/8pTekOA38tOwfa9LfCu7yeRa+CqDrg497t7/AOUpvSHXBx73b3/ylN6Q4Dfy07B9r0t8K7vJ 5Fr4KoOuDj3u3v8A5Sm9IdcHHvdvf/KU3pDgN/LTsH2vS3wru8nkWvgqhTMHHyLqmOL+ip/8zm9I ytszqzds70fQZl4kaiczJLlLKz/leqt/6HC0OJmeh9w77smq8eWciczkXyLSQV9YX20c6LE9jbvV 22/wN4nNraRsb1TwPi3OPwqikgMt9tLLfF0sVuxbTzYWrpNGpJUPSWkc741ERWf8bURO2eONS5mC ltlqc3+2lopd8KhVRyQ0iLDcuZ6WfW1W/UkKD5wTwVUMdTTTMlhlaj45GORzXtVNUVFTiVFTpPoR 5d0W3GgAAAAAAK8Nsn2+Lt+qUf1LSw8rw2yfb4u36pR/UtJei+0LqXYY0vq+42/Mb4OOIAAtJrqA AAAAAAAAAAAAAACaey5sueoPBMy8y7d66cme1Wqdn4H0tnmav53paxfY+deXokbZc2XPUHgmZeZd u9dOTParVOz8D6WzzNX870tYvsfOvL0SOVZXalUsK2DBXFnXYhnC4K4LccGq1VvGysYubQ5yadCZ sq48gAhxtR7UfDOF5aZaXH7n5UF1usD/AGXodBC5Pe9Dnpz8ycWqrEy0s+afgM/gyVX6/KXOyizU 0vRbncuhNq5htR7UfDOF5aZaXH7n5UF1usD/AGXodBC5Pe9Dnpz8ycWqrEgAuEtLMlWYDP5NX69X pu6GbWbm11JmamhNq5wAD0EKAAACx7ZI9z3hT6d59OVwlj2yR7nvCn07z6ch637OnS2KZQvTe+ov ynfvYdgABVzYUAAAAAAAAA07N7HsGWeXV7xjKrerUVOraRjvzlS9dyJunSm+5FXwIq9BVtPPNVTS VNTM+WaVyvkke5XOe5V1VVVeNVVeklVt15jR194tGWFvna9lsRLncEauu7UParYWL2lSNznfBK0i iWqkS+5QMNcrvDMa43za1wjVt5w14kFLP1Ljd2Yk1ooABLGOAAADruzdk23OHFF2oa7ejt9utU73 zdDKmVix06L06o5XSJ8Uvz8quNvrLTcKm1XGndBV0cz6eeJ3PHIxytc1fCioqFg+yDl/9pWUNHdK qPSuxO/1VlVU40hc1Egb8G4iP+GRSN+2hl/9qeaf2zUkW7Q4qh4WmicTamPdZMifDqx6+GRSKl57 dZx8LNm6sv8AvMZGrVyC0+5iWqSJ/wAltr9T7MHssRNblOAAAlTHIAAB2PZSzETAGbtujrJ1jt1/ T1JqtXKjWukcnUnqnNxSI1NV5mudx85Y2VAln+ROYSZnZXWXFEsiOrli4LcE6UqYuS9V7W9oj0Tt PQrtbl7FbHTUuwzhenrOHDi0mIvq8dupcTk6lsXrU38AECZlAAAAAAMTi78lL18nVP1bipctoxd+ Sl6+Tqn6txUuWKheq/q2mD77/wB9Kan+LQACeMNAAAFutu/F9L8Sz+FD0nmt34vpfiWfwoekoC5T dNnqoVqbUHt9Yv8A1qL6iM5YdT2oPb6xf+tRfURnLC8Sv3DNSeBqHdB73mvmP/coAB3kQAAAAAAA AAAAAC07Jz2osD/s3bPNYyrEtOyc9qLA/wCzds81jIOufds1mXb0Xtsz0E8TcCrHOP23ccftJc/O pC04qxzj9t3HH7SXPzqQ89D+8fqJu+77FLdNfA08AFkMDgAAAAAAAAAAAAAAHXckNo/GGT9bFb3y yXXDUkiLUW2V+qxovO6By/eO6dPvXdKa8pLCMH4vw/jvDtHinDFwZWW+tZvRvbxK1eljk52uReJU XmUqaO4bK+ds2V+Mo7BeKrTDV/mbFVI9eTSzrxMnTtdDXf7PH71CHqVPbGasWGnGT6/+zJ9wd20a lx2U6efbAdiRV/oXNj5OlM2VM9thwAKubDAAAArw2yfb4u36pR/UtLDyvDbJ9vi7fqlH9S0l6L7Q updhjS+r7jb8xvg44gAC0muoAAAAAAAAAAAAJp7Lmy56g8EzLzLt3rpyZ7Vap2fgfS2eZq/nelrF 9j515eiRtlzZc9QeCZl5l27105M9qtU7PwPpbPM1fzvS1i+x868vRI5VldqVSwrYMFcWddiGcLgr gtxwarVW8bKxi5tDnJp0JmyrjyACHG1HtR8M4XlplpcfuflQXW6wP9l6HQQuT3vQ56c/MnFqqxMt LPmn4DP4MlV+vylzsos1NL0W53LoTauYbUe1HwzheWmWlx+5+VBdbrA/2XodBC5Pe9Dnpz8ycWqr EgAuEtLMlWYDP5NX69Xpu6GbWbm11JmamhNq5wAD0EKAAAAAACx7ZI9z3hT6d59OVwlj2yR7nvCn 07z6ch637OnS2KZQvTe+ovynfvYdgABVzYUAAAAAAHivd4t+HrPXX66zpDRW6nkqqiRfexsarnL+ 5D2kbNt7MR2HsA0eBbfUoysxJNvVKJrvJRxKjnJqnNvSdTTwoj0O+WgrMRWw0zkTXaoyi06LPP8A 6Exc65ETrWwhhjfFtxx3i67YwuvFU3aqfUOZvapG1V5MaL0o1qNangahgwC8NajURqZENRI0V8eI 6LEW1zlVVXSq41UAA5OsG3ZTYGqMyMxLFg6FjlirqpvCnN15FM3lTO1TmVGNdp4dE6TUSYWwfl8j Y75mdWwLvOX1IoFcnRyXzPTt8fU2oqdp6ds8s7H3vAc/Pm1lhuUpC1yrwZRU4ttruimNe3JrUlxT 08FJTxUtNE2KGFjY42NTRGtRNERPAiHHdrPL5cdZQXCopKfqlxw+5LrTaJxqxiKkzeLtxq5dOlWt OzH5kjjmjdDNG18b2q1zXJqjkXnRU6UKbBirBiJETKim0tTp8KpyUSSi+q9qpqtyL1LjQqDBumce ApMtMyr7g/celNSVKvo3O1XeppER8S6rz6NciKvbRe0aWXpj0iNR7cimoE1LRJOO+WjJY5iqi60W xQAD6OgEn9hnMVbPi+45c106JS32JaujRztN2riTlNRP9uPVV+Kb2yMBk8NYhueE8Q27E1mmSOut dTHVwOXXd32ORURyIqatXTRU6UVUPPNQEmILoa5/Embn6s+iVKDPNyNXHztXE5Oy3rLawYrCuI7d i/DVsxTaX71JdaWOqi7aI9qLur4U5l8KKZUpCorVsU25hxGxWJEYtqKlqLpRQADg+wAADE4u/JS9 fJ1T9W4qXLaMXfkpevk6p+rcVLlioXqv6tpg++/99Kan+LQACeMNAAAFutu/F9L8Sz+FD0nmt34v pfiWfwoekoC5TdNnqoVqbUHt9Yv/AFqL6iM5YWz12EcJ3SqfXXPDFpq6mXTfmnoopHu0RETVzmqq 6IiJ8CHw+0HAvcXYfJ0Pok9CrLYcNrMDIiJlMN1K9XHnpyNNJMoiPc51mCuLCVVsy85U+C2D7QcC 9xdh8nQ+iQj23bRabLmtaqWz2ukoIX4egkdHTQNiarlqalFcqNRE10RE18CHtlKo2bibmjbOsql0 t76Lc5ILPPjo9EVEsRqpl57VI9gAlDHYAAABLDYQsFivn28erVloLh1D1M6lwqmZLua8K13d5F01 0TXTtISw+0HAvcXYfJ0PokTNVVstFWErbbOfmtMlXP3uI1ep0OoNmEaj7cWCq2WOVuW1NFpU+C2D 7QcC9xdh8nQ+iPtBwL3F2HydD6J5+HG8j6kz9kEx8UncX/IqfLTsnPaiwP8As3bPNYzJfaDgXuLs Pk6H0TNU9PBSQR0tLBHDDCxI4442o1rGomiNRE4kRE4kRDwT9QScajUbZYXK424qJctHixnxkfho iYksssW3Sp9CrHOP23ccftJc/OpC04wtRgnBlXPJVVWEbLNNM9ZJJJKCJznuVdVcqq3VVVeNVU65 CcSTcrlS20912Vyz7qYEKCyKjMBVXGlttqWaUKmwWwfaDgXuLsPk6H0R9oOBe4uw+TofRJPhxvI+ pj/7IJj4pO4v+RU+C2D7QcC9xdh8nQ+iPtBwL3F2HydD6I4cbyPqPsgmPik7i/5FT4LYPtBwL3F2 HydD6I+0HAvcXYfJ0PojhxvI+o+yCY+KTuL/AJFT4LYPtBwL3F2HydD6J8arLXLquiWCtwDhyeNy aK2S1wOT/q054cZyPqcLehmLMU03ur5lUoJ6ZqbGGAMVUs9ywC1cNXhGaxwscrqGZydDmLqsarxJ qxUROfdVSDmIbBd8K3utw7fqKSkuFvmdBUQvTRWuTtdtF4lRU4lRUVOJSSlZ2FNpxMqZig3RXKVC 5p6JNoisdkcmNF5syovMqarTHAA9ZWwAACx/ZYzFlzEyjt8lfOstysjltVW5y8p/U2osb17esbma r0uRx18hVsEYjfBinE+E3yf2dbQRXBjV5kdDJuLp4VSZP+XwE1SmVCCkGYc1MmXtNq7iam6rUOBH iLa5EwV1tWy3rSxesAA8RagV4bZPt8Xb9Uo/qWlh5Xhtk+3xdv1Sj+paS9F9oXUuwxpfV9xt+Y3w ccQABaTXUAAAAAAAAAE09lzZc9QeCZl5l27105M9qtU7PwPpbPM1fzvS1i+x868vRI2y5sueoPBM y8y7d66cme1Wqdn4H0tnmav53paxfY+deXokcqyu1KpYVsGCuLOuxDOFwVwW44NVqreNlYxc2hzk 06EzZVx5ABDjaj2o+GcLy0y0uP3PyoLrdYH+y9DoIXJ73oc9OfmTi1VYmWlnzT8Bn8GSq/X5S52U Waml6Lc7l0JtXMNqPaj4ZwvLTLS4/c/Kgut1gf7L0Oghcnvehz05+ZOLVViQAXCWlmSrMBn8mr9e r03dDNrNza6kzNTQm1c4AB6CFAAAAAAAAABY9ske57wp9O8+nK4Sx7ZI9z3hT6d59OQ9b9nTpbFM oXpvfUX5Tv3sOwAAq5sKAAAAAACsraHzETMzNi836lqlnttM9LfbVRUVvBotURzVTna96vkT4z5i b203mP1t8pbpW0s6x3O7etdBpzpJK1d56drdjR7kXm1RqdKFbBYKJL+tHXUm0wnfZrVqwqTDXJx3 eDU8Vs1KAAWAwsAAAfajpKmvq4KGjhdNUVMjYYo2873uXRrU8KqqIWnZXYJp8usv7Hg2BGK63UjG TvamiSTu5Ur/AJ3ucvwKhB3Y9y9djTNylvVTC11uwuz1SmVzdUdP97A1O07f/tEX/wCEvgLDCuVu PhPbBTNjX/f9ymdr09H3KWi1SImN64LeimVetcX6QACCMvkSNvDL5stHY8zqGB6yQO9SK9Woqp1N d58L16GojuqNVV51exNeJEIcFrOZODKbMPAd8wZVOjal1o3wxSSN3mxTJyopFTp3ZEY75iq6voau 111TbLhA6CqpJXwTxO52SMVWuavhRUVC00ePukHc1yt8DXe+jR941Rs9DTixkx9JuJe1LF51tPOA CXMZAAAE2dhbMRLnhe6Za19XvVNmlWvoGOVNeCyu/tGtTn0bKu8qr0zJ80pSrzJDMR+V+ZlmxXJI 5tFHNwe4I1FXepZOTJxJxqrUXfROlWIWgseyVjZI3tex6I5rmrqiovMqKVOrS+4x8NMjsfXnNkb2 la4SpCSr1tfB4v6V9Vey1v6T9AAizIgAABicXfkpevk6p+rcVLltGLvyUvXydU/VuKlyxUL1X9W0 wfff++lNT/FoABPGGgAAC3W3fi+l+JZ/Ch6TzW78X0vxLP4UPSUBcpumz1UAAOD6BBDbv9t20fs3 T+dVRO8ght3+27aP2bp/OqolKP7SmpTHl8/8Pu6bfEjgAC2GtoAABL/7H5/f3/C/80S/IgfY/P7+ /wCF/wCaJflPqvtb+rwQ2gvd/hqW/X/2PAAI8uoAAAAAAB8ayto7dSyVtwq4aanhbvSTTSIxjE7a uXiRDkuKNrHI7DEjoFxb6rTs547XA6oT5pOKNfmcdkODEirZDaq6jwztTkqa3CnIrWJ/9lRLdVuU 7ACMFdt7YAjeqW3BWIKhqcyzuhiVfmRzjw9n5hzvc3Lx+P0T1JTZpf6PAr7rvLnWLYs0nY5fBCVo Ipdn5hzvc3Lx+P0R2fmHO9zcvH4/RHBk1yPDzPn0+uc+KTuu/wASVoIpdn5hzvc3Lx+P0R2fmHO9 zcvH4/RHBk1yPDzHp9c58Undd/iStIbbeeCKamr8PZg0cDWSVqSWyucnFvuYm/CvhXd6qir2mtTo 4s52fmHO9zcvH4/ROYbQe05aM6sG0WF6HCVXbJaS5x16zTVLZEVrYpWK1ERqc6yIvzHskJOagTDX ubYmfIVi7G6m5+s0aNKwo6OfiVqWOyoqLitTRampSPoALMYBAAAO6bGFY6lz0oIGrolXQVkK+FEj 3/8A0IWFFcWyM5zdoPCyNcqI5K5FRF504FOvH86IWOlWrSWTCak8VNiL1D1fRHpoiOT+1i7QACIM mgrw2yfb4u36pR/UtLDyvDbJ9vi7fqlH9S0l6L7QupdhjS+r7jb8xvg44gAC0muoAAAAAAJp7Lmy 56g8EzLzLt3rpyZ7Vap2fgfS2eZq/nelrF9j515eiRtlzZc9QeCZl5l27105M9qtU7PwPpbPM1fz vS1i+x868vRI5VldqVSwrYMFcWddiGcLgrgtxwarVW8bKxi5tDnJp0JmyrjyADQ6jPjJqkqJaWoz Lw+yWF7o3t4Y1dHIuipqnFzkG1jn+qlpl2Ym5eURFmIjW25LVRLe03iop6erp5aSrgjmgmY6OWKR qOY9iporXIvEqKi6Kimp9ZzKLvV4P8h0voGP6/8Akr3zcP8AjbR1/wDJXvm4f8badrYcdvqoqdpH Rp6jzCosaJCdZpc1fFTIdZzKLvV4P8h0voDrOZRd6vB/kOl9Ax/X/wAle+bh/wAbaOv/AJK983D/ AI20+sGZ0O+p07tQeVB7WGQ6zmUXerwf5DpfQHWcyi71eD/IdL6Bj+v/AJK983D/AI20df8AyV75 uH/G2jBmdDvqN2oPKg9rDIdZzKLvV4P8h0voDrOZRd6vB/kOl9Ax/X/yV75uH/G2jr/5K983D/jb RgzOh31G7UHlQe1hkOs5lF3q8H+Q6X0B1nMou9Xg/wAh0voGP6/+SvfNw/420df/ACV75uH/ABto wZnQ76jdqDyoPawyHWcyi71eD/IdL6A6zmUXerwf5DpfQMf1/wDJXvm4f8baOv8A5K983D/jbRgz Oh31G7UHlQe1hkOs5lF3q8H+Q6X0DZLRZrRh+3RWiw2qjttDBvdSpaSBsMMe85XO3WNRETVyqq6J xqqqaX1/8le+bh/xtpuFgxBZMU2mC+4dudPcbfVb3UamnfvRv3XK12i9OjmuT4UU+IiRkT/kts57 T2ST6Y6IqSSw1dZ/Tg22dWOy2wyAAOkkwAAAAa5mLjOhy8wPecZ3DdWO10rpWMcunVJV5Mcf/E9W t+c5a1XqjUyqdUeMyXhOjRVsa1FVV0ImNSFW2pmM7FWZTMHUUrlt+Fouou0XkyVciI6V3EvvU3Gc aaorX9CkeT03K41t3uNVdrlUOqKutmfUVErueSR7lc5y6dKqqqeYvMvBSXhNhpmNQ61U4lZqEWei ZXqqpzJkROpLEAAO4iwAADdMAZxZi5XQVlNgS/x2tlwex9SqUFNM6VWIqN1dLG52ibztE10TeXtq bZ2W+0J3wP8AtND/ACTj4Ol0tBeuE5iKupCUl67VJSGkGXmYjGJkRHuRE1Ii2HYOy32hO+B/2mh/ kjst9oTvgf8AaaH+ScfB870l/wAtvYh3ekta+Mi//o/zOwdlvtCd8D/tND/JOX3++3PE96rcQ3qe OavuMzqiplZCyJJJXLq527GjWoqrqq6Imqqq86mPB9sgwoS2saiaksPJN1afqDUZNx3xETGiOc5y IvWqgAHaeAAAAFi2yZmM7H+UlFS10rn3LDjvUqpVy6rIxjUWGTnVeONWtVV41cxyldJ3bY7zETBe a8NjranqduxTGlvkRVRGpU6607vh3lcxPjSOqcvu8utmVMfmXe99WuCK0xr1sZF4i9fqr1Os6lUs IABUDZ4AAAxOLvyUvXydU/VuKly2jF35KXr5Oqfq3FS5YqF6r+raYPvv/fSmp/i0AAnjDQAABbrb vxfS/Es/hQ9J5rd+L6X4ln8KHpKAuU3TZ6qAAHB9Aght3+27aP2bp/OqoneQQ27/AG3bR+zdP51V EpR/aU1KY8vn/h93Tb4kcAAWw1tAAAJf/Y/P7+/4X/miX5ED7H5/f3/C/wDNEvyn1X2t/V4IbQXu /wANS36/+x4ABHl1AAAByHPfaMwzkxSNt7Im3XEdVHv09vY/RsTV5pJne9brzInKd0aJqqbDnZmr b8oMB1mKaljJ6xypTW6mc7Tq9S5F3UX/AGWoiud4Gr0qhWdf79dsT3qsxDfa6SsuFfM6eomkXVXO X/yROZETiRERE4kJam0/fS7pE9VPqY3u9u0dc+xJKSVN3cltuXATTZpXMmbKua3Ycw828f5pV61u ML/PUxo7eio416nTQf7kScSL4V1cvSqmnAFoYxsNMFqWIa8zM1GnIqxph6ucuVVW1e1QAD6OgAAA AAAAAAAAAAAA7Bske6Ewp9O8xnLHiuHZI90JhT6d5jOWPFXrftCdHapsLem9yxfmu/YwAAhzKAK8 Nsn2+Lt+qUf1LSw8rw2yfb4u36pR/UtJei+0LqXYY0vq+42/Mb4OOIAAtJrqAAACaey5sueoPBMy 8y7d66cme1Wqdn4H0tnmav53paxfY+deXokbZc2XPUHgmZeZdu9dOTParVOz8D6WzzNX870tYvsf OvL0SOVZXalUsK2DBXFnXYhnC4K4LccGq1VvGysYubQ5yadCZsq48gAhxtR7UfDOF5aZaXH7n5UF 1usD/Zeh0ELk970OenPzJxaqsTLSz5p+Az+DJVfr8pc7KLNTS9Fudy6E2rmG1HtR8M4Xlplpcfuf lQXW6wP9l6HQQuT3vQ56c/MnFqqxIALhLSzJVmAz+TV+vV6buhm1m5tdSZmpoTaucAA9BCgAAAAA AAAAAAAAAAse2SPc94U+nefTlcJY9ske57wp9O8+nIet+zp0timUL03vqL8p372HYAAVc2FAAABE PbuzERsVlywoJ13nql2uCNcqclN5kLF059V6o5UXtMXtKS1ra2lt1HPcK6dsNNSxPmmkdzMY1FVz l8CIiqVX5m42qcxsfXvGtSxzFulU6SJjueOFqIyJi+FsbWIvwEtR5fdY26Lkb4mNL59a4PpSSUNe PGWz9KY3duJNSqawAC1GuoAAAAAAAAAAAAAAAAAAAAAPpBPPSzx1VLNJDNC9JI5I3K1zHIuqORU4 0VF49T5gBFVFtQtOykx5T5l5d2TGUKtSWup0SqY383UsVWSt06E32u07aKi9JuBDLYRzCbR3W85Z Vr0SOvat1odf9cxGslb4VcxGOTwRu8BM0pM7A3tHczNm1G2VydZ4dpMKbcvHssd0kxL25dSgAHlL GYnF35KXr5Oqfq3FS5bRi78lL18nVP1bipcsVC9V/VtMH33/AL6U1P8AFoABPGGgAAC3W3fi+l+J Z/Ch6TzW78X0vxLP4UPSUBcpumz1UAAOD6BBDbv9t20fs3T+dVRO8ght3+27aP2bp/OqolKP7Smp THl8/wDD7um3xI4AAthraAAAS/8Asfn9/f8AC/8ANEvyIH2Pz+/v+F/5ol+U+q+1v6vBDaC93+Gp b9f/AGPAAI8uoAP4qoiaqAQG21MwJcTZoNwlTTqtBhiBsO6i8l1TIiPkd8KJuM8CtXtkezNY0vsm J8YXzEcr1e653Goq9VXofI5yfNophS8y0JIMFsNMyGoFeqLqtUo845bcJy2asjU6ksQAA7yJABID JXZFxLmfZqfFt+vLLDZavlU2kKy1NQxFVN5GqqIxq6cTlVVXn000VeqNHhy7cOItiElSqRO1qPva Rhq92XRYmlVXEiayP4J2Q7B2U7Y2pUYmxa+RE5TmVNM1FXwIsC6fvP32CGUXdHjDxyl/pzwcMSul ewuCXsLoOS3vIQQBO/sEMou6PGHjlL/TjsEMou6PGHjlL/TjhiW0r2D7MLoOSzvIQQBO/sEMou6P GHjlL/TnJdpbZpwLk3gWhxPhi7X6qqqq7RUD2V88L40jdDM9VRGRMXe1jb06aKvEdkKpy8Z6Q2qt q8x46he/rVMlXzkw1uAxLVsdaRqABIFJAAAOwbJHuhMKfTvMZyx4rh2SPdCYU+neYzljxV637QnR 2qbC3pvcsX5rv2MAAIcygCvDbJ9vi7fqlH9S0sPK8Nsn2+Lt+qUf1LSXovtC6l2GNL6vuNvzG+Dj iAALSa6gmnsubLnqDwTMvMu3eunJntVqnZ+B9LZ5mr+d6WsX2PnXl6JG2XNlz1B4JmXmXbvXTkz2 q1Ts/A+ls8zV/O9LWL7Hzry9EjlWV2pVLCtgwVxZ12IZwuCuC3HBqtVbxsrGLm0OcmnQmbKuPIAI cbUe1HwzheWmWlx+5+VBdbrA/wBl6HQQuT3vQ56c/MnFqqxMtLPmn4DP4MlV+vylzsos1NL0W53L oTauYbUe1HwzheWmWlx+5+VBdbrA/wBl6HQQuT3vQ56c/MnFqqxIALhLSzJVmAz+TV+vV6buhm1m 5tdSZmpoTaucAA9BCgAAAAAAAAAAAAAAAAAAse2SPc94U+nefTlcJY9ske57wp9O8+nIet+zp0ti mUL03vqL8p372HYAAVc2FAAAI/7Z+YrsIZYJhehnRlwxTKtIujtHNpGaOmcnb11ZH8Ei9ogCdd2p cxHZhZu3R1NUpLbLIvqVQo3XdVI1Xqj+0u9Kr+UnO1Gdo5EXGmy+95dEXKuNTVq7qtcNVmI9i2sZ xG6m5V61tXVYAAe8p4AABnsK4ExljiSohwhhq4Xd9I1rp0pIVk6mjtd3e05tdF0+BTYusBnV3scQ eJuJkbHWXzcG5SwX2rpOpXLFMnqhK5yJvcHTVtO3VOdu5rInxq/Ad2ICYrD4cVzIaIqIZnod66Wn 6dCmpyK9r3phKiWWIi40ypbbZZbzlYPWAzq72OIPE3DrAZ1d7HEHibiz4HRw3G5KfUlvsjpv57/7 fIrB6wGdXexxB4m4dYDOrvY4g8TcWfAcNxuSn1H2R0389/8Ab5FYPWAzq72OIPE3DrAZ1d7HEHib iz4DhuNyU+o+yOm/nv8A7fIrB6wGdXexxB4m40WrpKq31c1BXU8kFTTSOhmikarXRvaujmqi8yoq KioW8FfW2Tl83B2a8l+oaXqVvxTFw9qtREZwpF3ahqeFV3ZFXty/u90hU3TUTc3oiaCpXY3AQrnp BJ6UiOeiORHW2YkXIuJNOLrQ4MACYMXgAAGdwNi644DxfaMY2rjqbTVMqEZvbqSNRdHxqvQjmq5q +Bylqllu9BiC0UV9tU6TUdwp46qnkT30b2o5q/uVCo4nbsQ5iOxFl/V4GuFSj6zDU+tOi67y0cqq 5vGvPuydUTwNVidohK1L4cNIyZsur/fEyzeprW9p2JS4i8WIlrek3L2t/ahJEAFaM+GJxd+Sl6+T qn6txUuW0Yu/JS9fJ1T9W4qXLFQvVf1bTB99/wC+lNT/ABaAATxhoAAAt1t34vpfiWfwoek81u/F 9L8Sz+FD0lAXKbps9VAADg+gQQ27/bdtH7N0/nVUTvIIbd/tu2j9m6fzqqJSj+0pqUx5fP8Aw+7p t8SOAALYa2gAAEv/ALH5/f3/AAv/ADRL8iB9j8/v7/hf+aJflPqvtb+rwQ2gvd/hqW/X/wBjwACP LqDw32V0NkuEzF5UdLK5PhRinuPlVU7KummpZPvZo3Ru+BU0OUyny9Fc1UQqGB962kmt9ZPQVLd2 WmlfDInac1VRf+qHwL/lNLVRWrYoAAOAW0YRpaWhwpZaKha1Kant1NFCjeZGNjajdPmRCpcmZkJt g4So8MWzBmZr6i3VdsgbSQ3NsTpYJomIjY+qI3V7X6aIq7qtXdVyqmuhD1iXiRmNWGltlpk+9jWp GlTcaFOvRm6I2xVxJairiVc1tufFiJZA0Snz3yZqY0ljzQw0jV5kkuMca/ucqKh9Ovfk530cLeVY fSK5uMXkr2Gdkq0guNI7O83zN3BpHXvyc76OFvKsPpDr35Od9HC3lWH0huMTkr2HPCsh+ezvN8zd yOG3f7UVo/aSn81qjrHXvyc76OFvKsPpHBds3MXAOLsr7XbcLYzst3q4r/BO+CirY5ntjSnqGq9W tVVRNXNTXtqh65CFEbMsVWrl0FauxqMnFoU0yHFaqq3IjkVcqc5DIAFwNXgAADsGyR7oTCn07zGc seK4dkj3QmFPp3mM5Y8Vet+0J0dqmwt6b3LF+a79jAACHMoArw2yfb4u36pR/UtLDyBO3Fh+ptmb dNfFiXg15tcL2SdCyRK5j2/CjUjX/iQlqMqJM2LnRTG99OG59BRzUxNe1V1WKniqEdyaey5sueoP BMy8y7d66cme1Wqdn4H0tnmav53paxfY+deXokbZc2XPUHgmZeZdu9dOTParVOz8D6WzzNX870tY vsfOvL0SOVZ6KlUsK2DBXFnXYhBXBXBbjg1Wqt42VjFzaHOTToTNlXHkAEONqPaj4ZwvLTLS4/c/ Kgut1gf7L0Oghcnvehz05+ZOLVViZaWfNPwGfwZKr9flLnZRZqaXotzuXQm1cw2o9qPhnC8tMtLj 9z8qC63WB/svQ6CFye96HPTn5k4tVWJABcJaWZKswGfyav16vTd0M2s3NrqTM1NCbVzgAHoIUAAA AAAAAAAAAAAAAAAAAAFj2yR7nvCn07z6crhLRMjcPVGFsocJ2SsjWOohtkUkzF52SSJ1RzV8KK9U +Yha25Egtbz7F8zKt6SC51VjxkyJDs61c1U/apvQAKybAA5ztA5iJlllVesQQVfULjPFwC2uaqb3 CpUVGubrxKrE3pNO1Gp0Yg1tw5jpfcbUWXlvnVaTDsSTVaJzOq5WoqJ4d2NW8adMj06D2SEvviO1 q5Mq6irXZ1rgOjxZhq2PdxW9J2dNSWu6iMwALoapgAAA2jLHBNRmNj+x4Kp3uZ6qVbY5Xt++jhai vlemvS2Nr1T4DVyXewfl+r575mZXU/JjRLVb3Ki8bl0fO5PgTqTUVO29OLp805H3vAdEz5tZP3LU ha5VoMmqcVVtd0Uxr2piTnVCX1JS09DSw0VJC2KCnjbFFG1NEYxqaIieBERD6gFINtURESxAAAcg AAAAAA4jte5f/brlBW3KmZrXYZf6qxKnO6FrVSdqr2upqr/hjaduPnPBDVQSU1TE2SKZixyMcmqO aqaKip2lQ7YMVYMRsRMxH1Wnw6rJRZKLke1U1aF6lxlQoNuzZwNPlvmLfcHysckVDVu4K5dV36Z/ KhdqvOqsc3Xw6p0Gol5Y5HtRzcimoEzLxJSM+XipY5qqipzotigAH0dIOmbOmYzMss17RfKudIrb WKtuuLnLo1tPKqIr1XoRj0Y9fAw5mD4iQ0isVjsinqkJyLTpqHNwV4zFRU6l/wBtLfgcq2Zsx+uV lNa6+qmWS52r1ruGvOssTU3X+HejVjlXm1VydB1UosWG6E9WOyobf0+dhVKVhzcFeK9EVOvNrTIv OYnF35KXr5Oqfq3FS5bRi78lL18nVP1bipcn6F6r+raYbvv/AH0pqf4tAAJ4w0AAAW6278X0vxLP 4UPSea3fi+l+JZ/Ch6SgLlN02eqgABwfQIIbd/tu2j9m6fzqqJ3kENu/23bR+zdP51VEpR/aU1KY 8vn/AIfd02+JHAAFsNbQAACX/wBj8/v7/hf+aJfkQPsfn9/f8L/zRL8p9V9rf1eCG0F7v8NS36/+ x4ABHl1AAAK0NpTB8mCs58SUCRblPX1K3OmXodHPy108CPV7f+E5gTx2zco58Z4Pgx3Y6R010w2x /CGRt1dLRLxv+Hqa6u+BXkDi5U+YSYgIudMSmq921FfRaxFh2cR6q9uixy22dS2p1c4AB7ipAAAA AAAAAAAAAAAAAAHYNkj3QmFPp3mM5Y8Vw7JHuhMKfTvMZyx4q9b9oTo7VNhb03uWL8137GAAEOZQ Bhb7gzC+J7jaLriCy09dVWGoWrt0kyKvUJlTTfRNdFXmVNUXRzWuTRWoqZoHKKrVtQ64kJkZuBEa ipixKluRbU7FxpzgA5Zn3hjOHGmHPtXyxuNmttLWsVlxqamrljqXsXi6lHuxuRrVT7529quumiJr r9Q2JEcjVWznU6J+adJy747IaxFRMTW5VXR/7zHC9qPaj4ZwvLTLS4/c/Kgut1gf7L0Oghcnvehz 05+ZOLVViQSF7BzOb9Nw149L/KHYOZzfpuGvHpf5RapaNJSrMBj08zXSvUu6q6GbWbm5Z/MlmJqa E2rnI9AkL2Dmc36bhrx6X+UOwczm/TcNePS/yj0b/luWhC+hte+Ef2EegSF7BzOb9Nw149L/ACh2 Dmc36bhrx6X+UN/y3LQehte+Ef2EegSF7BzOb9Nw149L/KHYOZzfpuGvHpf5Q3/LctB6G174R/YR 6BIXsHM5v03DXj0v8odg5nN+m4a8el/lDf8ALctB6G174R/YR6BIXsHM5v03DXj0v8odg5nN+m4a 8el/lDf8ty0HobXvhH9hHoEhewczm/TcNePS/wAodg5nN+m4a8el/lDf8ty0HobXvhH9hHoEhewc zm/TcNePS/yh2Dmc36bhrx6X+UN/y3LQehte+Ef2EegSF7BzOb9Nw149L/KHYOZzfpuGvHpf5Q3/ AC3LQehte+Ef2EegSIi2Gc5HvRr7lhiNFXjc6tmVE/dEqnScAbCVmt9VHX5jYoddWsVFW329joYn L2nSqu+5PA1GLxc51xKlKw0twrdR65O4K6CciIze6sTS6xETb2IqnHtmHIeuzSxVBiC90KphW0TN kqnSt5FZI3jSnb/pIvEr+03i53IWHHjs9ntWH7ZTWWyW+ChoaONIoKeBiMZG1OhET/8AlU9hWp2b dORMJcSJkQz9cpczAuYktwYuE92NztK6E5kzda5wADxlnMNjLFNvwThS7YuuiOdTWmkkq3saqI6T daqoxuvFvOXRqa9KoVV4hvtyxRfbhiO8TdVrbnUyVU7uPRXvcrl015k49EToTRCcW2bLju84StmB MFYTv12ZcqjhVxlt1ulqGNii9jic5jVRFc9Ufpz/ANmnQvHDzrOZu96vGHkOq9AslHYyFDWI5UtX wQwPfQmpuoz7JGBDcrISWrYiqiudjzJjsSzrVTTwbh1nM3e9XjDyHVegOs5m73q8YeQ6r0CY3aHy k7TF/Bk7+S/ur5Gng3DrOZu96vGHkOq9AdZzN3vV4w8h1XoDdofKTtHBk7+S/ur5GpQwzVEzKeni fLLK5GMYxquc5yroiIicaqq9BaXlHgSHLXLmx4Nja3qtDTItU5OPfqXqr5Xa9Kb7naeDROghrsz5 F4yq83bVccaYKvdqtlla+5ufcbbNBHLLHokTGukaiK7qjmv051RjvhSfRX6zMo9WwmriTGpmq9XQ nysKNUphitc7iNtSxbExqvWtndAAIMy8AAAAAAAAAAAARC28MvkdHY8zaKBdWr6kV6tTo5T4XL2u PqjVVe2xO0Q+LUs1sDU2ZOXt8wZUaI64UqpTvVVRI6hio+F66dCSNaqp0pqnSVu9ZzN3vV4w8h1X oFopM010Dc3rjb4Gvd8q5+NBqyTktDVWxUtWxFWxyYlyaUsXnVVNPBuHWczd71eMPIdV6A6zmbve rxh5DqvQJTdofKTtMd8GTv5L+6vkaeDcOs5m73q8YeQ6r0B1nM3e9XjDyHVegN2h8pO0cGTv5L+6 vkdZ2KMxFwxmRNg2uqN2gxPD1ONHKujayPV0a9pN5vVG+FVZ2iepV1bcrc67PcaW72zLPGVPWUM7 KmnlbY6nWOVjkc1yax86KiKWX4TvNViLDNrvldaqq2VNbSxzT0dVC6KWnkVqb8bmuRFRUdqnH8JX KxDbuiRWLbbl6jO166emN5RKbNMc1Ya2ttRU4rsqJboXH+oYu/JS9fJ1T9W4qXLasUQy1GGbvT08 T5ZZKGoYxjGq5znLG5ERETnVV6CsXrOZu96vGHkOq9A76I9rWvwlsybSIvsyseYiyqwWK6xH5EVc 7dBp4Nw6zmbverxh5DqvQHWczd71eMPIdV6BObtD5SdpiDgyd/Jf3V8jTwbh1nM3e9XjDyHVegOs 5m73q8YeQ6r0Bu0PlJ2jgyd/Jf3V8i0W3fi+l+JZ/Ch6Tz0DXMoaZj2q1zYmIqKmiouiHoKIuU3G Z6qAAHB9Aght3+27aP2bp/OqoneQu20cA46xVmla7hhjBV+u9LHYIIXz0FtmqI2yJUVCqxXMaqI7 RzV059FTtknSXI2ZRVXMpQL5UGJHoLmQmq5cJuJEtz8xFIG4dZzN3vV4w8h1XoDrOZu96vGHkOq9 AtO7Q+Unaa7cGTv5L+6vkaeDcOs5m73q8YeQ6r0B1nM3e9XjDyHVegN2h8pO0cGTv5L+6vkSP+x+ f39/wv8AzRL8ixsOYNxfhL7dftqwreLNwv1N6h6oUMtP1Xd4TvbnVGpvabzddObeTtkpypVNUdNP VObwQ2WvfwnwbnJdkRFRUw8S4l+8cAAeAuQAAB+XsbI1WPajmuTRUVNUVO0Qa2l9luuwfWVOOsur bJU4fmcstXQQMVz7e5edWtTjWH4PvOniTUnOD1Ss2+UfhM600lfujublLpZXe8zicmNrkytXai50 z67FSoEFh2Z+yNlhmFNLdLbFJhq6yqrnz0DG9RkcuuqvgXRqrquqq1WqvSqkdsU7EWbtmke7D09p v8CcbOo1CU8q/C2XRqL8D1LLAqkvGTGuCvP55DAVWveVymPXc4e6szKzH/b630VOcj0Do1ds6Z4W 5ysqMtLy9U/1ESTp++NVQxcmTGb8T1Y7KzFyqn+jZalyfvRmh7EjwlyOTtQrD6PUYS2Pl3prY5Nh poNw6zmbverxh5DqvQHWczd71eMPIdV6Bzu0PlJ2nXwZO/kv7q+Rp4Nw6zmbverxh5DqvQHWczd7 1eMPIdV6A3aHyk7RwZO/kv7q+Rp4Nw6zmbverxh5DqvQHWczd71eMPIdV6A3aHyk7RwZO/kv7q+R p4Nw6zmbverxh5DqvQHWczd71eMPIdV6A3aHyk7RwZO/kv7q+Rp4Nw6zmbverxh5DqvQHWczd71e MPIdV6A3aHyk7RwZO/kv7q+RuGyR7oTCn07zGcseICbL+WuY2H89MM3e/YAxJbaGDhvVaqrtU8MM e9RzNbvPc1ETVyoiarxqqIT7K1WXI6OitW3FtUz7ergRZejRWxWq1d1dlRU/oZpAAIgyWAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAACH32Rm93m04XwXFa7vW0bJ6+rdK2nqHxpIrY2bquRqpqqbztNebeXtgEwQVLZe 5WbRGatlmxDgCkvV2t9PVOopZm3iOJGzNYx6t0klav3sjF1004/hPFiGXPzIrFNNTX674lw1eUjZ Vwp6ouVJI95URdWPcyRurVRWrqnEqKnQcWgt2ByzJPO+2Zj5QWTMfFVZa7JPWvkpKtr50ggbVRvc 1WsWRy8Tkbvo1XKqIvOuiqdKt1yt13o47jaa+mraWXXqc9PK2SN+iqi6OaqouioqfCinIPSDE2nF uFb9Uuo7Hia03GdjFldFSVscz2sRURXKjVVUTVUTXwoVmbIeNK+m2iMJzYjxZURW5vD+rPrq9zYE +4ahG7yvdu/fbumvTocWgtJBibVi3Ct8mWmsmJrVcJkTVY6WtjlcidvRqqpG37Ifc7la8psPyW24 VNI9+Io2udBK6NXJwafiVWqmpyCVAID4Kv2cVVsdWWqy7xZV097jxlNC+omu8NM5KPqErnRpJUPa 3TqitduIuuuq6cSqSI2RKrNCry3uUmbN7ddLul8mbBMtyp63dpuoQbrd+B72py+qLuquvHrpoqAH cAY2vxLhy1STRXS/22jfTxpNK2oqo41jjVzWo5yOVNGq57U1Xi1cidKHztOLcK36pdR2PE1puM7G LK6KkrY5ntYioiuVGqqomqomvhQAywNc65GXfd7hzypB6Rl6G8Wm6K5LZdKSrVjGSO6hO2TRr2o5 jl3VXic1Uci9KKioAewH4lligjfNNI2OONquc9y6I1E51VV5kMA7MbL1jla/HeHWuRdFRbpAip/9 wBsQItbXl2zxWvwpWZMYsbQWmqo55ZZYb1RUbKh6uYrXIs0jVkTdVFRW6om94ePu2UL8US5XYWkx pUrUXx9qp3V0yzRy9UkViau341Vj9U0XeRVRdddVANvBqlZm1lVb7gtor8zMKU1ci7q0s15pmSov a3Ffr/0Nnp6inq4GVNLPHNDK1HskjcjmuavMqKnEqAH0BrnXIy77vcOeVIPSPdacV4Wv876axYlt VxmjZ1R8dJWRzOa3VE1VGqqomqpx+EAyoBr82YOAaaV0FRjewRSMXRzH3OFrmr2lRXcQBsAPFab3 Zb9TOrLHd6K4wMesTpaSoZMxr0RFVqq1VRF0VF08KGKfmNl7G5WPx3h5rmroqLdIEVF/5gDYgYm0 4twrfql1HY8TWm4zsYsroqStjme1iKiK5Uaqqiaqia+FDLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhj9kp /JvA369W/VxkziGP2Sn8m8Dfr1b9XGcKDguQ21tibIXCFZg+y4Ttd0grLlJcnTVUsjXte+KKNWoj eLTSJF+dTUM8M8sV5/Ynob/iK20NG+ipG0NNTULH7um8rlXlKrlc5zu3zIidtVlLsH5V5a44yhu9 2xjgSxXqtixJUU8dRXUMc0jYkpaVyMRzkVUaiucunbcvbJQWLJrKTDFwju+HstMMW6uhVHRVNPa4 WSxr22vRurV+BRYCBWdOA7xl7smZX2jEFLJS3Gsu9Zcp6eRqtfD1ZiuYxyLxtd1Pc3mqiKjlVF5i Sex77kuL/du31khgPsjFjulflfh+9UdK+WktV3+63tTXqTZY1axzu0iuRG69tzU6TjGRu2LYMq8n HZYXbBlwrahi1iR1VPUsRjmzqrkVWuTVFRXKnFrxIi9OiMigxOwF7oGH5HrP/Qcjyay0nzgzJs+X VNdo7ZJduEbtVJCsrY+pU8k3G1FTXVI9OfpOubAXugYfkes/9By7IXMmhyhzYseYlyts9wprTwrf p4Ho17+q00sKaK7i4lkRfgQ4Bu2fGzJjPZthsuKUxZFcKesqnQQ1tDHJTy01Q1FczVdV0VzUVUVH a8l3a1Xcs481Lxm3seYOveI6nhN3tmLXWquqNNFnfHSyuY9U/wBJY5I97tu1Xi10MFtRbWLM/rPa MLWTC01otdvqlr5nVMySTTVG45jERGpo1rWvf0qqq5Obd4/ZmRl1eMudjHCNPf6SSkr77jF15kpp Wq18LZKOSONHIvMqxxMdp0b2i8eoBj737hGwf+Ib/M6g2PKfNe9ZSbF2JbrhmpWlu93xtJaaSpam rqdZKGne+RvacjI3oi9DlReg1y9+4RsH/iG/zOoMlgTLy+ZhbEWI24epJqussGOn3jg0KK580bKC CORGtTnVGyq/Tn0YunaUDAZB7LmL9o6hvGLn4uhtlJSVnBpKurikqZampVqPf0pro17FVVdryk4i TuSexTcsqLniatrMwqa4MxFhmtw+iRW5zFgWd0a9V45F3kb1NeTxa686EeNl7a2psg8O3TCN6wlP drdXVq3KGWlqGxyxTOjZG5qtcmjmq2Ni66poqLxLrxdhxftWx7Q2VeYWB8A4PvFtulLhx9zfJJKy TqlLHVU7KhiIzj1WKWT5kUYgcLu2SGzfZax9DWbXdFJJG5WqtJg+qqo9U7T4ZXNVPCinPrbih2TG aUd/ytxw6909oqI301zhpZaNlfCqNc+N8MnKa1dXMc12qcSqmqaKfzK24ZM0Etx68GH8S3ON7YuA eotTHEsaoruqdUR+muurNNF4tF4l14sRmBU4Bq8Tzz5aW27UFhWONIYLpKySoa/dTfVysVU0V2un gAO/7cucWKMXZo1WVttramOwWLqEaUUKqiVdW+Nr3PeiffqivRjUXiTdVUTVy67La/sbeLqm3U1R dsy7ZRVkkbXT08dvfM2J6pxtR++3e05tdEND21cA4jwPnbUY5ZTTMtmIeD11BWIzViTxxMbJGq82 +j2b2i+9c07Nafsk2HHW6nW+5ZXJlfuaTpSVsboVd22q5EciLz6Lza6arpqrWDkm2Ll9JlXY8rcv 5bq25Ps9mrInVTYepJIrqnfXRu87RE39Ofj014uYzOeGcGIcMbOWU+WOGrlPQJesOxV1zlgkVkkl OnIjh3k40a5yPV2nPuonMqovh22cfW7NGhyyx9aaKppKW8WarmZBUbvVI1SdGORd1VReU1dF6U0X ROY+O0Bljea/ILKPNa1UElTSUGGobVdJI49eDM3t+B7lT3iukkbqvEiq1OdwBlMrtgu6Zi5W0GPZ swIrdX3mkWroaD1PWSNGqq7iSS9UReWiIvE3k6++5jzbCeb+JcK5o02VNwrZ5LDiDq8baSZVVtJW MY6RHsRfvFduKxyJzq5qr96bZlPt5YTy/wAnLVg66YOvFZiCxUPAqbqLoko6hGcUavkV2+zk6Iuj Hc3Fz8WgbDuXuIMcZ402O5YpPUzDXV66tq3MVGyVEjHMjiaqJpvq6Tf0/wBFjubVNQOQZNZaT5wZ k2fLqmu0dsku3CN2qkhWVsfUqeSbjaiprqkenP0m1535NYl2Ycc2WnpMZJV1s1M25UdwoWPppYHt kc3i41VFRWoqKi9Jkdij3TeDf8R//H1J0v7JD7Y+FPkR317xmB5trLaGxriDBOAcFQXN9Iy+4VoL 9f3Uv9nwuednsS6c0aK1ztzmXfbrruocjwhlvkXdsP0lxxhtI0+H7pOzfmt0OEq+tSn15mulTca5 2nPuorUXmVycZuG0rlze4Mv8p8z6Wills9Xgm1Wyqma3VsFTHFvN3196j2vRE16WONZwdftliPDl FFjvAWOX3uONGVcttuUK08rk4t9qP3Vbrzq3j0XmVQDe8yKWmyy2WrXYMsMyZ8T4ZxbiqrqK65xW ya29U3KeKNKV0cjlcrd6Fzl10R26nFonHzvCGXOQ15w5RXPFe0emHbrOxXVNs+1Ctq+DO3lRG9WY 5Gv1REXVO3oSMt2duzFZNnSiw7U5Y4muWEK2+VlubQ1j4n1HCI2RVD5uqJK1WfhLGtViovE7m53c UqcQbFkkcvUMAZmRvc125u3Gm5K9Giq5f+qL84B3/Y9yUyzsOO5cfZf58UOMnUtBLTTW+Ozvopo2 yq3SRzZJVeiat042aarzkySr/Y9jq6zajtFRgamrqe1Ry180kUsvVHxW5YpEa2dzURHqm9EmuiIr 91UROLS0A5QAAHIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABruM8u8DZiUtPRY4wrbr3DSSLLTtrIUf1JypoqtXn TVOft6J2kNiABgcHYFwfl9bJbNgnDtFZqGad1VJBSR7jHSq1rVeqdtWsanzIZ4AA+NZRUdxpZaG4 UkNVTTsWOWGaNHskavO1zV4lRe0pzmXZnyBmkdK/KTDaK9dVRtG1qfMicSfMdMABpeEcl8qcB3Zb 7g7AVntNwWJ0HCaanRsiMcqK5qL0a6IYTsY9n/vS4d8V/wDc6eADRMPZEZNYVuEd2w/llh2jrYVR 0VQ2gY6SJydLHORVavhTRTOYywFg3MK3Q2nG2G6G80dPOlTFDVx77WSo1Wo5PDo5yfOZ8AGlT5K5 T1OFKfA02ALM6wUtUtdFb+DIkLahUcnVdE53aPcmq9C6GXwdgTB+X1sls2CcO0VmoZp3VUkFJHuM dKrWtV6p291jU+ZDPAA0W95E5M4jrqi53vK/DNXWVaf29Q+2xJJIu8i7yuREVXaonK59NU10VUPT g7J3K/L65y3nBWB7VZq6aB1LJPSQ7j3RK5rlYq9pXMavzIbiADnNw2c8ibpWS3Ctyow0+edyvkc2 hYzecvOqo3RNV6V0PN2Mez/3pcO+K/8AudPABj73h6w4ltslmxFZaG6UEuiPpaynZNE7Tm1Y5FQ0 F2zLkA5yuXKXDmq8fFSIifuQ6cADRrvkbk/frba7Rd8ubFU0dkhdT2+F1I1G08blRXNbp0Kqar21 VV51U2i34esVqsUOGLfaKSC0U9OlJHRNiTqLYUTd3N3mVNOLRecyIAOU1myts811e64z5UWRsrnb ytha+GLXwRMcjETwbuh0WwYdsGFbXFZcM2WhtVBB7HTUcDYY29td1qImq9K86mRABomGcisn8G3u mxJhbLyzWy6Ue/1Cqp4N2SPfY5jtF8LXOT4FU9+M8qMtsxKmmrMcYKtV6qKNjooJaunRz2MVdVaj ufTXj08K9tTbAAY2DDeH6bD8OFIrNR+o0FMyjjoHQtdAkDWo1se4uqK1ERE0XtGjTbNOQU8rpn5S YaRzl1VGUTWN+ZG6InzIdLABz92QGSz7FHhl+Wdhda4qt9dHTLSorWTvY1j3p0oqtYxF7e63tIeD sY9n/vS4d8V/9zp4ANdwfl3gTL+nlpcE4StVkjqFRZuBUrY3SqnNvORNXadGq8RsQAB//9l= ------=_NextPart_01D6E90A.D60BA340 Content-Location: file:///C:/8E47CD61/7importanciadelturismoylasmatesdaryAlpha.fld/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01D6E90A.D60BA340--