MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DBECCC.EE8A5BD0" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

La inteligencia artificial en la educación: transformando= los entornos digitales para el aprendizaje personalizado<= /h1>

 

Artificial intelligence in education: transforming digital environments for personaliz= ed learning

 


1

Yessenia Fernanda Suquinagua Arévalo

 

https:= //orcid.org/0000-0003-1438-1759 =

 

 

Universidad Bolivariana del Ecuador (UBE), Durán, Ecuador

Maestría en Educac= ión Mención Entornos Digitales

yfsuquinaguaa@ube.edu.ec=

2

Nancy Catalina Arévalo Luna

 

https:= //orcid.org/0009-0000-1218-3172 =

 

 

Universidad Bolivariana del Ecuador (UBE), Durán, Ecuador

Maestría en Educac= ión Mención Entornos Digitales

ncarevalol@ube.edu.ec=

3

Juan Eduardo Anzul= es Ballesteros

 

https:= //orcid.org/0000-0003-1926-2492 =

 

 

Universidad Bolivariana del Ecuador (UBE), Durán, Ecuador

jeanzulesb@ube.edu.ec=

4

Tatiana Tapia Bastidas

 

https:= //orcid.org/0000-0001-9039-5517 =

 

 

Universidad Bolivariana del Ecuador (UBE), Durán, Ecuador

ttapia@ube.edu.ec=

&= nbsp;

 

 = ;

Artículo de Investigación Científica y Tecnológica

Enviado: 15/02/2025

Revisado: 19/03/2025

Aceptado: 01/04/2025

Publicado:20/06/2025

DOI: https://doi.org/10.33262= /ap.v7i2.620               

 =

 

 

Cítese:

&nbs= p;

 <= /span>

Suquinagua Arévalo, Y. F., Arévalo Luna, N. C., Anzules Ballesteros, J. E., & Tapia Bastidas, T. (2025). La inteligencia artificial en la educación: transformando los entornos digitales para el aprendizaje personalizado. AlfaPublicaciones, 7(2), 155–179. ht= tps://doi.org/10.33262/ap.v7i2.620

 

 

ALFA PUBLICACIONES, es una revista multidisciplinar, trimestral, que se publicar= á en soporte electrónico tiene como misión contribuir a la   formación de profesionales competentes con visión humanística y crítica q= ue sean capaces de exponer sus resultados investigativos y científicos en la misma medida que se promueva mediante su intervención cambios positivos e= n la sociedad. https://alfapublicaciones.co= m 

3Deditorial1.png<= span lang=3DES-EC style=3D'font-size:8.0pt;line-height:115%;font-family:"Times= New Roman",serif; mso-fareast-font-family:Aptos'>La revista es editada por la Editorial Cie= ncia Digital (Editorial de prestigio registrada en la Cámara Ecuatoriana de Li= bro con No de Afiliación 663) www.celibro.org.ec

 <= /u>

 

 

Esta revista está protegida bajo una licencia Creative Commons = Attribution Non Commercial No Derivatives 4.0 International. Copia de la licencia: http://creativecommons.org/l= icenses/by-nc-sa/4.0/

 

Palabras claves: Inteligencia artificial;

IA;

entornos digitales; aprendizaje personalizado.

<= o:p> 

 

&nbs= p;

Introducción. Objetivo. La investigac= ión tuvo como objetivo general analizar el impacto de la Inteligencia Artificial (IA) en la transformación de los entornos digitales de aprendizaje y = su contribución a la personalización educativa. El problema de investigación radica en que, aunque la IA tiene el potencial de mejorar la educación, su adopción enfrenta barreras como la falta de formación docente, la desigua= ldad en el acceso a infraestructura tecnológica y la resistencia al cambio en algunas instituciones. Metodología. En cuanto a la metodología, se empleó un enfoque cuantitativo, no experimental, transversal y correlacional-causal. Se utilizó una encuesta para analizar la percepción estudiantil sobre la integración de IA en la educación. Resultados. La investigación se realizó en la Escuela de Educación Básica "Ángel Polivio Chávez", en Cuenca, con una población = de 150 estudiantes de Básica Superior, seleccionados mediante muestreo no probabilístico por conveniencia. Un hallazgo clave fue la correlación de Spearman (ρ =3D 0,903, p =3D 0,000), que indica una re= lación muy fuerte y positiva entre la integración de IA y el impacto en el aprendizaje personalizado. Es decir, a mayor implementación de IA, mayor personalización en la enseñanza. Conclusión. Como conclusión, si b= ien la IA puede transformar la educación, su éxito depende de la formación docente, la infraestructura tecnológica y la equidad en el acceso. Área de estudio general: Educación Área de estudio específica: Ped= agogía en Entornos Digitales Tipo de estudio:  Artículo original.<= /span>

 

 

Keywords:Artificial intelligence;

AI;

digital environments; personalized learning.

 

Abstract<= /o:p>

Introduction. The integration of artificial intelligence (AI) in the educational field has caused an unprecedented transformation in digital learning environments, driving the personalization of teaching and redefining traditional pedagogical methodologies. Objective. The general objective of the research was to analyze the impact of Artificial Intelligence (AI)= on the transformation of digital learning environments and its contribution = to educational personalization. The research problem lies in that, although = AI has the potential to improve education, its adoption faces barriers such = as the lack of teacher training, inequality in access to technological infrastructure, and resistance to change in some institutions. Methodo= logy. Regarding the methodology, a quantitative, non-experimental, cross-sectio= nal, and correlational-causal approach was used. A survey was used to analyze student perceptions of the integration of AI in education. Results. The research was conducted at the "Ángel= Polivio Chávez" Basic Education School, in Cue= nca, with a population of 150 Upper Basic students, selected through non-probabilistic convenience sampling. A key finding was the Spearman correlation (ρ =3D 0.903, p =3D 0.000), which indicates an extraordi= narily strong and positive relationship between AI integration and the impact on personalized learning. That is, the greater the implementation of AI, the greater the personalization of teaching. Conclusion. In conclusion, while AI can transform education, its success depends on teacher training, technological infrastructure, and equity of access. General area of ​​study: Education Specific area of ​​stud= y: Pedagogy in Digital Environments Type of study: Original article.<= o:p>

 

 

&= nbsp;

&= nbsp;

1.      Introducción<= /b>

= La integración de la Inteligencia Artificial (IA) en el ámbito educativ= o ha provocado una transformación sin precedentes en los entornos digitales de a= prendizaje, impulsando la personalización de la enseñanza y redefiniendo las metodologí= as pedagógicas tradicionales (Diliber= ti et al.= , 2024). En un contexto global donde la digitalización avanza rápidamente, la IA se presenta como un catalizador del cambio educativo, facilitando la adaptació= n de los contenidos y estrategias de enseñanza a las necesidades individuales de= los estudiantes (Aljemely, 2024<= /span>). La capacidad de la IA para analizar grandes volúmenes de datos, detectar patrones de aprendizaje y ofrecer recomendaciones pedagógicas personalizada= s ha despertado un creciente interés en la comunidad educativa y científica (Erduran & Levrini, 2024<= /span>).

= El desarrollo de la inteligencia artificial ha trascendido los límites de la automatización y el análisis de datos para incidir directamente en la enseñ= anza y el aprendizaje, brindando oportunidades sin precedentes para la mejora del rendimiento académico y la reducción de la brecha educativa (Altinay et al., 2024).= No obstante su implementación también plantea desafíos significativos, tales como la capacitación docente, la integración curricul= ar y la garantía de equidad en el acceso a estas tecnologías (Zhang e= t al., 2024). Este artículo científico busca analizar el impacto de la = IA en la educación, centrándose en cómo la transformación de los entornos medi= ante herramientas digitales de IA contribuye a la personalización del aprendizaj= e y a la optimización de la enseñanza.

A pesar del potencial transformador de la inteligencia artificial en la educación, su adopción enfrenta múltiples desafíos que impiden su implementación efectiva en los entornos de aprendizaje. Uno de los principa= les problemas es la falta de preparación de los docentes para utilizar herramie= ntas basadas en IA de manera eficaz (Mbambo & du Plessis, 2024). La capacitación docente en competencias digit= ales y en el uso de estas tecnologías es insuficiente, lo que genera un desfase entre el desarrollo tecnológico y su aplicación pedagógica (Ayanwale et al., 2024).

= Otra problemática relevante es la falta de integración efectiva de la IA en los currículos educativos, lo que limita su aprovechamiento en el aprendizaje personalizado (Yue et al., 2024).= A pesar de los avances en IA educativa, muchas instituciones aún dependen de métodos tradicionales que no aprovechan la automatización ni el análisis de datos para adaptar la enseñanza a las necesidades individuales de los estudiantes (Kitcharoen et al.= , 2024).

= Además, la brecha digital sigue siendo un obstáculo importante en la implementación= de la IA en la educación. La falta de acceso a tecnología avanzada e infraestructura digital adecuada en ciertas regiones y comunidades limita la posibilidad de ofrecer aprendizaje personalizado basado en IA (Dilzhan, 2024). Este problema no solo afecta a los estudiantes, sino que también dificulta la capacitación docente en el uso de estas herramientas (= Yilmaz et al., 2024).

= Uno de los principales desafíos en la implementación de la inteligencia artific= ial en la educación es la falta de formación docente en el uso de estas tecnologías. La carencia de programas de capacitación adecuados impide que = los docentes integren eficazmente la IA en sus prácticas pedagógicas, lo que re= duce significativamente la efectividad del aprendizaje personalizado (Mbambo<= /span> & du Plessis, 2024). Como consecuencia los profesores sin formación en IA tienden a mostrar resistencia a su uso, lo q= ue limita el desarrollo de metodologías innovadoras basadas en estas herramien= tas y mantiene la enseñanza anclada en modelos tradicionales menos efectivos (<= span class=3DSpellE>Sperling et al., 2024).=

= Otro problema fundamental radica en el déficit en la integración curricular de la inteligencia artificial dentro de los planos de estudio. La ausencia de políticas claras sobre su inclusión en los programas educativos dificulta su implementación estructurada en el sistema educativo, impidiendo que los estudiantes accedan de manera equitativa a este tipo de formación (Forero & Bennasar, 2024). = Como efecto los alumnos no reciben una educación adecuada en IA, lo que disminuy= e su capacidad para utilizar estas tecnologías de manera crítica y efectiva en su proceso de aprendizaje, limitando así su preparación para un mundo laboral = cada vez más digitalizado (Pokrivc= akova, 2023<= /span>).

= La brecha digital sigue siendo un obstáculo importante para la aplicación de l= a IA en contextos educativos diversos. La desigualdad en el acceso a tecnología avanzada restringe las posibilidades de aprovechar el aprendizaje personali= zado basado en IA, afectando especialmente a comunidades con menor acceso a infraestructuras tecnológicas (Fundi et al.= , 2024). Como resultado se perpetúa la desigualdad educativa, ya que solo ciertos gr= upos tienen acceso a herramientas avanzadas, lo que amplía la brecha entre los estudiantes y genera disparidades en la calidad de la educación que reciben= (Singh & Ram, 2024).

= El objeto de estudio de esta investigación es la influencia de la Inteligen= cia Artificial (IA) en la transformación de los entornos digitales de aprendizaje para la personalización educativa. Se analizarán las estrategia= s de implementación de la IA en distintos niveles educativos y su impacto en la enseñanza y el aprendizaje.

= Desde un enfoque teórico, el uso de IA en la educación se fundamenta en teorías d= el aprendizaje adaptativo y en modelos de enseñanza personalizados, que sostie= nen que la personalización del aprendizaje mejora significativamente la adquisi= ción de conocimientos y habilidades (Erduran= & = Levrini, 2024<= /span>). La IA permite el desarrollo de sistemas inteligentes capaces de adaptar los contenidos y metodologías a las necesidades de cada estudiante, promoviendo= un aprendizaje más eficiente y significativo (Tan et = al., 2024).

= Desde una perspectiva metodológica, es necesario investigar el impacto de la IA e= n el aprendizaje para comprender cómo estas herramientas pueden optimizar la enseñanza. Estudios previos han demostrado que los algoritmos de IA pueden identificar patrones en el aprendizaje de los estudiantes y proporcionar retroalimentación en tiempo real, lo que contribuye a mejorar su desempeño académico (Su & Yang, 2024).

= En términos prácticos, la implementación de IA en la educación tiene el potenc= ial de revolucionar la enseñanza, proporcionando a los docentes herramientas avanzadas para personalizar la instrucción y mejorar la gestión del aula (Tan et al., 2024). Sin embargo, su aplicación efectiva requiere superar desafíos relacionados con la capacitación docente, la infraestructura tecnológica y la integración curricular (Wardat et al., 2024).

= El objetivo general fue el de analizar el impacto de la inteligencia artificia= l en la transformación de los entornos digitales de aprendizaje y su contribució= n a la personalización educativa, identificando los desafíos, oportunidades y estrategias para su implementación efectiva en el ámbito educativo. Entre l= os objetivos de la Investigación se plantearon los siguientes:

= I. Explorar los fundamentos teóricos sobre la inteligencia artificial en la educación y su impacto en la personalización del aprendizaje. Se revisarán = los principales enfoques teóricos que sustentan el uso de IA en la educación, incluyendo modelos de aprendizaje adaptativo y metodologías de enseñanza personalizada (Lee et al., 2024). Se analizarán estud= ios previos sobre la aplicación de IA en entornos digitales de aprendizaje y su efectividad en la mejora de los resultados académicos (Galindo-Domínguez et al., 2024).

= II. Investigar las estrategias actuales de implementación de IA en los entornos digitales de aprendizaje y su impacto en la enseñanza. Se examinarán casos = de estudio sobre la aplicación de IA en diversos niveles educativos, identific= ando buenas prácticas y desafíos en su integración (Su &= ; Yang, 2024). Además, se analizará el nivel de preparación de los docen= tes para el uso de IA en sus prácticas pedagógicas y su percepción sobre estas herramientas (Yue et al., 2024).<= /o:p>

= III. Interpretar los resultados obtenidos en la investigación para establecer directrices que faciliten la implementación efectiva de la IA en la educaci= ón. Se evaluarán los hallazgos de la investigación para desarrollar recomendaci= ones sobre cómo mejorar la formación docente en IA, fortalecer la infraestructura tecnológica y diseñar estrategias de integración curricular que maximicen l= os beneficios del aprendizaje personalizado basado en IA (<= span style=3D'color:windowtext;text-decoration:none;text-underline:none'>Zhang e= t al., 2024).

= Revisión de la literatura

= La inteligencia artificial tiene el potencial de transformar radicalmente la educación, ofreciendo oportunidades para un aprendizaje más personalizado y eficiente. No obstante, su implementación efectiva requiere abordar desafíos relacionados con la capacitación docente, la equidad en el acceso a la tecnología y la integración curricular. (Ortiz &= amp; Ortiz, 2024) A través de esta investigación, se busca proporcion= ar un análisis detallado de cómo la IA está remodelando los entornos digitales= de aprendizaje y cómo su adopción puede mejorar la enseñanza en el futuro.

= La literatura académica sobre la integración de la Inteligencia Artificial = (IA) en la educación presenta un consenso significativo en torno a sus beneficio= s y desafíos, pero también evidencia discrepancias en la forma en que estas tecnologías deben ser implementadas y reguladas. Los estudios analizados en esta discusión exploran diversas perspectivas sobre el impacto de la IA en = la formación docente, la personalización del aprendizaje y la transformación de los entornos educativos, lo que permite identificar puntos en común, así co= mo divergencias clave en su aplicación y efectividad.

= Uno de los puntos en los que coinciden los estudios revisados es el reconocimie= nto de la necesidad de capacitación docente en inteligencia artificial. Aljemely (2024) destaca que la falta de formación en IA impide a los docentes integrar estas tecnologías en sus metodologías pedagógicas de manera efectiva, lo que también ha sido señalado por Altinay et al. (2024), quienes argumentan que el desarrollo de competencias en = IA es crucial para la mejora de la calidad educativa. En la misma línea Ayanwale et al. (2024) enfatiz= an la importancia del compromiso de los futuros docentes con la AI como una condición esencial para su implementación exitosa en los entornos educativo= s.

= Asimismo existe consenso en que la IA puede mejorar la personalización del aprendiza= je, permitiendo adaptar los contenidos y estrategias pedagógicas a las necesida= des individuales de los estudiantes. Diliber= ti et al.= (2024) analizan el uso de herramientas de IA en aulas de educación primaria y secundaria, concluyendo que su aplicación puede optimizar la enseñanza medi= ante la generación de retroalimentación automatizada y estrategias de aprendizaje diferenciadas. De manera similar Forero & Bennasar (2024) identifican en su revisión sistemática cómo la IA y el aprendizaje automático pueden facilitar la identificación de patrones en el rendimiento estudiantil para diseñar experiencias educativas personalizadas= .

= Otro punto en el que convergen las investigaciones es en la preocupación por la brecha digital y su impacto en la equidad educativa. Fundi et al. (2024) advierten que la falta de ac= ceso a tecnología avanzada en algunas regiones impide una adopción equitativa de= la IA en la educación. Esta preocupación es compartida por Galindo-Domínguez et al. (2024)<= span lang=3DES-EC style=3D'font-size:12.0pt;line-height:115%;font-family:"Times = New Roman",serif; mso-bidi-language:SI-LK;mso-bidi-font-weight:bold'> quienes analizan el contexto español y concluyen que los docentes tienen percepciones divididas sobre la AI debido a la desigualdad en la infraestructura tecnológica. Esta problemática también es abordada por Sperlin= g et al. (2024) quienes sugieren que la alfabetización en IA debe ser considerada una prioridad para reducir la brecha digital y garantizar un ac= ceso más equitativo a estas herramientas.

A pesar de estas coincidencias, existen discrepancias en torno a la efectivid= ad de la IA en la enseñanza y el aprendizaje. Mientras que algunos autores sostienen que la IA puede mejorar la educación significativamente, otros señalan riesgos asociados con su implementación. Por ejemplo Dilzhan (2024) estudia el uso de IA en la enseñanza del inglés y encuentra que los docentes tienen opiniones divididas sobre la efectividad de herramientas como ChatGPT. Algunos consideran que estas tecnologías pueden complementar la enseñanza al proporcionar asistencia personalizada, mientras que otros advierten que pueden disminuir el papel d= el docente y afectar el desarrollo del pensamiento crítico en los estudiantes.=

= Otra diferencia clave entre los estudios analizados se encuentra de la manera en= que la IA debería integrarse en el currículo educativo. Mientras que Mbambo & du Pl= essis (2024) y Singh & Ram (2024) argumentan que la IA debería incorporarse como una disciplina independiente dentro de la formación docente, Lee et al. (2024) prop= onen que su inclusión debe ser transversal en diversas materias, en lugar de tratarse como un curso especializado. Esta discrepancia refleja un debate m= ás amplio sobre cómo preparar a los docentes para la era digital sin sobrecarg= ar los programas educativos existentes.

= Finalmente, algunos autores advierten sobre los riesgos éticos y pedagógicos de la IA e= n la educación. Erduran & = Levrini (2024) analizan su impacto en las prácticas científicas y advierten que el uso de algoritmos en la evaluación académica puede generar sesgos y afectar la equidad en la educación. Esta preocupación también es mencionada por Yue et al. (2024), quienes sostienen que la preparación pedagógica para la = IA debe incluir un componente ético para evitar la dependencia excesiva de la automatización en la enseñanza.

2.      Metodología

El dise= ño de esta investigación es no experimental, transversal y correlacional-causa= l. Se trata de un estudio cuantitativo que busca analizar la relación entre la implementación de la Inteligencia Artificial (IA) en la educación y = su impacto en la formación docente y el aprendizaje personalizado.<= /span>

Dado que el diseño es no experimental, la investigación no manipula directamente las variables, sino que observa y mi= de los efectos de la IA en la educación dentro de su contexto natural (Aljemely, 2024). Además se adopta un diseño transversal, ya que la recopilación de datos se realiza en un único momento en el tiempo, permitie= ndo evaluar la percepción de los docentes y estudiantes sobre el uso de la IA e= n la enseñanza en un punto específico (Altinay= et al.= , 2024).

La investigación se enmarca en un diseño correlacional-causal, ya que busca determinar si existe una relación significativa entre la integración de la IA en la educación y la mejora de = la enseñanza y el aprendizaje, además de identificar si una variable influye e= n la otra (Ayanwale et al.= , 2024).

Este estudio es de tipo cuantitativo, con un enfoq= ue descriptivo y explicativo. Desde una perspectiva descriptiva, la investigac= ión busca caracterizar el nivel de integración de la IA en la educación, identificando qué herramientas y metodologías basadas en IA se emplean en la enseñanza y la formación docente (Diliber= ti et al.= , 2024). Se analizarán variables como el uso de software de IA, algoritmos de aprendizaje automático y plataformas digitales de enseñanza adaptativa.

Desde un enfoque explicativo, el estudio pretende determinar si la IA en educación tiene un impacto significativo en la forma= ción docente y en la personalización del aprendizaje (Mbambo & du Plessis= , 2024). Se evaluará si el uso de herramientas de IA mejora la enseñanza, la evaluac= ión del aprendizaje y el desarrollo de competencias digitales en docentes y estudiantes (Erduran & Levrini<= span style=3D'color:windowtext;text-decoration:none;text-underline:none'>, 2024<= /span>).

Para lograr estos objetivos, se utilizarán métodos estadísticos para analizar la relación entre las variables, con el fin de comprobar la hipótesis planteada (Forero & Bennasar, 2024). La recopilación de datos se realizará mediante instrument= os estructurados que permitan medir la percepción de los docentes y estudiantes sobre su experiencia con la IA en la educación y su impacto en su proceso de enseñanza-aprendizaje.

2.1. Variables de estudio

 En el aná= lisis de la literatura, se identifican dos variables principales que estructuran = el debate sobre la Inteligencia Artificial (IA) en la educación, enfoca= das en la perspectiva de los estudiantes:

  1. Variable independiente: integración de la inteligencia artificial en la educaci= ón.

Sum(IA_Conocimiento_docente + IA_Infraestructura_tecnológica + IA_Política_educativa + IA_Percepción_adaptación)/4

  1. Variable dependiente: impacto en el aprendizaje personalizado.

Sum(ap_mejora_enseñanza + ap_eficiencia_evaluación= + ap_pensamiento_crítico + ap_reducción_brecha)/4

Cada una de estas variables se divide en dimension= es específicas que permiten analizar su relación con el aprendizaje desde la percepción de los estudiantes.

Dimensiones de la variable independiente (integrac= ión de la IA en la educación)

= 1.      Conocimiento del docente en IA: evalúa la percepción de los estudiantes sobre si sus docentes tienen formación y competencias suficientes para utilizar herramie= ntas de IA en el aula (Aljemely, 2024<= /span>; Ayanwale et al., 2024).

= 2.      Infraestructura tecnológica: mide la disponibilidad y acceso que los estudiantes tienen a herramientas tecnológicas de IA en su institución, considerando el uso de dispositivos, plataformas digitales y conectividad (Fundi et al., 2024; Galindo-Domínguez et al., 2024<= /span>).

= 3.      Política educativa y currículo: examina si los estudiantes han recibido formación so= bre IA dentro del currículo escolar, identificando si la IA está incluida en sus programas de estudio o si se usa como una herramienta de apoyo en el aprendizaje (Mbambo & du Plessis= , 2024; Singh & Ram, 2024).

= 4.      Percepción y aceptación del estudiante: analiza el nivel de interés y aceptación que l= os estudiantes tienen sobre el uso de IA en la educación, así como su disposic= ión para aprender con herramientas basadas en esta tecnología (Dilzhan, 2024; Yue et al., 2024).

Dimensiones de la variable dependiente (impacto en= el aprendizaje personalizado)

  1. Mejoras en la enseñanza personalizada: mide la percepción de los estudiantes s= obre si la IA ayuda a personalizar el aprendizaje, adaptando los contenidos= a sus necesidades y estilos de aprendizaje (Diliberti et al., 2024; Forero & Bennasar= , 2024).
  2. Eficiencia en la evaluación educativa: analiza si los estudiantes consideran que = la IA facilita la evaluación de su rendimiento y si mejora la retroalimentación que reciben sobre su desempeño académico (Singh & Ram, 2024= ; Erduran &= amp; Levrini, 2024).
  3. Desarrollo del pensamiento crítico y autonomía estudiantil: examina si los estudiantes creen que el uso de IA los ayuda a mejorar su pensamiento crítico, su capacidad de análisis y su autonomía en el aprendizaje (Dilzhan, 2024; Yue et al., 2024).
  4. Reducción de la brecha educativa: evalúa si los estudiantes perciben que la IA reduce las diferencias de acceso a la educación entre quienes tienen distintos niveles de conectividad y recursos tecnológicos (Fundi et al., 2024; Sperling e= t al., 2024).

Los estudios analizados muestran un consenso gener= al sobre el potencial de la inteligencia artificial para transformar la educac= ión mediante la personalización del aprendizaje y la mejora de la experiencia estudiantil. Sin embargo también revelan diferencias significativas en la percepción de los estudiantes sobre cómo debería implementarse la IA en el entorno escolar y qué tan accesible es para todos. Mientras que algunos consideran que la IA facilita el aprendizaje adaptativo y la evaluación automatizada, otros expresan preocupaciones sobre la falta de formación docente, la disponibilidad de tecnología en sus instituciones y el posible impacto en la autonomía estudiantil.

Un factor crítico identificado en este análisis es= la equidad en el acceso a la tecnología, ya que la infraestructura y los recur= sos tecnológicos disponibles influyen en la efectividad de la IA para personali= zar el aprendizaje. Además, la actitud y aceptación de los estudiantes juegan un papel fundamental en su adopción, pues su disposición para aprender con herramientas de IA influye en su aprovechamiento y resultados académicos.

Este análisis permite concluir que, si bien la IA tiene el potencial de revolucionar la educación, su éxito dependerá de la disponibilidad de infraestructura tecnológica, la preparación de los docent= es para su integración y la percepción positiva de los estudiantes. Para garantizar una implementación efectiva, es necesario fortalecer la formació= n en IA dentro del currículo escolar y asegurar que todos los estudiantes, independientemente de su contexto, puedan acceder a sus beneficios de manera equitativa.

2.2. Planteamiento de la hipótesis<= /h2>

Para analizar la relación entre la implementación = de la IA en la educación y su impacto en la formación docente y el aprendizaje personalizado, se plantea la siguiente hipótesis:

  • H₀ (Hipótesis Nula): la implementaci= ón de inteligencia artificial en la educación no influye significativamen= te en la personalización del aprendizaje.
  • H₁ (Hipótesis Alternativa): la implementaci= ón de inteligencia artificial en la educación tiene un impacto positivo significativo en la personalización del aprendizaje.=

2.3. Población y muestra

 La poblac= ión de esta investigación está conformada por los estudiantes de básica superior d= e la Escuela de Educación Básica "Ángel Polivio Chávez", ubicad= a en la ciudad de Cuenca, en la dirección César Dávila y Juan Bautista. La institución cuenta con una matrícula total de 150 estudiantes en este nivel educativo, quienes constituyen el universo de estudio para el análisis de la implementación de la Inteligencia Artificial (IA) en la educación y = su impacto en el aprendizaje personalizado.

Para esta investigación, se ha seleccionado una muestra representativa de 100 estudiantes, con el propósito de recopilar información sobre su percepción y experiencia con la integración de herramientas de IA en el proceso de enseñanza-aprendizaje. La selección de = la muestra se ha realizado mediante un muestreo no probabilístico por conveniencia, considerando la accesibilidad y disponibilidad de los estudia= ntes para participar en el estudio.

2.4. Técnica e instrumento de recolección de datos

Se utilizará la técnica de encuesta estructurada, = con un cuestionario basado en la escala de Likert, compuesto por preguntas cerr= adas para medir la percepción de docentes y estudiantes sobre la implementación = de la IA en la educación (tabla 1).

La decisión de utilizar la escala de Likert se deb= e a que:

= 1.      Facilita la medición cuantitativa de percepciones subjetivas sobre la IA en la educa= ción (Wardat et al., 2024).=

= 2.      Permite establecer correlaciones entre variables para comprobar la hipótesis (Yilmaz et al., 2024).=

= 3.      Proporciona datos estructurados que pueden ser analizados con técnicas estadísticas como regresión lineal y análisis factorial (Yue et al.= , 2024).

Tabla <= /b>1

Operacionalización de variables

Variable

Codificación

Dimensión

Pregunta en Escala Likert

VI: Integración de la Inteligencia Artificial en la Educación=

IA_Conocimiento_docente

Conocimiento del docente en IA

¿Consideras que tus docentes tienen conocimientos suficientes sobre inteligencia artificial?

IA_Infraestructura_tecnológica=

Infraestructura tecnológica

¿Tu escuela cuenta con tecnología basada en inteligencia artificial para el aprendizaje?

IA_Política_educativa

Política educativa y currículo

¿Recibes enseñanza sobre inteligencia artificial= en tus clases?

IA_Percepción_adaptación

Percepción y aceptación del estudiante

¿Te gustaría que la inteligencia artificial se u= se más en el aprendizaje?

VD: Impacto en el Aprendizaje Personalizado

AP_MEJORA_ENSEÑANZA

Mejoras en la enseñanza personalizada

¿Crees que la IA ayuda a que el aprendizaje sea = más adaptado a tus necesidades?

AP_EFICIENCIA_EVALUACIÓN

Eficiencia en la evaluación educativa

¿La IA facilita la retroalimentación y mejora la forma en que recibes calificaciones?

AP_PENSAMIENTO_CRÍTICO

Desarrollo del pensamiento crítico y autonomía

¿Consideras que la IA te ayuda a pensar de manera más crítica y a resolver problemas por tu cuenta?

 

Tabla 1

Operacionalización de variables (continuación)

Variable

Codificación<= /p>

Dimensión

Pregunta en Escala Likert<= /span>

VD: Impacto en el Aprendizaje Personalizado

AP_REDUCCIÓN_BRECHA

Reducción de la brecha educativa

¿Crees que la IA permite que más estudiantes ten= gan acceso a mejores oportunidades de aprendizaje?

Nota: escala de medición 1=3D Muy en desacuerdo, 2=3D En desacuerdo, 3=3D Neutral= , 4=3D De acuerdo, 5=3D Muy de acuerdo

2.5. Procesamiento de datos y validación del instrume= nto

Las respuestas de la encuesta serán analizadas con= el software SPSS, aplicando pruebas de correlación y análisis de regresión. Pa= ra evaluar la confiabilidad del cuestionario, se aplicará el coeficiente Alfa de Cronb= ach, garantizando la consistencia interna de las preguntas. Se obtuvo un coefici= ente superior a 0.80, lo que indicará una alta confiabilidad del instrumento (Zhang et al., 2024). Además el cuestionario fue validado mediante juicio de expertos, asegurando que las preguntas sean relevantes y comprensibles para los participantes (Sperling et al., 2024).=

2.6. Recorrido pedagógico

La investigación se llevará a cabo en la instituci= ón indicada, en donde han implementado herramientas de IA en la enseñanza, examinando cómo han afectado a la personalización del aprendizaje. Se estudiaron metodologías activas, como el uso de chatbots educativos, sistem= as de tutoría automatizada y análisis de datos de aprendizaje, para comprender= su impacto en la educación (Su & Yang, 2024). = Con este enfoque metodológico, la investigación proporciona un análisis detalla= do sobre la relación entre la IA y la educación, contribuyendo a la generación= de estrategias para su implementación efectiva en los entornos educativos del futuro.

3.      Resultados

Los resultados obtenidos en la encuesta (tabla 2) reflejan un panorama general positivo sobre la incorporación de la inteligencia artificial (IA) en la educación, aunque también ponen de manifiesto ciertas discrepancias en cuanto a su implementa= ción efectiva y su impacto real en el aprendizaje personalizado.

3.1. Formación docente y disponibilidad de infraestructura

Uno de los principales hallazgos es que la mayoría= de los estudiantes perciben que sus docentes han recibido formación en IA, con= un 84,7% de respuestas entre “de acuerdo” y “muy de acuerdo”. Esto sugiere que= la capacitación en herramientas de IA está siendo considerada en muchas instituciones educativas, lo que coincide con estudios previos que destacan= la importancia de la alfabetización digital en la enseñanza (Aljemely, 2024). No obstante, sigue existien= do un 13,4% que manifiesta que sus docentes no han recibido suficiente formaci= ón, lo que indica que aún hay margen para mejorar la capacitación en el uso de estas tecnologías.

En cuanto a la infraestructura tecnológica, los resultados muestran que, si bien una parte significativa de los estudiantes reconoce la existencia de herramientas de IA en sus instituciones (75,3% en= tre “de acuerdo” y “muy de acuerdo”), un 22% expresó estar en desacuerdo. Esto evidencia que, aunque la adopción de la IA está en marcha, aún hay desigualdades en la disponibilidad de estos recursos entre instituciones educativas, lo que puede estar afectando la equidad en el acceso a una educación digitalizada.

3.2. Inclusión de la IA en el currículo educativo

La percepción sobre la integración de la IA en los programas educativos es uno de los aspectos mejor valorados en la encuesta,= con un 90,7% de respuestas positivas. Este resultado refuerza la idea de que las instituciones están comenzando a incluir la IA en el currículo, lo que es consistente con investigaciones previas que señalan la creciente necesidad = de preparar a los estudiantes en el uso de estas tecnologías desde edades tempranas (Mbambo & du Plessis= , 2024; Singh & Ram, 2024). Sin em= bargo, el 7,3% de respuestas negativas indica que algunas escuelas aún no han implementado estos cambios o que los estudiantes no perciben claramente su integración.

3.3. Percepción del impacto de la IA en la enseñanza y el aprendizaje=

La gran mayoría de los encuestados considera que l= a IA puede mejorar la enseñanza en el aula (72,7% de acuerdo), aunque llama la atención que ningún estudiante marcó “muy de acuerdo”, lo que sugiere que, aunque hay una percepción general de beneficio, aún persisten dudas o falta= de experiencia directa con estas herramientas en la educación cotidiana.<= /o:p>

En relación con la personalización del aprendizaje= , un 79,3% de los encuestados cree que la IA ayuda a adaptar los contenidos a las necesidades individuales de los estudiantes. Esto refuerza el argumento de = que la IA puede ser utilizada para mejorar la enseñanza a través del aprendizaje adaptativo (Diliberti et al.= , 2024; Forero & Bennasar, 2024). = No obstante un 18% de los estudiantes está en desacuerdo o muy en desacuerdo, = lo que indica que aún hay casos donde la IA no ha logrado cumplir con sus expectativas o no se ha implementado de manera efectiva.<= /p>

Por otro lado la capacidad de la IA para facilitar= la evaluación educativa fue valorada positivamente por la mayoría de los encuestados (74,7% de respuestas positivas), lo que indica que los estudian= tes perciben la automatización de la retroalimentación como una ventaja. Sin embargo, un 23,3% expresó desacuerdo o total desacuerdo, lo que podría estar relacionado con el temor a una evaluación despersonalizada o basada únicame= nte en algoritmos sin intervención docente (Singh &= amp; Ram, 2024).

3.4. IA y desarrollo del pensamiento crítico

En cuanto al impacto de la IA en el pensamiento crítico y la autonomía estudiantil, el 86,6% de los estudiantes considera q= ue estas herramientas pueden favorecer su desarrollo, lo que está alineado con estudios previos que sugieren que la IA puede potenciar la capacidad analít= ica de los estudiantes cuando se usa de manera adecuada (Dilzhan, 2024; Yue et al., 2024). Sin embargo, el 12% de respuestas en desacuerdo sugiere que algunos estudiantes no perciben un efe= cto positivo en su capacidad de análisis, lo que podría estar vinculado a cómo = se implementan estas tecnologías en el aula.

3.5. Percepción sobre la reducción de la brecha educativa

Finalmente, uno de los resultados más divididos en= la encuesta está relacionado con si la IA ayuda a reducir la desigualdad en el acceso a la educación digital. Aunque un 70% de los estudiantes cree que la= IA puede contribuir a cerrar la brecha educativa, un 23,3% expresó su desacuer= do. Esto sugiere que, si bien la IA tiene el potencial de democratizar el acces= o a la educación, en la práctica aún persisten desigualdades en términos de acc= eso a dispositivos, conectividad y formación digital (Fundi et al., 2024; Sperling et al., 2024).

Los resultados de la encuesta muestran una tendenc= ia positiva hacia la integración de la IA en la educación, con una percepción mayoritaria de que puede mejorar la personalización del aprendizaje, facili= tar la evaluación y desarrollar el pensamiento crítico. Sin embargo, aún existen barreras relacionadas con la formación docente, la disponibilidad de infraestructura y la equidad en el acceso a estas herramientas.<= /span>

Estos hallazgos resaltan la necesidad de seguir fortaleciendo la capacitación en IA para docentes, mejorar la infraestructu= ra tecnológica en las instituciones educativas y garantizar que la integración= de estas herramientas sea equitativa para todos los estudiantes. Aunque la IA tiene el potencial de transformar la educación, su impacto dependerá de cóm= o se implementen las políticas de acceso y formación en los diferentes contextos educativos.

 

 

 

Tabla 2

Respuestas consolidadas de las encuestas

Pre= guntas de la encuesta

Muy en desacuerdo

Desacuerdo

Indistinto

De acuerdo

Muy de acuerdo

¿Ha recibido formación en inteligencia artificial para la enseñanza?

2,7%

10,7%

2,0%

40,7%

44,0%

¿Cu= enta su institución con herramientas de IA para la educación?

10,7%

11,3%

2,7%

46,0%

29,3%

¿Se incluye la inteligencia artificial en el currículo educativo de su institución?

3,3%

4,0%

2,0%

76,0%

14,7%

¿Co= nsidera que la inteligencia artificial puede mejorar la enseñanza en el aula?

5,3%

16,7%

5,3%

72,7%

0,0%

¿Cr= ee que la IA ayuda a personalizar el aprendizaje según las necesidades de ca= da estudiante?

6,0%

12,0%

2,7%

63,3%

16,0%

¿La= IA facilita la evaluación y retroalimentación del desempeño estudiantil?

10,0%

13,3%

2,0%

42,0%

32,7%

¿La= IA contribuye al desarrollo del pensamiento crítico en los estudiantes?=

2,7%

9,3%

1,3%

67,3%

19,3%

¿Cr= ee que el uso de IA reduce la desigualdad en el acceso a la educación digita= l?

1,3%

23,3%

5,3%

32,7%

37,3%

Nota: Para la discusión de los resultados se utilizó la suma de categorías positi= vas (muy de acuerdo y de acuerdo).

3.6. Resultados de la correlación

El análisis de correlación de Spearman realizado e= n la tabla 3, entre la integración de la = Inteligencia Artificial (IA) en la educación y su impacto en el aprendizaje personalizado revela un coeficiente de correlación de 0,903, lo que indica = una correlación muy fuerte y positiva entre ambas variables. Este resultado sug= iere que, a mayor nivel de implementación de IA en los entornos educativos, mayor será el impacto percibido en la personalización del aprendizaje.=

El nivel de significación bilateral (Sig. =3D 0,00= 0) confirma que la correlación encontrada es estadísticamente significativa co= n un nivel de confianza del 99%. Esto significa que la relación entre la integra= ción de IA y la mejora en el aprendizaje personalizado no es producto del azar, = sino que existe una asociación consistente entre ambas variables. En otras palab= ras, a medida que las instituciones educativas adoptan herramientas basadas en I= A, los estudiantes experimentan un aprendizaje más adaptado a sus necesidades individuales.

Estos hallazgos respaldan investigaciones previas = que han señalado el potencial de la IA para mejorar la educación a través del aprendizaje adaptativo, en el cual los algoritmos pueden identificar fortal= ezas y debilidades de los estudiantes y ajustar los contenidos en consecuencia (= Diliberti et al., 2024; = Forero & Bennasar, 2024). Además, este resultado concuerda con estudios que sugieren que la IA puede proporcionar retroalimentación personalizada en tiempo real, lo que optimiz= a la enseñanza y permite un aprendizaje más efectivo (Singh &= amp; Ram, 2024; Erduran= & = Levrini, 2024).

Sin embargo, aunque la correlación es muy alta, no implica una relación causal directa. Es decir, aunque la IA contribuye significativamente al aprendizaje personalizado, otros factores también pue= den influir en la manera en que los estudiantes experimentan esta personalizaci= ón, como la infraestructura tecnológica, la formación docente y el acceso equitativo a estas herramientas. De hecho, investigaciones previas han seña= lado que la efectividad de la IA en la educación depende en gran medida de cómo = se implementa y quién tiene acceso a ella (Fundi et al.= , 2024; Sperling et al., 2024).

Otro punto de análisis es que, si bien el coeficie= nte de correlación es alto, no todos los estudiantes pueden haber experimentado= los mismos beneficios. En instituciones con mayor inversión en IA y en la forma= ción docente, el impacto del aprendizaje personalizado será más evidente. Sin embargo, en aquellas con menor acceso a tecnología, la experiencia puede ser desigual, lo que podría explicar algunas diferencias en la percepción de los estudiantes.

La correlación muy fuerte y significativa entre la integración de la IA y el aprendizaje personalizado demuestra que estas tecnologías pueden desempeñar un papel clave en la transformación de la educación. Sin embargo, para maximizar su efectividad, es fundamental inver= tir en infraestructura tecnológica, capacitar a los docentes y garantizar el ac= ceso equitativo a estas herramientas. Aunque la IA tiene el potencial de personalizar el aprendizaje, su impacto dependerá de cómo se implemente en = cada contexto educativo y de los recursos disponibles para su adecuada integraci= ón.

3.7. Comprobación de la hipótesis

Los resultados del análisis estadístico en SPSS en= la tabla 3, muestran que la correlación de Spearman (&= #961; =3D 0,903, p =3D 0,000) entre la implementación de la Inteligencia Artificial (IA) en la educación y la personalización del aprendizaje es altamente significativa y positiva. Dado que el valor de p es menor a 0,05,= se rechaza la hipótesis nula (H₀) y se acepta la hipótesis alternativa (H₁), lo que indica que la implementación de la IA en la educación ti= ene un impacto positivo y significativo en la personalización del aprendizaje. = Este resultado confirma que, a medida que las instituciones educativas integran herramientas de IA en sus procesos de enseñanza, los estudiantes experiment= an un aprendizaje más adaptado a sus necesidades individuales. Asimismo, el al= to coeficiente de correlación sugiere que la IA es un factor clave en la transformación de los entornos digitales de aprendizaje. Sin embargo, aunque los datos confirman una relación significativa, es necesario considerar otr= os factores como la formación docente, el acceso equitativo a la tecnología y = la calidad de la infraestructura tecnológica para garantizar una implementación efectiva y maximizar los beneficios de la IA en la educación.

Tabla 3

Correlaciones

 

Integración de la Inteligencia Artificial

Impacto en el Aprendizaje Personaliz= ado

Rho de Spearman

Integración de la Inteligencia Artificial

Coeficiente de correlación

1,000

,903**<= /p>

Sig. (bilateral)

.

,000

N

150

150

Impacto en el Aprendizaje Personaliz= ado

Coeficiente de correlación

,903**<= /p>

1,000

Sig. (bilateral)

,000

.

N

150

150

Nota: **. La correlación es significat= iva en el nivel 0,01 (bilateral).

4.      Discusión

La presente investigación tuvo como objetivo gener= al analizar el impacto de la Inteligencia Artificial (IA) en la transformación de los entornos digitales de aprendizaje y su contribución a= la personalización educativa, identificando los desafíos, oportunidades y estrategias para su implementación efectiva en el ámbito educativo. A parti= r de los hallazgos obtenidos, se presentan las conclusiones en función de los tr= es objetivos específicos planteados en el estudio.

= 4.1. Fundamentación teórica sobre la inteligencia artificial en la educación y su impacto en la personalización = del aprendizaje

El análisis de la literatura permitió evidenciar q= ue la inteligencia artificial ha emergido como una tecnología clave en la personalización del aprendizaje, permitiendo la adaptación de contenidos y estrategias pedagógicas según las necesidades individuales de los estudiant= es. Estudios previos han demostrado que la IA es capaz de identificar patrones = de aprendizaje, predecir el rendimiento académico y proporcionar retroalimenta= ción automatizada, lo que contribuye a la mejora del proceso educativo (Lee et al., 2024).

Asimismo, se confirmó que existen diferentes enfoq= ues teóricos que sustentan el uso de IA en la educación, destacándose el aprendizaje adaptativo, en el cual los algoritmos ajustan la enseñanza en función del progreso y desempeño de cada estudiante (Galindo-Domínguez et al., 2024<= /span>). Este modelo ha demostrado ser particularmente efectivo en el desarrollo de metodologías de enseñanza personalizada, ya que optimiza la gestión del aprendizaje y permite a los estudiantes avanzar a su propio ritmo. Sin emba= rgo, la efectividad de estas herramientas depende de su adecuada implementación y del grado de acceso a estas tecnologías en los entornos educativos.

A pesar de los avances teóricos en la aplicación d= e la IA en la educación, se identificó que su adopción aún enfrenta desafíos, especialmente en la formación docente y en la equidad de acceso a la tecnología. Mientras que algunas instituciones han logrado integrar la IA de manera efectiva en sus currículos, otras aún dependen de metodologías tradicionales que no explotan completamente el potencial de estas herramien= tas. Esto sugiere que, si bien la IA tiene el potencial de personalizar el aprendizaje, su impacto sigue siendo desigual en función de las condiciones tecnológicas y pedagógicas de cada institución.

= 4.2. Estrategias actuales de implementación= de IA en los entornos digitales de aprendizaje y su impacto en la enseñanza

Los resultados obtenidos en la investigación empír= ica confirmaron que la integración de IA en la educación ha sido percibida de manera positiva por la mayoría de los estudiantes, quienes reconocen su capacidad para personalizar la enseñanza y mejorar la retroalimentación académica. La correlación de 0,903 entre la integración de IA y el impacto = en el aprendizaje personalizado demuestra que estas tecnologías pueden desempe= ñar un papel fundamental en la transformación de los entornos educativos.<= /o:p>

Sin embargo, la implementación de IA en la enseñan= za enfrenta retos significativos. Uno de los principales desafíos identificado= s es la preparación docente para el uso de herramientas basadas en IA. Si bien l= os resultados de la encuesta sugieren que una parte importante de los docentes= ha recibido formación en IA, aún existe un porcentaje considerable que no se siente completamente preparado para utilizar estas herramientas de manera efectiva en el aula (Su & Yang, 2024).

Otro aspecto clave identificado fue la infraestruc= tura tecnológica, ya que la disponibilidad de dispositivos, conectividad y softw= are especializado influye directamente en el grado de personalización del aprendizaje que se puede lograr con la IA. En instituciones donde la infraestructura es más robusta, la implementación de IA ha tenido un impacto significativo en la enseñanza, mientras que en aquellas con limitaciones tecnológicas, su aplicación ha sido más restringi= da (Yue et al., 2024).<= /o:p>

Además, se identificó que la IA ha sido utilizada principalmente en la evaluación educativa, proporcionando retroalimentación automatizada y generando reportes sobre el desempeño estudiantil. Sin embar= go, algunos estudiantes expresaron dudas sobre la equidad y precisión de estos sistemas de evaluación, lo que indica que, aunque la IA puede mejorar la eficiencia en la medición del aprendizaje, es necesario complementar su uso= con la intervención humana para garantizar evaluaciones justas y contextualizad= as.

Por otro lado, se destacó la importancia de la percepción de los estudiantes en la adopción de IA en la educación. Aunque = la mayoría considera que estas herramientas pueden mejorar su aprendizaje, una minoría aún percibe barreras en su implementación, ya sea por la falta de acceso equitativo a la tecnología o por la resistencia al cambio en los mét= odos de enseñanza tradicionales. Esto sugiere que, para lograr una integración efectiva de la IA, es fundamental diseñar estrategias de sensibilización y formación que permitan a los estudiantes familiarizarse con su uso y maximi= zar sus beneficios.

= 4.3. Propuesta de solución

Con base en los hallazgos obtenidos, se identifica= ron una serie de recomendaciones clave para garantizar una implementación efect= iva de la IA en los entornos educativos:

Fortalecer la formación docente en IA: Se hace necesario diseñar programas de capacitación continua para que los docentes adquieran las competencias necesarias para utilizar herramientas de IA en la enseñanza. Esto garantizará que puedan aprovechar al máximo el potencial de= la IA y diseñar estrategias pedagógicas innovadoras que beneficien a los estudiantes (Zhang et al., 2024).=

Mejorar la infraestructura tecnológica en las instituciones educativas: para maximizar el impacto de la IA en la personalización del aprendizaje, es fundamental garantizar que los estudian= tes tengan acceso a dispositivos adecuados, conectividad estable y software especializado. Esto permitirá que la IA pueda ser utilizada de manera equitativa en diferentes contextos educativos.

Diseñar estrategias de integración curricular: la = IA no debe verse únicamente como una herramienta complementaria, sino que debe integrarse de manera estructurada en los programas educativos. Esto implica desarrollar contenidos específicos sobre IA en el currículo escolar y fomen= tar el uso de estas tecnologías en diferentes disciplinas.

Garantizar el acceso equitativo a la IA en la educación: para evitar que la IA amplíe la brecha educativa, es fundamental diseñar políticas que promuevan su acceso en comunidades con menos recursos. Esto puede incluir la implementación de programas gubernamentales de dotaci= ón tecnológica, el desarrollo de plataformas educativas accesibles y la promoc= ión de iniciativas de educación digital inclusiva.

La investigación confirma que la inteligencia artificial tiene un alto potencial para transformar los entornos digitales = de aprendizaje y mejorar la personalización educativa. No obstante, su implementación efectiva requiere superar desafíos relacionados con la forma= ción docente, la infraestructura tecnológica y la equidad en el acceso a estas herramientas. La fuerte correlación encontrada entre la integración de IA y= el impacto en el aprendizaje personalizado respalda la necesidad de continuar explorando estrategias que permitan maximizar sus beneficios en la educació= n. La clave para lograrlo radica en el desarrollo de políticas educativas que garanticen una adopción equitativa y sostenible de la IA en todos los nivel= es educativos.

5.    Conclusiones

·         La inteligencia artificial (IA) e= stá transformando los entornos digitales educativos al posibilitar un aprendiza= je más personalizado y adaptativo. Su integración en plataformas educativas me= jora la accesibilidad, optimiza la enseñanza y responde a las necesidades individuales de los estudiantes.

·&nb= sp;        No obstante, su implementación plantea desafíos éticos y pedagógicos que requieren un análi= sis crítico para garantizar que la IA complemente la labor docente sin deshuman= izar el proceso educativo. En este sentido, es esencial desarrollar marcos norma= tivos y estrategias que regulen su uso, asegurando que la tecnología esté al serv= icio del aprendizaje y la equidad educativa

·&nb= sp;      Para maximizar el imp= acto positivo de la IA en la educación, es imprescindible la colaboración entre instituciones educativas, docentes y desarrolladores tecnológicos en la creación de entornos digitales inclusivos y éticos. La capacitación docente= en competencias digitales, el diseño curricular adaptativo y la protección de datos son aspectos clave para su implementación efectiva

6.      Conflicto de intereses

Los autores declaran que no existe conflicto de intereses en relación con el artículo presentado.

7.      Declaración de contribución de los autores

Todos autores contribuyeron significativamente en la elaboración del artículo.

8.      Costos de financiamiento

La presente investigación fue financiada en su totalidad con fondos propios de= los autores.

 

9.      Referencias bibliográficas

Aljemely, Y. (2024). Challenges and best practices in training teachers to utilize artificial intelligence: A systematic review. = Frontiers in Education, 9, 1470853. https://www.frontiersin.org/journals/e= ducation/articles/10.3389/feduc.2024.1470853/full<= /span>

Altinay, Z., Altinay, F., Sharma, R. C., Dagli, G., Shadiev, R., Yikici, B., & Altinay, M. (2024). Capacity building for student teachers in learning, teaching artificial intelligence for quality = of education. Societies, 14(8), 148. https://www.mdpi.com/2075-4698/14/8/148

Ayanwale, M. A., Frimpong, E. K., Gbolade Opesemow= o, O. A., & Sanusi, I. T. (2024). Exploring Factors That Support Pre-servi= ce Teachers’ Engagement in Learning Artificial Intelligence. Journal for ST= EM Education Research. https://doi.org/10.1007/s41979-024-00121-4

Diliberti, M., Schwartz, H. L., Doan, S., Shapiro,= A. K., Rainey, L., & Lake, R. J. (2024). Using Artificial Intelligence Tools in K-12 Classrooms. RAND. https://www.rand.org/content/dam/rand/pubs/research_reports/RRA900/RRA956-2= 1/RAND_RRA956-21.pdf

Dilzhan, B. (2024). Teaching English and Artifi= cial Intelligence: EFL Teachers’ Perceptions and Use of ChatGPT [Tesis de ma= estría, SDU University, Dinamarca]. https://osf.io/preprints/edarxiv/fwy92_v1<= /o:p>

Erduran, S., & Levrini, O. (2024). The impact = of artificial intelligence on scientific practices: An emergent area of resear= ch for science education. International Journal of Science Education, <= i>46(18), 1982-1989. https://doi.org/10.1080/09500693.2024.2306604<= /a>

Forero, W., & Bennasar, F. N. (2024). Techniqu= es and applications of Machine Learning and Artificial Intelligence in educati= on: A systematic review. RIED-Revista Iberoamericana de Educación a Distanci= a, 27(1). https://www.redalyc.org/journal/3314/331475280025/331475280025.pdf

Fundi, M., Sanusi, I. T., Oyelere, S. S., & Ay= ere, M. (2024). Advancing AI education: Assessing Kenyan in-service teachers’ preparedness for integrating artificial intelligence in competence-based curriculum. Computers in Human Behavior Reports, 14, 100412. https://www.sciencedirect.com/science/article/pii/S2451958824000459

Galindo-Domínguez, H., Delgado, N., Losada, D., &a= mp; Etxabe, J.-M. (2024). An analysis of the use of artificial intelligence in education in Spain: The in-service teacher’s perspective. Journal of Dig= ital Learning in Teacher Education, 40(1), 41-56. https://doi.org/10.1080/21532974.2023.2284726<= /p>

Kitcharoen, P., Howimanporn, S., & Chookaew, S. (2024). Enhancing Teachers’ AI Competencies through Artificial Intelligence= of Things Professional Development Training. International Journal of Interactive Mobile Technologies, 18(2). https://search.ebscohost.com/login.aspx?direct=3Dtrue&profile=3Dehost&a= mp;scope=3Dsite&authtype=3Dcrawler&jrnl=3D18657923&AN=3D1751827= 09&h=3DcsoIW1G529rzfFHFqZHSTBKSb%2B4MOZX%2BuefU%2BWMqMc%2BF19gAkq2aoE8W= 3oSdGcbGlVZ5kRpL0GpVN6fv2UT36Q%3D%3D&crl=3Dc

Lee, Y.-J., Davis, R. O., & Ryu, J. (2024). Ko= rean in-Service Teachers’ Perceptions of Implementing Artificial Intelligence (A= I) Education for Teaching in Schools and Their AI Teacher Training Programs. <= i>International Journal of Information and Education Technology, 14(2), 214-219. https://www.ijiet.org/vol14/IJIET-V14N2-2042.pdf

Mbambo, G. P., & du Plessis, E. (2024). Impact= of Artificial Intelligence on Teacher Training in Open Distance and Electronic Learning. International Jorunal of Learning Teaching and Educational Research, 23(5), 370-386. https://ijlter.org/index.php/ijlter/article/view/10093

Ortiz Velasco, L. V., & Ortiz Velasco, V. H. (2024). La intelige= ncia artificial en la educación superior. ConcienciaD= igital, 7(1.2), 115-131. https://doi.org/10.33262/concienciadigital.v7i1.2.2928

Pokrivcakova, S. (2023). Pre-service teachers’ attitudes towar= ds artificial intelligence and its integration into EFL teaching and learning.= Journal of Language and Cultural Education, 11(3), 100-114. https://doi.org/10.2478/jolace-2023-0031

Singh, V., & Ram, S. (2024). Impact of Artific= ial Intelligence on Teacher Education. Shodh Sari-An Internafional Mulfidisciplinary Journal, 3(1), 243-266. https://icertpublication.com/wp-content/uploads/2024/01/125.-Impact-of-Arti= ficial-Intelligence-on-Teacher-Education.pdf

Sperling, K., Stenberg, C.-J., McGrath, C., Åkerfe= ldt, A., Heintz, F., & Stenliden, L. (2024). In search of artificial intelligence (AI) literacy in Teacher Education: A scoping review. Compu= ters and Education Open, 6, 100169. https://www.sciencedirect.com/science/article/pii/S2666557324000107

Su, J., & Yang, W. (2024). Artificial Intellig= ence (AI) literacy in early childhood education: An intervention study in Hong K= ong. Interactive Learning Environments, 32(9), 5494-5508. https://doi.org/10.1080/10494820.2023.2217864<= /p>

Tan, L. F., Heng, J. J. Y., & Teo, D. B. (2024= ). Response to: "The next paradigm shift? ChatGPT, artificial intelligenc= e, and medical education". Medical Teacher, 46(1), 151-152.= https://doi.org/10.1080/0142159X.2023.2256961=

Wardat, Y., Tashtoush, M., AlAli, R., & Saleh,= S. (2024). Artificial intelligence in education: Mathematics teachers’ perspectives, practices, and challenges. Iraqi Journal for Computer Scie= nce and Mathematics, 5(1), 60-77. https://ijcsm.researchcommons.org/= ijcsm/vol5/iss1/20/

Yilmaz, R., Bakhaidar, M., Alsayegh, A., Abou Hamd= an, N., Fazlollahi, A. M., Tee, T., Langleben, I., Winkler-Schwartz, A., Laroch= e, D., Santaguida, C., & del Maestro R. F. (2024). Real-Time multifaceted artificial intelligence vs In-Person instruction in teaching surgical techn= ical skills: A randomized controlled trial. Scientific Reports, 14, 15130. https://www.nature.com/articles/s41598-024-65716-8=

Yue, M., Jong, M. S.-Y., & Ng, D. T. K. (2024). Understanding K–12 teachers’ technological pedagogical content knowledge readiness and attitudes toward artificial intelligence education. Educat= ion and Information Technologies, 29, 19505-19536. https://doi.org/10.1007/s10639-024-12621-2

Zhang, H., Chai, J., & Li, C. (2024). On innovative strategies of youth sports teaching and training based on the internet of things and artificial intelligence technology from the perspect= ive of humanism. Learning and Motivation, 86, 101969. https://www= .sciencedirect.com/science/article/pii/S0023969024000110<= /a>

3Deditorial1.png

 

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

El artículo que se publica es de exclusiva responsabilidad de los autores y no necesariamente reflejan el pensamiento = de la Revista Alfa Publicaciones.=

&nb= sp;

3Deditorial1.png

El artíc= ulo queda en propiedad de la revista y, por tanto, su publicación parcial y/o t= otal en otro medio tiene que ser autorizado por el director de la Revista Alfa Publicaciones.<= /o:p>

 

3D"Ingreso3D"logo_catalogo3b.jpg"

 

=  

------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQCC Ld7aiAcAAI8gAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZzY4buRG+B8g7NPou669bPwPL C6kledaesQ1LdrBHjkR108NuCiQ1Y2FhYOE95RIgwCbIIQvklkMQZIEskEUueRgDNpLNQ6TIbrVI ibJnBnMwgpm5qNlfFT9WFauqyftfvE6pd4G5ICzr+fV7Nd/D2YzNSRb3/BfTcaXje0KibI4oy3DP X2Phf/Hgl7+4j45kglPsgXwmjlDPT6RcHlWrYgbDSNxjS5zBuwXjKZLwyOPqnKNL0JvSaqNWa1VT RDLfy1AKaqcg482x93SxIDPsP9ioH1GYI5NCDcwonyjluJAxsPPzukKItYgo9y4Q7fkw05xdTvFr 6XsUCQkven5N//nVB/er6KgQovKArCE31n+FXCEwP2/oOXl8Vk4aBGHQ6pf6NYDKfdyoPWqNWqU+ DUCzGaw052LrbDeioMAaoPynQ/ewPWzWLbyhv7nHuR+qfwuvQbn+YA8/HkdgRQuvQTk+3MOHg+5g aOvXoBzf2sO3a/1h0Lb0a1BCSXa+h66FrWa0WW0JWTB67IR3w2DcbhTKtyiIhjK61BQLlslDsZai V4yPAaCAFEmSeXK9xAs0gziOECVnnHgnJE6kmgYdYWS8z4dmYm9IzeiJGSdL2fMfLRHsjK3W9z/9 9O7tj+/e/uPdt9++e/s3U7sld4yy2JT7+c+//e/333j/+fuffv7ud/nUu3hh4j/89dcf/vmvj6mH zWTQ+v0PH3784f0ffvPvv3zn0N7n6MyET0mKhfcEX3rPWQoL1Nax+eAzfj2JaYKIKdHPYoEypGZx 6B/JxEI/WSOKHLgBtu34kkMycQEfrl5ZhCcJX0ni0Pg4SS3gKWN0wLjTCo/VXIaZp6ssdk/OVybu OUIXrrkjlFleHq2WkEWJS2WUYIvmM4oyiWKcYempd+wcY8fqviLEsuspmXEm2EJ6XxFvgIjTJFNy ZkXTVuiYpOCXtYsg+NuyzelLb8Coa9VDfGEjYW8g6iA/xdQy40O0kih1qZyilJoGP0EycZGcrPnM xI2EBE/HmDJvNMdCuGSecliv4fTHkEjcbj+l69RGcknOXTpPEGMmcsjOowSlSxd2QrLExH4pziFE kfeMSRf8lNk7RD2DH1B20N0vCbbc/els8AJyqElpGyDqzYo7fPkQMyt+J2u6QNiVavo8tVJsnxNn dAxWsRXaJxhTdInmGHsvvnQwGLClZfMt6UcJZJVj7AqsR8iOVfWcYYE93b7s58kTIqyQneCYHeBz ut5JPGuUpYgf0vwEvG7afATFLHUFwFM6OzeBTwj0eRAvTqM8FaDDCO6DWp8lyCpg6lm443XNLf9d ZY/Bvnxl0bjCvgQZfG0ZSOymzEdtM0XUmmAbMFMEfYQr3YKI5f6tiCquWmzllFvYm3brBuh/rLYm Jdkne5w8+G+nu4Ee4v0fv3dsp9vpaNyKrXT0/nq9zKF0cbzTwRzC7fYtEeNz8vm3LUO0yp5hqBT7 Oemua7nrWvz/+67l0H6+61UOdRR3vYoPPcRdr1IckNxOr7JtT6BzUUcI+WGNPrpJD57cLAilE7mm +ETowxsBXyzzMQwqOX1uicuTvGUCP1WZgwksXMyRlvE4k78iMpkkaAkHP3VfKYlFoToW3pIJOHDU w07dCk9X6Smb5weW9bo6nMwrq0ByO14Ly3E4bJI5utXeHsKV6jXbWB+Wbggo2euQMCazSTQdJNqb QWUkfTQLRnOQ0Cu7FRZdB4uOUr9x1R4LoFZ6BT6pPfgQ7/lhACIgBCdu0H7PlZ9yV2+8q515m54+ ZEwrAmpwLl5EwNbTXcX14PLU6vJQu4KnLRJGuNkktGV0gycS+NAtolONXoXGdX3d3brUoqdMUdjC oNHufIzFTX0Ncru5gWZmpqCZd9nzW80QQmaGlj1/AQe/8DNdQuwI9VWFaAz3JzPJ8w1/k8yy5EIO kUhyg+ukk2eDlEjMPUrSnq+WX7qBZjqHaG71BiSEz5ZcF9LK50YOnG47GS8WeCZNtxsjytL5I2T4 PFc432rxm4OVJFuBuyfJ/NI7oyv+HEGIhe26MuCcCLgdqOfWnBO40CoT2Tb+dgpTkXbNGyUdQ/k4 ossEFRXFTOY5XKfyko5+Km1gPBVrBoMaJikK4VmsCqxpVKuallUj53Cw6n5aSFnOSJrbmmllFVU1 3VnMmmFTBnZsebMib7DamBjKpVnh89S9m3K7m1y30yeUVQIMXtrPUXWvUBAMatvJLGqK8X4aVjm7 GLVrx2aBn6B2lSJhZP3WRu2O3coa4ZwOBm9U+UFuN2phaLHpK7Wl9d23eTnNzl5B8hhCl7uiUmhX wtUzR9AQTXRPkqcN2CKvZbE14Je34qTnf10L+0HUCKNKrROOKkEzqFU6Yb9Z6Ydhsz4K67XhoPEG CotM0nqY37uP4YqCrovbdz2+dwOfbm5h7s1YWmX6Zr2qiesb+HrDuoHPb9O9qbpg9z0CSefrVmPc bXYHrUq32R9XguGgU+lGrUFl2Iraw/EwCjvd8Rvfu9DgoN+MgtaoU2nVo6gStGqKfqdbaQeNRj9o 9zujoP+maGNg5Xn6KGwB5tW8HvwPAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAA dGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCR Jt2I0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7 ZLBggo5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9 YhB71QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAU AAYACAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht bFBLAQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVs c1BLAQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVt ZS90aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhAIIt3tqIBwAAjyAAABYAAAAAAAAAAAAA AAAA1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAA JwAAAAAAAAAAAAAAAACSCgAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxz UEsFBgAAAAAFAAUAXQEAAI0LAAAAAA== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAMAAACelLz8AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAJqUExURQAAAAAAAP//AICAAIC/QL//QJmzM7PMM6LROrHeN6fOO6TIN57KNarVPKbS OaHIN67UPKXPOqfQOaXIN6zVPKjNO6LIN6PNNqfPOKXLOKrPO6XNOavVO6XPO6XPOqvVOqbPOaXK OKnUOqPNOKTKOKLLN6fOOanTOazTO6bOOKrTOaXLOKfNOKnSO6zUO6bOOqbOOqXMOarRO6fOOqbQ OabPOqXNOanSOqrTOqTNOabOOqfQOqfQOaXNOavUO6bNOabOOqXLOKvUO6bNOazWO6XOOazWO6vV PKbOOaXNOavUO6zWO6XNOabPOazWPKnTO6rSOqXOOa3WO6nSOq3XO6vVO63XPKfPOazWO5fGGJfG GZvIIZ7KKJ/KKZ/KKp/KK6DKK6DLLKHLLKHLLaHLL6LLMKLMMKLMMaPMMqPMM6TNNKTNNaTNNqTN N6XNNqXNN6XNOKXNOaXON6XOOKbNOabOOKbOOabOOqfPOafQOajPPajPPqnQP6nQQKnROqnSOqrS OqrTOqvUO6zRR6zVO6zWO63SSa3WO63XO67XPK7YPK/ZPK/aPLDaPLDbPLDbPbHcPbLcPbLdPbPe PbPePrPfPrTfPrTgPrXgPrXhPrbiP73bbMDccsPeesTffMTffcbfgMfgg8fghNbppNjpqNjpqdnq q9nrrdvrr9zrsd3ttd7ttt/tuODuu+HvveLvv+Tww+XwxeXxxujzzev00uv11ez01Oz01ez11u31 1u312O712O712e/22+/23PD23fL44/P55fT55vT55/X56Pb67Pf77vf77/n88vn88/3++/3+/P7+ /f////JD2N8AAABZdFJOUwABAQIEBAoKFhcaHB0eKC4vMDEzNzg8PUBERUdJSk9PUFJTVldYYmJo bW9xcXFxcnN0dXeHiYuSlpibqKmtra6xsrm9v8TIydHS1Njc4Ofr8PX19vb39/n6KiHTUAAAAAlw SFlzAAAXEQAAFxEByibzPwAAAepJREFUKFNjgANeeSNTE10ZTigXAZScgidMA4K+ADspqBAE8LtM nlBXBgYNk3vteKDCQKAcNLkoHyJTVlZSMcNPHCrBoNrTmpuTnweVKisr7A4Rg8gIRbTkZm/aXZ0D lQHJ+XOBZFg8JhTm5207UptdDAIQuRmOICm1mUB2fk5+TllaampqSnxCXnlZWUW/BAMDk2c3UCpt 8arMqrVb9u3dtW5+flp5WclkBwYGwaYKoFTSjuNpNaePrlm34fDZnW1AufpADgbNaSDDkzcfTK85 vTQqLi59zpm9eUDX9skyWE6BS51aEQu0NXru2UVxZWXTDBhsJ6JKlWUXn9iUAJQyZbBHlypO3b83 vbRsmhmD1WQ0qZyyk2BdxgyGCGeApYqj551dCLRrggKDaAfI8WCp00siY2MSZ5/Zk5NXVhfOzcDq 0wmUStp6DKjr0LKVq/ed3d4M9NdEZ2BA6c8qLCtLXb4+s3rjvsOHDmxakAOUKZsiB5Ri9+0GymVl gXBWVkZiPDAMCye7goKXQbK3vrCsoADoWyAAUsCAbw3lA0sxaM9oAOpDgMKWbkWIDAODTjfITDiY GKYClQACae+ZXSA/AEFlz3Q3YagwGLDpebVPmzJp0tRpje7qjFBBGGAW0bKwsTbXEIDyGRgAuQH6 Gl8RLYcAAAAASUVORK5CYIJ= ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABMAAAATCAYAAAByUDbMAAAAAXNSR0ICQMB9xQAAAAlwSFlzAAAO xAAADsQBlSsOGwAAABl0RVh0U29mdHdhcmUATWljcm9zb2Z0IE9mZmljZX/tNXEAAAOZSURBVDjL hZRLbBNXFIanFFUg0UV3XbVSF7AgUHBJzfjOOKgC0YqqalVVrdR2UVWIBQhYIxWUIiTDAsmqKAQp DQmO40xm/IhtqBKVqoUSSGzTiR8zsRvH4RmHh8COMI/Sv+deJwGSIBZnXrrz3f+e858jNTc3S3PD 6/1wsZZgjkhB3R7Jqz8bNvOFCupPwVF1q2ayhoX+4THvg56VN0dH1ZhhK7XeURU8Iv/U7zxCtlIJ 5RVDyzYpL4QB0iuBNPshNqZWwkUHuoYd8Kdc6EzKs+FPydCzDKcuuzn4diArb18QpqXZvmhRgW7J 6LO3IZ79Gr7kOgF4NmbAoREF4YLyJJB6ChQXnyl/HC6oD/WcDF+iERPVJOxyF04MrcTJxFp0JNbM xswGM8CgpVQ6LjCXgHm0N5YaI+of8ZKbFqyncCJufYNI5nP6sRG6uQnh9KfopfdQ+hN0ptajjTbh 6/xJFx25CYbFghq0RZLfdCpUrSfdwy4BO5l0oHArjMHLhwSsXE2h8uAKbt+3cbdWRHnqb5wt7kH7 0Gp0JpzQcwqHVVvPsQbJyLEfo0W1ngvalR+rXL2E9ESbeL//6BaBD8IY/ogUf4vkVS8ePL6LC+MH cGJwpVjDq6xl5W2SlmG9lK/nYNcr52FePy6qWSVVfSNb0TLwFuVwFY4PvI2L4x7cq5VECtqH1hDM DbLSEalnmP3JE/k8bOAZ2FWcKexEG6noSjG0J94VKrni3/I7xHfuQzquXzKySoxK/BLYLnGkQEqh 5DeIgnAYV8xhXBlV9RjlTPHMzdlc2K/2dzh6/k20XlyB1sHlGJnswWTVJKUuWu8QMDLzDqom+yBo K+g2p6tJsMkpE5mJdgGvPb4Dq+zH74XdGCjtR+lOH21wjTb4ntQ2QM8wXs1axznnWsnT/97rhq0O xsbqPvMl1iF94xf8NbZPGHj0Zq+Ac4tMVLiZuxFJfyYMzU8TH28i86px72lpseiAgMm+Iqn/9lDf 8QXc5Z3J94XT68/O6edGUVHeCXydYVFL5ZWaLyVvnG0nTfviVT0jHz417kYPyfaRGbnKets4Bbge zukuIVCOIVp0g4bDnnmN7j29/DU9xw7HiuojXpB6R8jzQqPvvPUoLVM02/ZKNG1eOM80i31JsLNB i3YmZ4fzqmhoGpRCiW6x/6IltZ/uW146HHm09G9cplnqBhpJ+4M2C1PZz9CxggTcG8w2MU/LO0sW +u9/qZyQefl6B80AAAAASUVORK5CYIJ= ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAFUAAABVCAYAAAA49ahaAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AAA5ISURBVHhe7Z17cFTVHcfv7gISHiEJCY8AokUr arVK/7BqOx2n0+dMp2PHVzvj4486IkynU9vO6IytOlItkM1u9nXfj92AihYIkPBGeSbhpTHyGEUU NEhMAEWoArL77fzOvRvWw81mJ5A02fU385ts9ib37H72nPP7nt95rCB0Y1vPnbHurl9qPbx2Le5e vgy/a6grTK+vwz0r6nB3/TLcs3IFHm5oOPZM6y5rdyp1Pc+sW9uaTMZvEIOpYjmCEaoEj6lAiKsQ 4vSzAN2S4bFiECx6rMJnSChSIrhSCeMfdXWHeH7fsD3AsEc3rP7XSHEePIYIr6HBZ6rspkKt7IAt XPeaEoREDEJcg8eUcZsmg2d4kYUOHMAoLQKfQSBNCLXpGxLQAodq6RBqI/Ca5DJ+9HItdqRS1/EM v2FrPz0hjZboHzT4NAOCpUEwVXioliZcCik0Jw5xBUN1GbeZGhpTqZt4hhfZDEtKUn/hsegGVL1V +EzqS2TWj7BPii+oUJz1owq8lorvBKuwCxjD87vIXmo7EvckQnannBBZh0xVXEhIEGoleA0VPr2A ocaJRwS3GDLeS6WKeX6u9ti69XZgshRWM+3aSrVWgScuOhGQL6iA3FJwxwId24FbeHbd2p2LX4VX V+CNK6zZk1N/yvpUJqfIXQrLO6d+U8uIJyp8cRG3ylE0pVI389zcbFZd3Zo5jVsSwvcWxiEQPEty KaiQ3NakrAuMU4WScX2wmoJSEQ/Pzf65devpUqkGP16yMCHcuMCCYFBAKnCoFIwXhCFYUdb1zTA1 CkpX8vB4OwiMea5lF0apMQhmDOWhOQ7Ub2uqPWJKyPAaEm6L69iVSv2QB+hm9y9fqhfpYQgJDR5L w4MbVsJu/iwQFbDAt1R4dZnFk6ujQTSnUt/n4bnZnJbtGKZH2AcyTKc4pGF8KOD0qYUOlYahehST gvMBwMPDc7PZ61avH64EugZHQwiqpaLyW6i2U1D6gSXlNFLaA4ya3/omirUQvAnN1vQsyGlM21dG Xyw0qBdkE5OO1OxJNhkKjeV/wgN0s98vW6oM10OsyTMtz7R9mp2CytC8QoOaKZs0CIaE64J+7Myh hpI98+bmc8VSsAsiQaV+lO7niUtMQRRe86cm6sgmitbTwkG0pFIjeXi8AfBWtezGKCMMwQjDZ4qs qXtMA4KpFzpURzaZEmboCnanUrfzAN3svmVLqkdTUKqlPIDK7kFujz4LGWpaNhkKrtNEbE+lfsrD czP/3haM0CIYYsbsGkrdRty08yOUG2EBqlChsuy9iMqa+aRDb+DhudmzzY37RzDZpDOFIFjU7OkD opyzDh+bZilgqATlGrE6p6EngCGhva0YrdXAW0tAM5JKLMcs2UGKam1hNH8HAL2ntGyyRNxkqhTl f8YD5O0ZwHvv8sUvFGlBCKx20j3t/tNLANkEINVQmrOi3wsFKgtIEjxskk7C9GiQ+tBf8ADdLLy3 FSVi0L4H3S/9szsviJpKfVxtGELclk1XhQIE9Ls8PDerevut/xYz2RTBEIOCEskmqo0u5aS9MKDa ssljipgeC+GtHDP2j6yun1usVENYwMmmbEDJ8x6qI5sEQ8F0XaYo/1senpuJB/ZhpEqyKWrP71Nt j1OEd2RTttmPvIcaV+GzZEwI+Wks/ysenpuFd+/+YqQjm+zkiCObTNKimi2bsrHJd6g0Jp8Snoum M2eu5eG5WXhf6+liNS2bqMnTfahWUtTPccIzf6A6qbYM2eSxRExTY9Tk7+Lh8UY69A+rljxdpAZY UiVTNnkoQcKyT9ELsumi8jM8f6DSa7VrFE1hkBCfrkSoyd/PA3Qz4/13UUqyKX2/rtRdLzxvoLKh Ickm6u9UTI0EaRr51zw8NxP37TpVogXhNaO5y6Zsnj9Qqf+T2EhparAKW86ezWlO6Yk3NkhjnGyT PfSk5k1Qna6ELycXzwuoztomkk3TlBgNPXuUTTT0ND88gNFquHeyKZvnBVSaZEuomCKFKSg9xAN0 s4UfHMRoEvYJDT5a49Almywn2xTt/fvPB6g0lp8UmZezDo28u+/4GLkaXvr/3sqmbD5oodLrY7JJ wsRoEJvPnbuTh+dmj61veH6ERrJJdKRXWjbpTNN62WoU6leNi8vM1QcX1PTrobWhOrwJFdOUENXQ B3l4bvbK4UOObHKC0KXIpmw+qKCmZROts7dUTI6FKNv0Rx6em1kfHvy6VA6wISaTTQmK9pcQ4bP5 4IJK/R+tmxUxucZPQennPDw3e3H3jhUlst/Rn45sYqOlQodKsomAmAomhVk+9Jc8PDerPXzwXLGS lk0UiKi20zCTRl72EsnL7oMGKsmmWh1TVTbr+TgPz80Wt30Mlg9N6C6yibJNJJt6qUWz+WCByqJ8 ZB4J+5k8PDeLH/rg81LJf2HjB5NN9H7SG0Ho9z4ASj6goTr9HQEdHw1iy5kzv+HhudnTO7cYo7uV TTSUdYT9pcimbD7goGYs7PLRyKZWR2WsipIjD/Dw3KzukyMokWr6XjZl8wEHlZzJJqplCqaoMepD /8rDc7P6T46Amny/yKZsPvCg2nu3aOXIxFA11dBZPDw30/fvf7NMItkk9o9syuYDCipb5GD/JNm0 6tTn9/Hw3Ex8b++OMiXConm/yaZsPqCgkmxaYKBSjuYsm+rbj2bIJqqd/SSbsvmAgsqi/HySTU/z 8Nxs6UeHU6Win2WpbNnkZJqYbEo3+35+D+T/d6hdsklGRYwlR2bz8NxM39OyZnx0LoaqUQxXJQzX ohihyihSFfa4SAvhCj2KoYaKK3Sxf11TcIURwXA9imG6jKmBqv6AeqEm+Wjre0LDhFgVVp387BEe Xnf2QPW/b1zd+SlWdHZiZWcnVl3kHS7P9Y/Xd3ZiTWcnVnd2YsWxTqw7erQ/oGbIJl3GBCVKm2ef 5MHllfU9VJJN9irkcZEgmpPJ5/nXkHfWp1C7DmZQURkOYPNXX/2JLz8vra+h+hI6JohhrDp1Kqeg lBfWt1AljI/5sTuZfIEvN6/tskPNkE1jxRrsSibn8mW62ZJPPm6b1bQWj25bj9mNb+Dxpo2Y2byJ OT2eRb83bcRjzfRzG2Y2Ng4If7R5K2Zv24bZ27ZgZtMbeOr11Zcr+l+QTUNMjU0HjxNJNp18gofn Zq9+dHhfhRK2T4MwZPjY9hrJ1WkhBB2aM2Bcp+WblNSJseOnJof8lwkqG+GE2UE2JJvGSiFsOH06 J9m0oaPjWIXkt/cpUcY+4Rw54tT4Ae99N6KiIWOUyaaxYghNyWSIh+dm2774AhVilZNtovIpIULZ pktYMNbf3idQ07IprmFCtAbbk8lqHp6bPbtz6+Pl0QB8cco2pbd226/jwq7kQeB9BZVSeOPEMJac OPYUD8/NXm378J0K2qcU17qWM7L0Hcs20f3+D9mm3nqfQI3LqIhUkbDPSTata28/MV4KQNDTuU/n YDGC6DR7thSn4KCm+ztLQZkUJtmk8/DcbNPJzz8rE6vs5t01SUcbyGg1tHghH9pXk3R94b2HSrWG +j27Jg1xDlesEP3YdPZskIfnZnVHjrSUyyG2nJGVl+432eN0OdlewwD13kO1a6WQiNiyyVBQJtZg ceenz/Hw3Gz5kSOtE5Ug03LeTNnElzEYvddQmQ61oXotCWOkEDZ9/XWMh+dmzSeOnxkv+p0JPiqY pkDoIINB1MSzea+hMslDjzVUxGqwM5l8mYfnZn/buvH2cZHqbmTTIAlEPXmvoVJENmksH0bDyZM5 CfvFR9qaK9Rq9v9MNqX3JLGddLRPyd5ZMui991BllEer8VpH+zwenps1tLe/PlkL2Utx2D26k00u ZQ02d4dqC+6LoGbIplIpQrIppybfeu4cxjLZRADzRDZlc+cIJdYSLc2GevMC076YcN6sI5so40LT wWMlP43ll/Dw3GzjiRN7ysUaZy4+j2RTVqcWR05SUcLUQCAh3LDQtGmz6quwU8KZbDJVlIg1qOvo iPLw3Kyh/eimSXKeyqasnoZKLU/GZKqp1ywy4TGMjIMDbNlULIfxnxyBbvzsxJ4pag37MNgxQ0w2 0WEEedLEs7qjZKg7S8iopHzqtYsMeAzT+aIE+iMNZVKIsk0NPDw3+0tjY9HEsB9eK2IvKadmkG+y KZszZWQ/pu7y6lBVQpixiJq/k780FJRIYTSeP1/Pw3Ozdcc7msaK81lf3CWbqBnkm2zqwdlqwwR9 D4CIh15fmRDuXbKInYoj1GooF4N4qa1N5uG52SuHDvmv1ujcvLQ0sjfPssfU7PNJNvXgNtQoRitR 1B5tSwh/X7tuuUeNYYQUxLLjHXEenps1nT61fzKd6JCRbWLBjjUD2qbjfIFLvIcDCPLB2YlqFOjD GK+KeCeVmsIgXSPPwY7z5zfz8Nxsz9mzH1WItJyRDr+iG9tTIF2ZLFZjnedYvsA+NWdQO/tCHspX 0NZLes6GyWKI08UVqRLu0KQkz6tHW33s2PpJUhBDDZpTIqDp2pnHTrHGpKG2rd3tACxjCCWH0utj DRFlYgDvJ5MKzyyrrezoWDuVDrWudQ52ZTekUZPdf+azM2VEgLu++YhaoNMyTQMjtQisD97v+auU Mu3JLfWlV0o18FhhdlQmK2yB3STSxwfT2vtvePr5XK5nu8Zfz3aNv57tWk/Xuedpjt/W8s7hC1SZ DB1lUhRVrW+Dvs+L59at7fzyy5YSkk2mAl9aNtFRlzRJl+5TXD7dvHL25RIOUArARhTFWhhXKVGY 7W0f88yy2ouvvXbrnTV+lKlhlIoRlIsBlMgBlMUiKI/FUB6rQUUswGYBysQQ5/Rcpme7nu0afz3b Nf56tms9XbefKxXDGBOLYKwcQ3k0iClyAHctjePPm1et4Xml7X+WRR9+KiNJCgAAAABJRU5ErkJg gk== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAACUAAAAlCAYAAADFniADAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAABl0RVh0U29mdHdhcmUATWljcm9zb2Z0IE9mZmljZX/tNXEAAAYqSURBVFhH vZh7TFNXHMfPfdIWbUAtFUpxICZuKsuUqdlDN7c4M4YOZEynzOGKhWTvJcv8h8xM/9iSPeIMLiF7 ZCPbErdFwxChotiR+sjGokaHLwSn0BawQO+9fdw+9ju391Z8oK3Qnr9u770953N+39/rXHrbtm1o Y1WV7q1TnbV9grDBj0Lp4WAQJWWEESIoCrEMY8/jPFsLLlz6Hq9LP1b1pmHNsbbDZwP+OSGBQygM byIiKUzSImoGZfjIkAGx/yqL0p+etH7UhYJzQjyPCIJAYYICJgyW+EGkapCO9/YsJ8hV8y9fOBeF 6hN8psCICxEkwOCRDCCshlqNMkXx8gtT04sMp09HgfoLF5bTTh4kI0mwUJIkAyBiigoZxPCVp4Xg SsP50xcVC7UvLPjBPnq9hCYxTLKA8OoaNUrjPZdXZ2S+qD/fGQX6c9G8uqOiv0LtE7vpxHuOvAJ2 U7UKGcPha4UM9bz+RGeXsnbHovlfnQiINV6vDxF+wZUkqIhkOq/Y8xRLr8q/cDXqQ8cXL6i3CbyJ 53wIMSQiCZpKDlSKCum9gasb9JmlWtsJCai2tpYoat5Xd8Q9YuK9AUhFIXAjUjJeYqGwZBoVygoG 7QUhcSUARXNR0YF9X9qCYjXvESNAUm6MBFtioTQsyvCLvWV63Zrpts4oUOfih+utvNvE8V45DclA UuJOJBTLgoWQfb0+swQsdFKWjCxtbao7ODxo4n24lGELRSQbOybfUpJkaqQP+O1LVKrnAOiUsmBx 897Pj4XDZt6LJcOF7865cZKhYCEVA0DBaxuzcku0R6xRoLOPP1Lf7ho2cQKWDOdGjJoMqBQ1yibC ztJ0XTEA/SNLRq1vb9m1f8Bh4qQoUyw0fgWZPEupVChD9DtW63PAqW0SEB5rDzZ90SGK1W7BD3YJ x1TOJgEKdp7CIANBONcaAMhqO64AXXpy6TetA47NnAcSIxgmElv3rrEThwILZaGwc126vkhrtf0l S0ZUWC27GwedmzmvH24pPdq9gSaeElJYNDMUGqg05pexbW0SEB4b2y11FoEzj4zykQiLs+Dfp6Vg 5yyDjCTtKtZNWw1AxxSgvhVPfNvY31c5iqMMWiJFtFtz0d1+3x8U1DKQbOCVrFmlmjFAXcuX7mwZ ckaAookxNskUSCx0/FAMg7JJYrgyO7+ctlg6ZB9SVbe3/tRBEiU8JGmNVit3sPEAwbsshdRef1oc ULAam4IlGynW6YsVIAzV3d2N0tRTrlRo0xpI7QzYLIQ+RFk8SNhCFMxPZs7qjR2KSUEGkri+2ZhX TsoWUkze0NDg1SD0Tjx+M3GfYmg0i2Xdr2bnvUS2tBxSJpyxruxRp9uNCDXc8SguHfs+bwUj4DCh cruEe8yAJYNqT9CjZVmZpbQMBA0aVd3RVvfLpXNbeB9kahzy0VPZ7VU/VgsSLI1UwyNn7w5FMyiH ZtyVufnlZFNLmzL561bLJ/u50S12x2CkW4zHecYlhEmgHWY5T2B8KIiyHIblNxlzygCoVZnL8cyy r/f812t2+6B0SGfFG21srBa583uRJMuQZOgOUKADTSMDRfGVuXkvK0AgGflGx+Fdv7mGzG4/9EPQ nBFECFS7f7nG28TtUDSFHlCrPRuycjFQk/LHqrbmjxs9XI1j0BXJ1JIbTT4QXu9mKJDMSINkOXMA qCkK1Pfs8s9+7u1+lw9AP4R96C5d48QkjPwboHDYgF+Q2IcYb/XceRXi73slIHwMev+odfe+oUEz L0JPLRX7RH2VkX0TNkwHcDhTDMrVaMSymYZyAGpUdvvaoQNbm7lRs/P6sCzZpITZ+MYMS25B0trU VESJAcE8+6FNvr03gHqWLd2+p//aBwL+gCYdEhNlIYURNgxrzZ42zU8bg4GdBTnGvwHoV+Uxt3JF 3R/9V2uEIJg0hM2Kn+BdyBlyLJ+SNPE7Y6/xX259TzG0ch+36/I1dlM6FT4PkdR++pkzF99GZ6If P1DXssKtBwftNQMc/qonwyi04THyRTO4/HDs71ivpdKN4cGPpkxFhbRqaEfhku9uir7uBQ9+aOl3 7BiBnlqDz4komLCwj+4TZJiuAZ9Wsz++N7dge1N9fc//xlVm+2S6nAwAAAAASUVORK5CYIJ= ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image005.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABPAJUDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD91PAv xR+G/wATNI/4SL4c+O9H16xZtv2zR9Uiuos+m+JmXP41g/tL6zq+ifs7+PNZ0a/ms7qz8G6pPaXl rM0ckMyWsrK6suCrBgCCDkEV/Oz4c8UeKPBOsw+I/BfiW/0nULdw9vqGm3klvNEwPBV4yGB+hr92 rXxR4g8a/wDBLiHxX4t1Oe+1TVPgat1qV9cNmS4uJdG3ySMe7MzEn3NfYZ5wvLh/E0k58ym7bWat bfXU+Jyvib+2MLVTjyyjG+junf5XR+X/AME/+Cx37cXwlu7ddc8f2vjLTYVVG0/xRYrJIVB5IuIt kxcjjc7uM8kGv1b/AGDP2x9L/bi+CLfF/S/BNx4fmt9Xm07UNPmvFuFWaNI3LRyALvQrKnJVTncM cAn+f6v2K/4N/Ru/Y01oBv8AmoF9/wCktnX0XGWR4DBZTSxNKCjO6V1pdNdUtDweE81xmIzaVCcm 4Wbs9dVa2rPu6vj/AP4K6f8ABQ7Vf2FPg9pumfDW3tZvHXjCWaHQ2vI/MisLeIL592ydHZTIiojY Us+47ljZG+wK/FH/AIOJNZvL79t7QdIkmbybH4c2Qhj5wGe8vGZvqeB/wEelfmFNKUj9UPI/A/xs /wCCuf7Ut7qHjH4VfE744eJI47gpfXPhLVNRisoJcA+XttSkETYYHy1AODkDFfQH7B3hP/grpYft eeAbv453Xx2bwjHrqnXh4k1rVJLEweW/+uWWQoUzj7wxnFfod/wTG+H3hn4b/sFfCvRPC1isMd94 Os9VumC8yXN5GLmZye5Lytj0UKOgFe+EA9RRKfSwHwL8Ifi9/wAFUdT/AOCnF14C+IHh3xFH8E18 X63Db3c3gu2itDp8cV0bM/axAJCpdYMNvyxIyTk5++S6jqa/Hj9m/wCKfxNvv+C9+oeCr74i69No q/ErxXEukSaxM1qI0ttQKJ5RbZtUqpAxgYGOlZv7dn7bP7ZX7Zf7cl/+xx+yx4z1jR9J03xJPoOl 6b4d1J7JtRmt963V1dTxsGeIGOV8E+WsUattLbmL5eYD9mqakqOMq1fk34H/AOCN/wDwVI8PeNNH 13W/2ufDtxZ2eqW895Cvj7W2MkSSKzKA1mASQCMEgHvXkP8AwUY1z4/+Pv8AgrH4m+A3ww+L+taT L4g8UaNpOj2//CQXVvZwTXNnZopYRE7E3vliqk8k4JqfZ+YH7hl1HVqXIxmvwa/aj+D3/BS3/gmX rvhfx940/aN1Nv7VuH/svVPDvjO9u7fzoSrmCeO4VN4IIJRkaN1yDnkV9d/tz/8ABWH4seCv+Cf3 wl8d/C2aDR/HPxa0dpr7U4bcMumx26Il49urE7HeeRRGW3bU3/xBWB7PawH6VA56V8w/8FSfHv7Z 3w++Bei6t+wzpmrXfiqXxZDDqkej6DDqUi6ebW5LExyxyBV81YfmABzgZ5IP5y/s+f8ABPj/AIKy ftc/Diz+Olr8e9T0vT9cUT6XceNPH+pR3WoQH7twqxrKwjbqpfaWXDKCrKx9K/bv+F37Uf7Ff/BL Twf4F+JvxnurjxY3xiaW41rQfEl5KZLWSwvGSIzSLHIQCmSpG0ECjlXMtQP0G/YF8TftD+Mf2TPC fiL9q+zvrX4gXX27+3odS0uOymXbf3CwboY0RU/cCEjCjIIJySSfaNw9a/Nn4NfAj9pr9tX/AIIx fC3wt8H/AIv/ANl+Lm8TX1/eeINc8QXsDTW0WpapEYzPAksrH548KRjCdRgCvHfEv/BG3/grF4e8 PX3iHT/2pNJ1SaxtJLiLTdN+IWsfaLpkUsIovNtkj3tjau91XJGWAyaOXzA/Yfep6GivxU/YJ/4L efE/9nfwNqngH9oObVviBarPDJ4dvtS1Jpby0Uh/OieeQM8qZ8soGJKfMAdu0KU/ZyA+M6/drwXz /wAEldKP/VAYf/TMK/CWv3a8Ef8AKJXS/wDsgMP/AKZRX7D4kf7zh/X/ACPxngn+DX/wn4S1+xn/ AAQAP/GGOsf9j9ef+ktnX451+xn/AAb/AH/JmOsf9j9ef+ktpWvHv/JP0fWP5FcHf8j6foz7sr8g v+Djz4MeItN+MvgX9oOGzkk0nVvDraBcTJGdsN3bzSzoGPQGSO4faOpFu/pX6+1xPxu+BPws/aK+ HOofCL4yeD7fW9B1Jf8ASLW4JUow+7JG6kNHIp5DqQw9eTX4xGXK7n7Ifn3/AME0P+Cz37M3w7/Z f8P/AAR/ac8UX3h3WvB9munWeoLo893b6hZoSLfb9mR2R0j2xsGUA7AwYliF+pvhT/wVj/YL+OHx C0n4T/DP41zahr2uXQttLsW8L6lCJpME7d8tuqLwDyxAr518Qf8ABt9+znd6m9z4Y+PvjSxtWb5b e7t7S4Zeem8JHkfhXWfs2/8ABCX4Tfs3fHXwx8dND+O/iHUrzwzqQvIbG702BI5mCsu0lTkD5u1V L2YHyX+zECf+DhjUmH/RUPF//pLqNfN/xS+Dnhxv2/8Axd8FfjP8Sj4L0+T4ianZ33im60trlLRW uJTDcPH5kZMT5jJfcAqPv5Awf14+HH/BJX4e/Dz9umb9uWw+LmtXWrXHiPVNXbQ5rGJbcPfRzo6B x82FFwxB6naM1rftuf8ABJX9mP8Abe8VR/EjxW2qeG/Fa26w3GveHZIla+RBtjFzHIjLKUHyhxtf aFUsVVQtRnFAfEXwD/4Jh/smfDL44+C/ibZf8FZvhfrE3h3xZpuqQ6TBJZJJetBcxyiBT/aTYZym 0Ha2C3Q9K5T9plt3/BwRpZ/6q14S/wDQNOr6U8Kf8G6vwX8KeKdN8T237RnieaTTdQhuo4n0u3Ad o3DhSQehxXrnxC/4JFfDr4h/tw2/7cN78YNct9Wt/FGl60uhw2MLW5kshAFj3n5sN5Ayeo3HFHN5 geJ/8HJv/JHfhj/2NF7/AOk618h/t6eEtYH7Bf7KfjpbaVtPbwjq2nyTbDsimF0kiqT0BdSxA7iN vSv1g/4KBf8ABP3wf+394S8O+FfGPxB1Lw/H4d1Ca7hm021jlaZpIwhVg/QDGeKuWn/BPX4F6t+x no/7FHxNtpvE3h7RbPyrPULpRDdwzB5GS6iZP9VKvmMARwVLKwZWZTKlGKQHmf7Av/BR79i+5/Y5 +Hfh3xL+0H4Z8Nat4d8I6fouraP4k1aGyuIri0to4HYLIw3xsU3q65BVgDhgyjyH/gvV8VPhl8Y/ 2EfB/jb4VePtJ8SaS3xUghXUtF1CO5gMi6df7k3oSMjIyM8ZqTUv+Dbj9n6S9kl0f9ofxlb27NmO G4s7SZ1HoXCID/3yK9M1z/gjJ8NNc/Y30f8AY2k+NOvR6Xo/jaTxJHrS6fCbiSV4JYfKKfdCgSk5 65FH7vmvcD4V+N/x9+J/wy/4Iu/s+/CvwLq97plj401LxOdevLGd4nlhtdWuNtqzKR8khuCzLn5v JA5GRWD8Df8Agmd+zZ8VvhFoPxI8Y/8ABUT4Z+FdT1jTkurzw3fPatPpzsM+TL5l9E3mL0YFBznG Rgn9OLv/AIJSfATxF+w/4f8A2H/Hmvavqml+F724vdF8SQmO3v7W4lup5zIvytHjFxJGVZWVlOcB grL8+/8AENr8DwTj9pHxV975d2lWxxTUogfkGpZRjNFfr5/xDZfBEcD9pLxV/wCCm2/xoq/aRA/K +v3a8E/8oldJ/wCyAw/+mUV+Etfu14J/5RK6V/2QGH/0yiv1rxG/3vD+v+R+M8E/wa3+E/CWv2M/ 4N/v+TMdY/7H68/9JbSvxzr9jP8Ag3//AOTMNY/7H+8/9JbOtuPP+SfoesfyHwf/AMj6XpL9D7sr zf8Aat+LPiD4E/s2eOPjR4Y061utQ8L+GrvUrO1vlYwyyRRllV9rK20kc4INekV4p/wUg/5MJ+L3 /Ygal/6IavxdfEj9lPzT/wCIj79rT/oivw6/8Br/AP8AkqtPwZ/wcifHyz16Ob4g/s8eEdS03pNb 6LfXVnOeOqySNMowexTnpkZyMP8A4IBfBX4QfGn4p/ETTPi98KvDPiy3sfD9nJZW/ibQbe+SB2nc FkWdGCkgYJGCRX0P/wAFo/8Agn1+zR4f/Y81b47/AAj+EPh/wf4g8G3VnLu8L6PFZR3trNcx28kU scKqjYMyyCQqWHlbQQGIrb3Oa1gPqvwL+3N8Ivi3+x3q37Y/wqM2raPo/h3UdSvNHmkSG7gms4Hl ls5gCwil+Uf3gVdXXcrKTxP/AATj/wCClWg/8FDZPGB0H4T3nhf/AIRFdPM32rVkuvtP2r7TjG2N Nu37OfXO4dMV8B/8EWfjpdeBPgV+0p4Gn0uz1iGz+G9x4n0/Rdat/tGnTPbWtzHPHPDkeYkwe2R1 yNyR4J6V9Gf8EU/2wNH+L2h/F/xf4o+B3wn+G+m+E7HSbvUL74f+E10dJ4CuoO8l23mN5ixLCSpO NgeTruqXHluB+ilFfkT8Xv8Ag4f+PPiL4lXGh/ssfAzw+2irM0ent4ksbu91C9Ck4l8u3miWLK8+ X+8I/vntyfiH/g4F/wCCgvhm7XTvEvwe+Hum3DRiSOG/8L6lCzLkjcA96DjIIz7Gj2cgPtT9vb/g rx4W/YP+N9j8HNb+CeoeI5L7w7b6suoWutJbKiyzzxeWUaJiSDATnP8AFjtXZf8ABUv9s74ifsI/ s9aT8Xfhr4a0XVtQ1Dxhb6RJa65HK0KxSWt1MWHlSI24G3UdcYJ46Y+Tf+Cx/wC2fcfAX9qfQfCH /DLPwX8aG88A2N82rfEDwGNTvoi91dr5KTGVSsQ2blTHDO5zzXE/8F8P2if2jtd8d337NviD4Xw2 vwz0XxBpmo6H4oXQ7tGur5tNctD9qZ/IkA+0XHyKgb931+VsijewH6Ff8E6f2oPGv7Yn7Kmh/Hrx 3oGl6bqWqXt9DNZ6OsggRYbl4lK+Y7tkhQTk9fSveq/GX/glT+2/+3X4Bsvhr+zj8Pv2frfUvhrf eNrez1DxS3g/UZnhtrrUALuT7VHKIF8sSSfMVITb82cGvev2zv8AgpH/AMFMPgp+014q+F3wP/ZZ s9f8K6TdQx6PrEngHVrtrlGt4pGPnQTrG+Hd1yoAGMdQaHTfNYD9IK+Lf+Ct3/BRv4s/8E/j8P8A /hV3gnw7rH/CXf2r9u/t6OdvJ+y/Y9nl+VKnX7Q+c5+6uMc5+UbD/gvt+278J/iHp+lftNfs0+H7 HS5GWS+0tdB1DStRe3OR5kBuZ3Xg8jdGQ23blc7hqf8ABw7458OfEzwR+z38RvB999q0nX9J1zUd NuPLK+bbzR6VJG2D0yrDg8iiMLSVwP0s/Zo+JOvfGr9nbwL8YdetorXUPFXhLT9WvrfTVxDFLcW6 SsieYS20FiBkk46k9aKw/wBgX/kxz4P/APZM9D/9IIaKzA/njr92PA7bf+CTGl/9kBhH/lEFfhMx wK/d/wCGGlap4h/4JW6DoeiafNeX198B7WC1tbeMySTzPoqqqKo5ZmYgADkk1+yeJDX1ig33f6H4 vwXzSp1bfyn4Q1+xH/BAJmX9jXWMH/mfr7/0ls6/K3xf+zN+0l8P9Lk1rxz+z7430WxhXdNfap4T vLeFB6mR4wo/Ovrb/gk3/wAFPPg9+yZ4IuvgP8bdB1Kz03UPEU2pR+KLFTcR25khhjKTQKPMCjyQ dybyd+NgxkviytTzPIKccM1Jpp2TTdktbd/Qrh1TwOeOdVOKaau00ru1t9vU/YkYI246dK8W/wCC jpB/YK+Lu4j/AJEHUv8A0Q1d/wDDX4sfDz4v+FLXxt8L/GWn65pN4p+z6hpd0s0TY4K5U8MDwVOC p4IB4rkv20Ph54x+Lf7J3xE+F3gPSvt2teIPCN7Y6TZtMkXnTyRFUXdIQq5J6sQB3NfjTjKnUtJW aeqejR+xU6kKkVKLun1R+cP/AAbZsg+MXxOO7H/FN2P4/wCkPX1F/wAF0Pjr4E+Hf7CXiD4X6j4g t18QeNrqystF01ZlaaRI7uG4nlKZ3eWscTKXxgPJGDywr85bf/giX/wU3tWLW/wGjjLcMY/GelLn 8rqtTwh/wQo/4KM+MPEcOneKfAei+HbeTibVta8VWs0UQx3W1eaQn0ATGepA5rblp817mhtf8Ei/ h/c33wE/aq+KjTMsOmfBPUNKVPLP71rm1u5iQenyi0GR1/eCqn/BNa58R2f/AAT/AP2w5/CiO10f BeipJ5Y5Fsw1Nbg/TyDKT7Zr9Jfhj/wT60n9lz/gnj46/Za+EZbXPEfiTwfrKXmpTMsDavq1zYvC h+dtsKf6uNVLbVVcsSSzHxX/AII7/wDBPP47fs9eDfjJ8Pv2s/hXDpuk+PtL03T47X+2rW6W9t1j 1CO5Qm2lcp8tygycZ3cdDiXK92B5f/wbX6P4Im1/4ra9dWtm3iK3tdJhs5pY18+OydrkyiMn5gjS JFvxxlI89q88/wCDjdQP21PCjcf8kvs//TlqNWfiN/wRM/4KCfs2/Fm48T/sZeOrjVLGSSVNJ1rQ /Fi6Pq1tbMQfKuCzwjJGATE7K23JCZ2j5Y/bb+GP7Ynwn+Kmn+Hf22dc1y/8VTeH4rnT5PEHiwax MuntPOqKJhNLtXzUnwm4YJY4+bJqOsr3A+j/APg4P/5PY8Lf9kt0z/0tv6+uP+DjLaP2IfDRP/RU rH/03ajXmv8AwV7/AOCdH7YP7Wf7TWgfEv4FfC2PWNFs/Adjp1xdSa7ZWpS4jubuRk2TzIxwsqHO Mc4zkGvrz/gpr+x9qf7cH7K998I/C1/a2viCz1S31bw7PqEjpB9qh3oVcqCQHhlmQHBAZ1J6VPMv dA4n/ghaV/4dveEgvbVdWz/4HTV8j/Hf/grN/wAFCfjl+1/rXwC/YZsIbO20vWr3TtHsNP0O1vLr UY7VnV7qWS7RkRW8tnAAQKpVSWYbjV/Yn/YK/wCCwn7OPxi8E6YsWvaH8PbXxxp174o0vT/iFZ/Y pLMXURumNul0d4aJWDKELOOME4FSftLf8EgP28vhZ+1drnxu/Yl1Zrqz1nWLzUdJv9D8TRaVqGlL cszSWz+bLHlR5jxhkdg6AFgpO2q93mdwPnj/AIKP6/8A8FKvEMPg6f8A4KDaRcW6QyXy+FJLjTdN gyzC3NyAbJRnhYPv9O3U16T/AMFSiT+wj+xuxOf+Le6gOf8Ar30mo/i7/wAE0P8AgtJ8fV0+P41a FrXiqPS2kbTl134iadci2Mm3eU33Z27tiZx12ivdP28v+CcH7Yvxt/ZO/Zt+GPw2+FMeoa58PfB9 5YeLrRtesYfsU7xaeqqHkmVZcmCXmMsPl68jJzRVgPvD9gX/AJMc+D//AGTPQ/8A0ghorS/ZI8D+ KPhh+yz8Ofhp4509rPWPD/gfS9O1S18xJPKuIbWOORNyEq2GUjKkg9iaKxA+BYf+Dc3eCbr9rZm/ 3fA4X/29Ne6fDD/gn7+3N8FfCdn4E+Gv/BTi+t9H02GO30+x1D4W2d8tvDGoRIka4uXZUVQFCggA DAFfZg44FBU4ylepis+zTHWWImp26NJ/mjw8PkGX4PWlBxfdNp/gz57034Wf8FEfDdobdP2lfhz4 qb/np4g+G9xZsfxtL4KP++TVXxv8HfiL8R7VR+0D+xz8J/G3kwkSXlnrhkunJ4JhivNPAiOP+nnj +9X0cqf3RQQRwa5I4ypzXVk/LT8rHVLLcPJWd366/nc+FfDH7Dfgv4UeKF8b/swr8VvgD4kmZUWx mtR4h0W+UZybuKCa7jKYLAGSeLYWDKAQK+kPhj8ZviPZQWei/tBeGNNtZriNPsPjTwvdNc6Dqe77 pDN+8snbjCTZjJZVSaVjgesPEr84pjwJKvkOFYdGRl4NRVryrfHq11er+/c0w+Fjh5Xi7Lstn8uh PGwYcNmnVn6ba2djbLZ2VqsMNu2yONfuov8AdA7AdABwBwOBWhWJ3BTZFyuAKdRQB+SNz/wTD/4L bT3s00H7Zd4sbSs0a/8AC3NYGFJ4H3PStL4D/wDBC79p/wAY/tB6X8Wf25/jTpuv6Xpt1DcX0Meu 3mqahqwhIKWzy3Ea7ITgBjuZtuVUKSGX9XKKv2kgIiVHWvIfjj+0rL8J/i58PPghoPg2PVtc+IV5 fLatfal9jtbO1s4BNcSu4ilZnwyKkYX52PLKBk+uyDIr4F8d6J4Y8Y/tx+NvCn7Tmo2t9rX26xuf h3od94Zt9YjutJMASCGwN1vt9Pme8/4+GmRTJhNrooLjfC0adSUpT1UU3Zbt7L7m7s83HVq1OMY0 9HJpX00W737nvnxX/bU8O+EfgbqniPR7Bo/Hw08Q6L4L1K1m+0S6pPcSWdjE8ZEcnlz3CFo8+W8s Ku6gBW28r8Nf29/Enjvxtoei6n4G0PStNuvDLanqWoTeJI5kMlxem10qKJ4PMUS3PkXcn2dfNdVV fm3KQbXxX/YH8T/FPxF4g8ZxfHRtFm1zXJNcjaz8PrJNZ3h0H+yomExmVnFuw+0QYCGNnk6uUljo 6f8A8EzfDem65Y3n/Cymks4b5/O0ttFHkvp7aGujrar++yGhh3+RI5cRLNICjuzyt00/qUaTUtZO 766Ptp/wTjqf2hKsnFWirLprZ7v1PTPE37XngbQ9O1zSrWxaTxZorRJD4Z1C7WybUGluobSCSGWY BTBLcTRxJMQASegPFQ/F39s/4N+Cfhv4k8R+EPGmm69rmk6TeT6XotnI0jahdRTpZpDHtB8zdezQ 22Uz+8cqPmVgOQ+Iv/BO3w/46+KifEKH4k3mm2seoWc8Nja2O6aGO2tLuNAtw8pYSrd3kl8k20t5 7M0glPltFieC/wDgmkmja34T1jXfjN9uXwvZ6LYx2tr4d+ypJaabDdLHGhFwzxE3E8N5u3N/pEG8 hh5aw4Shg+VPnelm1Z+Whv7TMuZx5FbZO+3mfTHg278Xt4S0ufxpZ2q61JpsB1hNN/490utg81Yt 7ltgfdtyScYyaK1LSBdPtI7W0tlWONdiRqeFUcAD8KK5W9T1YRlyq5//2Z== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image006.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCAAiAEEDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDq7fxT c6/4U1ppYlgmtoRh4mIznPPqOlWPhzqV5qFpeLeXEk4hdAhkOSAQc89a5zwz/wAir4k/64r/ACat r4Xf8e2pf9dE/ka7asIxjNJbNHFSnKUoNvoTa+k+t+OLbRWvLi2s0tjM4gfaXPPf8v1qW5sYvDN7 o1tDc30qXF4zM0lyeMJ0PHI46Vb8TaHaXd9bag2q/wBlXkQKJMGUbh6ckep/OobPQlvPsk0/iD+0 fsVwZy52ngrjaSDwOprjO0gsfHU+ovJJBa2a26rI6q92POIVSc+XjPOKdY+OLotavqenJBbXdu88 MkU28kKu4gjHFSWPgo2aulpqmbJ1kCxm3jZgHBH+s68ZqX/hE7VU0uCe93Lp9tJCyFQDKrLtJ68Y oApXXiHVr/wxd382m/ZbB7ZpI5Y7vEv+z0HGfWlvvF93pEEW2CxliW3jkxLfATsCoJ+UjJP86ltf Ck02iyWMXiGS502WBool8pGCg9CGB5xiotQ8FQxvK/8AbC2yXaRwuJYEbcwUKNpbkE46CgBP+Foa X/z7XX5CiqX/AAqmL/oLSf8Afgf40UaAZfhn/kVfEn/XFf5NWz8Lv+PfUv8AfT+RpdD8KanpthqF ndwQyxXqhWMVxtZAM+q471b0nw5feH3kfTZpAkhBeG4RXVsdPmUgj8vwrrq1Iy50nuzipU5RcW1s L46t4rvUfD0FwgkikvdrqehBAyKxNVsrXQfF01vpMKJDLpkzTwZJThWPI/AcV12paLbeJoII9Uin heFiyiOTAyeODjn9DTLDwVpGnRXSwxys9zE0LyPIWYKRggHtXIdphadrGr3otdO0h7O0S106KeQv EW3FlHCjPAFVbTVL3Wbiznb7Mt7PpMzeeYslcSEY69MCtHXvC7tJbR6dpMs4gtlhW5S/8lsDICsM fNjiruj+HbfQ9KtLzUiTc2lo8UgVsptZixGO55xQBiaJf3uk+BbGX+0oYEncLaoLQysBlty4B+Yk 857VWudcvNYs44b8q72ur2wWTyTEWByeUPIPFah0bw5bxLYhr4K0iypic5t25A2nt1PTNTQaL4fQ mKK4uppXuopcPMWdpFyByfTJz9KLC5kdnRSc0UhhRRRQIQ06iigYVmeIP+QPKfRkI9vmFFFOO5Mt izDawNEjmGMuQCWKDJqQW0CvvWGMOOdwUZzRRTESUUUVJZ//2Z== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image007.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAALAAAAA/CAIAAADPM9UEAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AADfUSURBVHhe7Z13eFVV1vBvkpubQkmhdxBUFFCZ sQEjoCC9KtJEBKUOAoKgCFYEKUMNTZKQnttrCugrMurj2HF0FMs46quOZWZURMZC9futvW4OlwSQ 4Mz3fH98y/1s9tln79X32mufe060HTt27Pjx49QWHD16VBv0nxlk8HEpx34+bhXtqVbo/zWg/ADR awPRrpNB+ik1OYnerwUoFSB6fTJE79WEY8d/rlGEp/8CqJjVypnB4pzGkWOHDx/+CXMfOXL0+HGZ yXRxCIA7R+g+evTQkcOHj3L/RDn289HTFbkbAxalU4LerQbVEJ6uxPIjRE90UsdY3ZRjVeqPEj49 4CXV5ppygtwpqccWJVQNIH+KUsNyppyQ8cwlivpcwcKjbGvj8NFDR48ePnTokHEIHYZDHD18/PjR YCgwavSNo8ePHj1h7NiJ48dVlbG3jDtzuXnC+Amm3HzzuFMWvXu6AdWwnbmcmavYu+MmSBkbU8ZP qE6aIrdq4KHEoqpZrLvjEL8GTuiOuaV6qYbhHEo1KpTxyr+R1CqISf8pRsagUrnGTRw3dvyYYSOG Ll68+KeffiJCEA5+/vln25HDP/7rX1+mpCZ379l902Obir0l2UW5ucVnKjlFOZToZVFebuEOU/J2 FO7IK8rLkwadWnbsKJJLU3ZIKdLBpk3DYLPq2pacQsNAUV4OqEwthUZxXlW9gzrb3IW3KNFoMXfh p9jUJ0p1KqcrOYU5VdKBtkrkorxsKFaV7UU7pGGogDyWkCFdHWdssfQsdYGQyCvKr5JCdGv4N5JK EUlpCHIGFJlS1bBwZhdmg21HyY58Z/5jOY/dfMv45JSU3bufIq7iEAQJ25EjP7z+xquJjoQVf1ju DXu9Ea+n3OcrO1NhDCV6WR70RPyeSMBbFqDhNZe0vWUn+mnLXSZW+H0VjKH4PGVeChj85f4oqnMp AV9Eir8sSO0N+ynuiN9dHnCXRWtXmd9THqRTWaV2h2FMirc6trMt8ByoCHjCXn9FCGxI5w6LKmhQ u8JIF0AVog0RnCIyqt5OqO7sCrSY4q8IK6Eq9Qp+T0XQXRZwIa8RFklpW7rFjujcjZJR+8k4PWEP xRvyeQKe9MyM++9/EIcwceK4jV3k9ddfS0lN2rhloyfoRa2e8AnWT1dA5w65KSUBN/Kj7tKgR9uq Dm3QT+0MeakLvaXOkMdfGTbDvMV+F7WFpxr+sy2winURLOSD81KfS+qAxxn2ohqhG/HBmMWDVWBG XKQsGCgPuYMe8SRUGS1nEh9tlvhKSv2l8BysDBX5nL6KECQQGYloCLmgl4Ia3UEvnuoMSI9gRjMh 0bD6saF1EnKrqMHEZlXeA7eQgG2YhwQN1Bh6vJwan4AN+mnTwFEQVlkq8JQEd5UxNxa5FvGzkM8f CTRt3uyO2XOIDuSR5FU2Eoi9e19JSnZs3CwOEaoIG45PcqiaRZc1eJEZbbr87hJPqdPvRv5gRdgV 8IAEbFyqtSgMkwGW2XwuLsFgYTuHAk4lQSNUGRHOIwGob35s84PLHpo8/fbho0b0GdB34LBBs++a u3TlMjYUiSUwbDikTUO8IezXuab8AjN4AwWedz61q8TrRAObtm95cPnDd8ybfW3/Pj2uvWbIyKEz 58665/57t+Y+howMUH+loBwuIapsV8NcsxCHIBSsDIIHAVFaqdeJFEJu/pwRo2/o3vt3/Qb3nzZr xvy752dt2wRmoWikK8ImVUvFQhjrENIf9rdo1XLWrDs4B+INEiFwiNdee9WRnLRpy2ZvSPSrRjpF CXsp3GVx4On4F34QDPl9uFo44PV5snMem3vnnMFDBnXr3r1T585NmjZJz8ho07btpZddel2fPqNG 3bBg4fxSZ7HLXeoPeEORYLgyBDZX0FXFn9gVLlmj1UlXFQmD5RIGmeIlugQ86BcVBIyZ8el+A/vV S6ufkJCQ6EiMi4+z2WzUcfHx8QlxCYkJtnhb0xZNx4wfk1+U7w9JaIHiCa3FKE6LpQrZTNmMyrwl QSeX8Iy7Z+dmDxk6tFHjxlCJT4iHSlxcnI3/aCbEp6SmQLZxk8Z9r79+46as8M4ybMks8KBkZ9jN BipSmKJUtPgRP6aHy1BZIBwJ5RfsuGn0qHbntU2wx9kToaFE4xwOB3QRGdJp6Wk9evZYuXp5OOIP hn2UQMjrx1goFinMDuJV7UECoUK+Zi2a3XHHHbhCNKnkOBp1iK1bcAhCaDX+Ygu3TKgk0gaxQbA8 VFpanJ+/A2M3adIoAf7EBDYUAYvUdrtdbGGAW/HxNv5t2rTxrbfeUlRcGAhhSZcGRlRsSMhiPYND nCh4T8gj+jV+Wegs6v67bnZHgt1hRy8KaEo5EYjHNWzxdmk4khOTU5JHj72JnAtyrCqNc6q1aiWq uwj7rtdXGRBXCHtKPMVDhg1OShH8UWI2W1JSUpSWMY8RWYAxScnJva+/NqcglwAMw6gOnJJU1fAG KUZ8GcCuEXQjptfvmjRpYmpqKjoEK7SMMuMSExNpQ4haJaVOTk1yOOxdunTatm2LG72yVqsyAbxB l5MSEsw4RPOmp3CIxCRH1pbNvrBEUVZDlLOTi1t2Mq+3QmIRfoMxduTn/va3v4WJlJQUFd7ij7ay SwO3MByjJh0iwCbVt1+fUm8JBQ8r9hZDwhVyo/RT53oRP9uNrmMsJ+2gz+lxV+ysnD13Trxd1oea BHKNGjXq06cPcmZlZfn9/jVr1tx+++1XXHFFWlqa2gnl0qiXVm/TY5uJwyAUnzAJtTvisYiqtVgD vnI/a5p2fmn+slWP1Muob3ckggFagqdevauvvvrWW29dsWKF0+mE6O9///tevXpBTpXAUk5MsmOq e+5dVLlrp9snW6cndIJQbCE/JXOEHySN7CzLzctp1aalahhaADgvvvjiCRMmPPzwwz6fr6CgYNas WX379s3IyMAWuLtDeItPTEyYPPlWf9DnDXhlneP6JG0mSCAmSlaHaNqsSU2HeA2HIEL4QuoQp1oo WCsCrgAJCwGW6DdqzCgkhEv4g0sR2ywXZRpggSKGqkz9V4GmGSaN1LrJ0++YVuwuwgtxC5cJpB6z bqovnbDPH2bPC/gjQZffE4gECDA+v3/M2DEQgooSwg/27Nmjz9moEVIbwKFDh7755huPx3PZZZfB AJzYE+2JyUkL7l2I9imsSInkMUThgb2MQtLgDDi5nHPXnOTUZFmJrMXkZNZDIBD44Ycf2ID//e9/ U0MO5dL49ttvf/zxx//5n/+59tprjYqIlDILQ3p8Hh/kMLkhUU1ScyoJlJD7VpY9uPThjAaZcWYi AsL59u3bkUKFUkJKFFrUL7zwwvjx41E741keKKTfgP6lLqfT5yIQBndGWNLqEOITp3EIcgjLIYI1 HUI5xkgeDjbmtPbYju1dL++akGhPsMtqg6ouTZYdHC9YsKC4uPjJJ598+eWX//KXvzz//POPP/54 UVHR9OnTO3bsaOKe6BOnIFpgSlb2JV27bMneShLOQmSHU6JWrSUQDgbDITikeAL+UCTM5Q033KCm ReMXXHABRDk7oRcspBJyiaa0k1rdAlMVFhYSRWT3jY9LSsUpZwQ4yEW8TnaEauYx2T7JHXFi2syp 8XbZAaHYsEEDl9P13XffHTx4EFqgBbnaBrpKnTadMFNRUdG5c6eU5GTlFrZ9ZFHlYTBDQjWs5HA+ OSKFvMGK0H0PPkAiIlHInli/fv3169d//fXXoEUiJQd+9Qk9MWond1966aXrrruOaUIuPu7q7t2c XqfsrQGPnLdNKmZFiJpbxrHTOYTFqNacZEiS12ata922TdTbTX6AMQhWK1eu/OCDDxAevLBFLa4b 88SaHu6+//77jGQ88x2kRgYDTGc2zCBJJj2URE8PRScbxs/WGyFzDBAn8PfyXRXTZkwVXRmxWYX/ +Mc/IIeO0IhSZyVNnjy5W7du69atU/XpANRH45133sGHMA/rKbVuyuIHFrFh+1k6xkhaaCsnBLB7 7ltEWkpUwI3atWn75ZdfIiiEEA3kqBLpwPzhhx9+/vnnSot+BVhi/LW9ryURxLoguX3qFPIePURA RUiYpIEwWRIodQVcWVuyxF/NDti0afNnnnlGdQuAkBqcSgXgkpoeangQp9//7bix49jLRL0J8f0G XF9eWcY+hXHluGukq4VDxBpDGZVcsiLMaaduRj0MgCG1ZptcvHjxv/71L5iDY2VOGaVhPEEomX/l 5xNuAZ9++ums38+qX6cOcSLeJjGGyJFSJ3Xj1iyYJjhbarLY0BwCASjhysjSR5cSulEWPPTr149l CkXFbyll0qRJKBQ+gdzcXIslGugOtX75xZddOnVmDKPSM+vnFuZ45QAluYIW2JAEosy3OXtz/fT6 ujle0rnLV//66uDBAwiqOCFKDdEXX3wRXCNGjIC68kODu8rY1199M2TQUEKqaC8+jgWAgOBXMbWN 1LI9eUvOa98WnUCxQYMGb7/9rnL+/fffKyoAkZUoJGhoWxeDuM6Ro8eOHCWVgZYkWDbbzFkzyLr0 mKNr/iwdIuwNByWHjzEGXGKkjVs2NW7aBHHAzoaIpi/p3Pm9995Th9VaAbynBL0LRThm/FtvvXVx x4uSEh2EYXA6khyZDRts2LxJqaslNIuUEuYcJTUikaV36HghmRrbTefOnVmRilaBNsj3799PABBW DZDxoUQdhvAK7B/73nyrebMm4t5xth7XXM0JzUryWb5yJCb1C3uv7nEVisXYbDT79u0DD2YAg1IU VAbYwqE4bNgwbAMwDICuDqDByrn88svxY4zduGmjEl+JHq+8EY8fhYc9oXI/gXDkjSPgmWH166fv 2fM0zgAV8YKqxOhPf/rTnXfeSQZDpkwIHDVqFKnMP//5T7hSQjoS/xg6dKjo1uEgLJFMhMpDnOyi LmhWl8khfm/84QwOYR614ge6TEMVwYLS/As6Xog3kDrgtol2+6ABA7/56muo6iKgASqQIryavybo XWplGpWBYdiQoTiELFKMkhDftHkzuIx15GiJ+PEGcYvyEGkgIyl169b96KOPFJtYxgBtFAFXqAmd oguUm5eXxy36uQsntKNW/OnQzspyY2sbp9aszesDVU8qVQOob13WWnui5MhYcc6cObANElJIFQfg kryEbH/cuHFI0a5du0cfffSpp57C77kFWMqBK7YqIjn00OLdSxaq/5niDZb7OdAWlRRmZKar/+Xm 5n3/PYteIo3S/eqrr0aPHg0nEJJIYzyekQB0t27dqhTVHaHLTtq6dWtjMfvNt9zs9rvxb11s6hAm QvySQ6gxdAIovH5P199eJsGnaqcgGuOPKqQqBTBGPy1YY5gFx0zU6bA+ceJE0JKZ1qlTB9av6fU7 OZXpg05zFKREDwLmqUNmkwYsaNIzdiswqAoAEEKCHt284JDAAMJly5aR/RFvURB3LWYAcYmffhoy ZBAMsCF0/U2XQNVDTzQgDxYDni6XduYugNJRa/PmzVevXs1cSDAXU+3evbtx48bcZQwDAB183nnn Pf3005BQWioyMG/ePB3TvJV4vytozGO8kP1i8NBBSMd0cJqtMOq+eDMiaIBRWyiQA7H66VQFTpky hfFK1FA7tmPHDpwGPaRlpBWWFhLziPe1cwg5+YQkOPtCfk538+bN5WgLSXU0MjjyNUgyV7HQMCJX 94nYHqutDWpMSK2rloM1sikJ1DH3rvkcL8UhWKYVPk8lPhHwhP2lPte23McYwAEHw3z22WeQhhNF BYhYR4+yibzxxht79+7985//zEmHxptvvomYsM1dHclEZRuj7t37St26dbBQampyqZucjrgY8JUF IUfql2AXxrAQGodJlKuwcOFCUkh2AXjmrvKPbcRKBmjv3LlTKSo5vIf673//O2k1Uzj3PpazHS8n WXFJMiFPThs1aaw0nvnj04d+lPwX6ZgIEs0J1O0Y0KZNm0suuaRnz55sZLgFPeCEmaysLKYAzGUW cxnJLI5Iix9YUuwuJnWV2G8icfMWp3cIfzgUdQjy+UiIRrHLWVBYKKfKKt8n/mAGlIghLeXGgjH6 CYj2xniDBUyHOjXY8H2yJz2+snmilJy8XNkjJDx4PRXyM5XbPK4ZOfoGXUBEKZW5GhtEb30ApVpD gwRY1SO6ix0cywC5iDFq3NLlj3hCgQKP0yWP6cLz714IErTcpUuXrl27Wk9WAMZjchRCG+S07733 XtIIDpls8MgSiUTAjL+q7NDiEvMAbO3gxPC3T5+CH8gDUHmiHMh6bDP5JnxkpKfjDT/9EFUyNYc4 VMQsyCEOhzXwgFxh7Nix8AN71JmZmdiIKQBE0dLMmTOF4fi4Xn16kQBoJqAO0exsHEIDpjccIMHp P7Cf0ZTsVcjMuRGpYFFVqWAZRkHvAqL1qjbErDbjaVu1AvkpckIFQOkTJ92CQ/jlmbHHV+4t8jmJ EDhE81bN4+1xyakp5ZUVsbQA2gC7g2LASHAO0KAH5CwU/Fg5UaANEiRiuaNrZvW9vo9ECPkVW37m 6Hxp5/g4Gzd0myDeDBkyRMMA4wGQU4P/wgsvJMJjGxWHyEEbrsDPpcUhtOjJyckRruyJXbpeQvTW 8wV0b7p5jD7gmTljprzRdeTokUOSGzK3qKgIWdQde/fuDS0cQtGq28EAdxnDgPvuuw+iEOIut/73 f/9XdOJIzGiU6fLLfiHHaXWIM28ZgXK2T9xC0gj4c3pdySnJKXXkiQouP2PGDMPACUury8MxVC3Q W9SxThALOkzZBRhDhKChSRnASm3UpFFxaZHTV6pvaTjZ+fxuBKifXi8uwVY/Pe3Djz7SuVoDkKN9 4MABjQcGT7ShwKau7FnAePUJsnTjOvGXX3E5hPyV4WK/C4do2boFvUmORJa+jtez3+TJk3ELfVSg NfgJ3ViaEMUACGESOQFWxSFqdKVIsBC8xSfYMxs3MDmEnO1R+HUD+mI27uzIyT1uHOIoaA4feeKJ JwYMGEC/5siDBg3ijGZhAzlJ7qZNm7ilkhILMQp3uaWAr7Bl1Klfp9hdpL/Wst7IkH4xhzDhwbzc gU9MnzU9jkiDUybaGzZsiBgICRmlpM6ubCE/DbGzOe3Qr8OUXcAaAAbADJQFBDCMAWAj/NSvX5/l SNTkGHH33Qt8Afl1xx1yuSIe4qrT5+J0Cj+onoMlc9XnqC3AHpZeLMBgQNu2bSFq+IoC46mh/uyz zzKLMe07tCdvdZtXKMghMhtmMJ1N529/+xtsw6TyD3zxxRcrVqzAyZhFkKDW5Zuenr5o0aJPPvmE MXrAhk9IGFklOlKjCiGXEO9IScIP3GVeZ1geynX57aVsGeyJHFLYMvAGpjOYw1THjh3xBpjBEUmW wawBCf41id6zZw88GHFt7du31yfc9DMAsnK0J8wnJeSXFEBRT/InRwi2tmOncAj8gKSSCbhPq7at wAKLHPrnzp1raZNZADjglWR+165dbGlLlizhdMcRmaANK6oCatpMZFcLh8No8OGHH2YY6R6d3NKR 4NS4N2LECLxBDqI2W69e10TKAn42PFZPRLY9hEGJ6KtFixaKXy1qPCEKOEq1wACgKYD9HoaNBAIM jraOH8femJORTZo2xiFKgx5fRajAWVS3fl06yQHJBKEIh/CpEZFZWOLrr7/2eDzdunUjgqpLydI3 GeWwYcPQBoNVA0oIUJEZwKaemOIochWLu0fkR9fmbVuKQ9hsZME4BPsFg5Xiu+++26FDB0hMnTqV eIAgxgjR9YbUDFAGqMk2Pv30U+4yzJA+arTALmXLzs8hBGLl2jgEBxITTzh/CyKzB//xj39kEuMh QEMZzc7ORsvIb7HCyefSSy8lxDEMMQB4uv/++63Dt2JDfVdddRUy6DDUpGjLy8vrptZhJMPSM9Pc AXluI79Amp+eC0oLUSIqa9q0KeNhRo1qPEGA9pdffgl+w3UUwKbGbtWqldJSYLo2oPv222/rKm/R sjkOgTcQIwtdxexQTMzISCc66rMHnUUNcEkbTpCRGDN8+HBiCUiQjlkQBTp16uT1epmLunQiDWpN dZNSk6FChKCg8zbntxOz2WwsGLYMCoPBD6Dwffv2PfDAA9CiU0mryPTgmviQ6g0g0KpD6MSDBw9g H8Ecf8IhauQQp3EI9QbcZ0PWerDANAQwgKqS8QA0qDEzdzWlYoz6BICoKIKgxxh23PHjx6vHUGs6 xmBmMYb61VdfZRjsAKAl3ohAos14uF+btcYdJqJ6vBXyFLnEU5qUksz+xQr46quvmIhGtFaAQ1TD dEs1ChDCSC1btkR3jKkJTz/9tEpx0cUXydKJ+IO7yorcJZkNMhErKcmB78IewGClBV3a1CidBpgB Is2UKVNYFUoXNhCTBjsLp0F2GR2PsKKp+LgEhx1tS3gwDnHZlb/RUwYLg/AgaUSVUSFBQ7cJVReg bGhdWVkpOA1wJkc/Ootb2FtibrzNnpzIosIhJDGofsqo4RCcMgLlITYYhqKUybdPwojycDLBfuMN NyKtQR09Fzz33HN69sXAyDxy5Mi1a9fOmzePIx89aP+CCy5gWZAbcwkwEjVxVlyzZg0ZGU7DjsjE gQMHahRRnUKCszUiGXXa7l6yEIfg5Cm7bMApT6UaZJJDEG/IqhiMLpiooG2Izp49+7bbbhMMBsAG aba8VatWWTpisI6nDRQXFyvR7j26I7vLvIOJNlq0ai6uabPt3r0bnSkVBZ2ogJF0KYteDx8uKCgA GyIjoPoZGqCHnW7+/Pl//etfWetcotzGzZtgFU+5jxyCLeP6wf3ZEzllbN26VSMEDOPi1CUlJRyF 7jFAugAh6MIPQBvVETygJWjj43v16qULWG8dOXJI9BBvq5NWB3IlXueJCHEGhzCnjBBs4T7B8tDv evaQCGEIPPTQQ+IFZvNDYGh0794dGgBMkBnQCQfchVeWL6yTB9FDHqcaYY0Gg0HVGv3r169v1qwZ ZzkWjeKkBj+3OMsY9Ul8mzZrqrfc562QInm4392mXVscArExIVNUI4BlJGWS8yFjlEOARA/M3I2d ohS1MX36dDhk5NhxYwNlQY4YbBnood+A64mAYNKnogxWJEoIiqhi+/btY8aMYUVqP7Js2LCB1QI2 ZCcZhBPrPIJoxHM6ucuy6d6zh6RrZd5SEueA59apk2UJ2hPIPw5XRQhFe/fddzNXQx3HMdUYNbfw GKTLzCSYCTDgwQcf1FnUwL59b3Ik4nzAob26Q/ziloFDUKOUCzqej0+pWlnojFQmaBDYWaMqJBwQ x+hXS6AyjuCMQVPoiAHGunHkvQwAlEvuko7RVnvQ0H4G4F5GlbLnjZkwOlgZcEfcLKASX4k/Epg2 Yzr9yNy/f3/4UZwAeDAPNQAqHAIkFmADVGYN05FcgoEGQYWQzjAkWr9hvajM7+aUgdYeWb6UfvY3 Ah6DmWjxCSBFbm4utmci9uBkeOedd44dO1YfEBEFCQko55VXXtEfmRTUV6jRzJz5c3EICQ+cPEO+ 7IJc+XHSKO3gge/kOYThGdLPP/88nYqBJReJROBENQAb11xzjTo0gPeTAutdWKUeOXK4TI23Db9x OH4QrAhj4l9OKr0h8yZuWfR9WnI6OFAmXnrpJUsR8EfyrPIAdevWhSG9qwPgQNX93nvvoRcADFdf fTU9DGAkwBRlV6WltiAUCjFe6Mbb+g7soy+dctBAXzgrBw36WUbpaRnvvP0O6la00ckGwH9Kh6Cf u+oQhotoMsQpCW3i2XXr1vF45fgXqoxw1IJcUWkR/YkOBy5I2qjjQfIT6/fIYcIbIRD8ujWoSXAO Q1Ma7OtMYTw1O8Utt9yClzBSlCKxN25HwQ5OTyVBp7wqZkzVrn1b3AF02Vu34RBGUZKEwv/1118P G2BWDCTvEydOZM8lM6MHHmCA/nXr1qloAJph4TXITMcI7P3LVi0n9uMTLC0UW/Uc4nQ/f4fND81l vkCZv9RbUre+ZEZiGJvtgw8+wGwMpoYzThxIyy2YIN+kHwCjAjJQ00NeKYKbxymDBg1iv4BFpa15 Mpc6l05AG+hdiWL47r26eYJud8iln2DIYvK7W7dvQ5AAM2tR172SUwwKpNyCoQpwCOIq/YZONJYo dfR1xRVXoEpkub5/P7ffQ3SM7CqXSG5edOs/cIDIkBB/4YUXgsTy4yPHonGO5JrwoMYAiQIRET9j vGqDWZCj/e2331522WWiFntC+44d/OZNLXZDfVhEMJ8yYyoJlz2BE559/9fymxEKQ12w+v777zdu 3BhlKrdKDm+wvIRbhCgGGzeKLsslS5ZIjI63NWjS0Olzyfuw+pZ5WKQ7vUNs2ewJShoFcziEN+Rp 2LgB9FAF8OSTT4IaYBrwxhtv6HkBJggVhFzrLnyosTHVJ598op5LzUkdLrkFbcYwhUumwACXAA1m cdfv96sVk1OTBgztj0MQIfwmbkm0CHtXr1+FtkRndjt5CXOFp6ogQQNU1SIEqa4+DNUBWv/4w4+H fzpENgMeDi+UYmepv+rJvaQsQRfOkbMjR+xtHhGuXrmK0KA2NtSiToywWItkAp1cd911BAMVh1rV okaiJmak1q1jdyRymli9frX8plD1gow8PSzzFTmLW7dpjWlJ1yffOgm2mY66QAUGVIr7wglCQQuf 0JXJJU6/efNmBhtTyEMBnPWdd95hB2G8Izlxzl1zcQXNCkTGX3hBJua7DPROufCiC5QSkJ2dzUjl ifqbb74hh6AfhqgPHDgARjjgFngDgQCssDhINdhQDAJ5rMtcNbw6EFsDA5jISC7ppw0sX75cRSUM jL1lDN4pbzGFZBeDK6evNFwZuvp3V8XbhTTHBw6uOhEMAAxQ47LKmwLK0kfOOoaGKO7w4VAgiDcw kvU68qZRniAxUp7EWC/pSGgN+8eOHwMzgMOe+PjOXbgRHmBoRvc7cCLdiy++yNodPny4urtyQs0Y FfDjTz7Rl4wg16ZDW3nEoq8myGM3jyfsLtsVIYzfcecdGgLBpq84MFc9QyMisadv377EZnIUFEvY KCwsFImq3iCkoQuAu3hDvbS6KfVTS71ON4mk+a5OPgaUd3/8NV+yjc0hxH3gTxfiwEEDUIH6BCku EwCVkHrw4MHcUsv17NmT3RSHQBEul4vgwU7JFNyiS5cuSKUjiWb79++HY4ZxRsW1cZeNGzdaOSlo 4YyjqaLF5HcunAvfaCoIS2IefMJb5CrMK85r3qqZWMjhIB9kgzDcyapVl622ZRAh1IRKAlrA7id3 Z6bLz9As1o6dLiooLZbf9iLiDSiBQpBQnyh2lXS5TA7DhOfGjRvteeopMiX1LiVKTZvkkaPTlClT UIVhR0AGcRD46ceXXnm5RauW8qQ1Pq5+ehradgZd4DcRIlqKffLbNMeNXtf2xihEYLTHIRZuQUUN ZgQBlAQ9uszU5+iHFurlFnnl5ZdfDs94vN1h35K9lfDgDHrd5iNH+WniF1+h0w910ILxHe/UaVNA B0Mo/dprr7WoKk+kmRLWTOyCYqtWrTj7XnXVVexnomKbjaSBYU888QSLmB5GMoydFde+5JJL1EXo nzx5si4mMAPwg4F11ZJDPPDI/S4/ZyThx7ippxSlmZx39ZpVmJmR4GGtsKmBBAAD9aeffjpnzpy5 c+fihfPmzVu0aJGqibtwBSFOrbDKbuZISmzaoumGLRvldRicz7yRrKsWC2EtL2HJ796as61lG8wp +WydOinFxYWHDon2AfgHIWqhod6mPVYndbgs0rBxI7wBVddLT1u9bi3r1Xwx7HEFzMuC+F+ZPHFx hl0e2d19553fgTiB3jDBPffcw4oHFSZACmrLCwElpNZR0s899xwZDwKiHPb0RYvvIfAQD9xVH9wS J37ZIZigDsG2HaoIZuduhxW1LqpnX1DaKiEo8vPzIakBwDK5usiVV175j3/8Q5lbvXo1/YQNayQD aOBPOAcxgzGqR0Rij9QBAnG2LdmbxfysIfn9XtzCiOHxcHSviCxeshhyoFLS06ZNYw9iA8LkiAd1 JDQaExeBZ22/++670GWWPdGOzzVq0vCRlUuD5UGP/Iom32UYh8APxCHo4UDorwzR+YcNq9Mz6tkd CUkp8hbP6NE3sUODEOahRQMRDAUB2ACg+/HHH8+cOVO+7LPLr1lJqSlLHnzA7ZdXv0xswMvlTWh5 K6zc6y73+Coxm7fIU1pYWtL2vHaIBqAT1iSHO1Skng1RBWipdOormOmhhx4i9Ko3qFpcHmcgLM+W 2A31u+EzOMSRV197JTEpcdPWTXDGHNINCZUBV6mzCGXDSnJqij0xifRNtyUAyZlPg11TowLWBXBG dms2C3Jp7lpnwp07d+KwOAT8gZC6Xbt2K1asYIxGOcVGu7S0FPnVHzIapHvFr01GadIaDRLyvWLQ 4yPzC4fwNrZJBiM8NdFo0b2L/vjM04RU1osgJeM79BMR+9vvDuzevXvChPFQJ6xgV/Ks1u1b4XNu E7pDO0PyoU7MX0Mw4UFsJt8OlXlLfCU7inLatW8d/TAwPg4zT5h4y5NP7T5w8DuTJhylYJfvv//x wIGDL7zw0m23T02pW8+RlIwrOJKT2DKWPbrcF5AXhlmyVftFlJx83Ffud5V5nRFPcUCOA0XO0ksu uxSNsWKhSCo6cPAggs3X+7/57t8Hv//xB6Q7elx+JGcRvLL31QV3LySrQA9GRjmFLliwoKKiwut3 UfSHIYsi3lCVQ+hziCqH2Lv3hEPAhDoEqvf63FdeKZsQBFj/o0aN0kVmrQNcUh3zo48+evnll8l0 yO31ETqgg9XetKHH2ZXAvmfPntdff11fwtORAGMYwGDSEcSQNZEQP2r0jX7cOWi0FuMQwpt4t5e0 NBwOZ2VlsQepTwAwjIM2b96cHZRIMGzYMGpSGXntUexoYxMHfaLD3qtPz/ySPLU6RZ8O1fyUT4r5 lI9TgCfoyinI7tm7hz0Rt46uXaBJkyaQ6NevH6lV//79u17WtUkj/QhYnvUSG9Bw19/+Jjs3B3OG ImG8mSOfRdqiKJ/aVRAn5FF9sd9JSuf0eoaPHIFEKiBmhhwBoFOnTtdcc42S+81vfsMCU2aQMCHR jvO1atN67fp1wXDIH/QHCQlBeQcHzwaz0sIhqiJEDYcg8GdtzSKe4BDeSAAnlYUS9t93/xLJiOMT KDBByCI2ApjQilfaAGLbGqtpUCtY/dqwgFvqGXjD888/L9uK+YEbh1i64pFSzs0VclKP0Zo0TA/+ wVrzhSIcl713L1rY9jx5PiFzDaDBWDA+Jk+DOLJ2uaQzKUipt1R0JD+eiZqkSNyWd3qtQqdVuyKe 0M6gPDCI+FauebRT54vE3OZhrmlI2xASgJD8EGRM2K5920X33+v0uXzhIDyjWCnW+8NV39ZFLyu8 rnKPS/IJ+XMA4jdB76ZNm3r37g02I4p4hppfFwCgnfSSPzZq0mjmrBlsE8Qh9BOAVvSbMOPxVQ4B Dyc/qaxyiNdiHMJXEZJjiUQtmVBSWtyoYUP5xMp8TsPyVdNW8wnt1BqItbrVqWDGCmhbO3EI2tQ9 evQQmeNsREhOZaRyFLd8UxqrMsszzHNVo1z5dtHvJk1bsWZlnwH9MAWLUkIBiqIhbVk66Zlpo8aO +sOGNXoQD+4Ky2sWFfKdf7TUcAiKdde05VsuQn2xtxiieNUNN91Qp16qPDzlTJBst9nxCFucHX3Z 0jLTho4c+tDyh82XdF44xABwa3xCpIilUlUg5PKUu+VN0nKv3+xfQtFL2uRft3HDuAk3t2zdinNK giNRBDRv08QhoHkroFef3kseuq/QWQQVDQCqH5jXH1QtQQSteeWlukPQki0jMXHj5o0yvyJE0lEq nwnLX97wBn1Tpk7B+xMTJFIBbrebmRiPBa2hXgFcZw84gdZAdP6xY2x1+BycxOH68XF3zJvNMYl8 mOIrD7hZTyaimpdRTcCQ82HUIVC0PpGlUeJ1lvhc2YW5m7ZveXTtqqUrl61Ytypr+5btBTnFXmeB t7Q0JNLtcBaCtjTkYo9AWVXIT1eUOtqUd9hZuBwOWT95pYVkf6SENDZnb12zaf3yP6xYsW719vyc 3OI8BqDDIncJ5wh3QJ6IiytIkZSIcjKJaMEhoOIxjyUo6hAsDKhQu4LyKXduUd6O4vzVG9YsXbX8 kVXLt+Y+tn7rRqTziCrcZbvKguVmjwhyZjbvpVYhh+iJWHvKV+hovfrqy0nJjvVZ62EXpiURleep 0vYFfV6/p0XLFsQkQh8GI3PUt4CYjxWxqGAySa+xdS2A6UzULIQTPEFP9gvCnj2+wwXtcXMTHuSM ZP4kT1SJ5sQhDURVbwiYn+Jo4BAqgroRc7WIc5uDlv4hJk/0z0D5/BJjjHvJQcbCf8oiA8ww7BFw B91mI5Nv4UElZ3rzZ6wgQaENFWg5wz5/ZRjmcQIYE28w4cEUWK1GIlrIoKXoAOMNFBXHoqJyaTin wV19tCAvelXpBG2wSDQmCWb5fN4Ug1YdgiB3Cod4+dWXHMmODZs3EHJZXuoT4hb6yXrYv2rNSvJq s0PJ6a5ly5Z///vfsSIo1KjUauOzBA0MYCDGsPt89tlnJGUSG6Kbom3t+jXIw1JAwtKAbBzq76a4 fIgthc01mhnBp1WUcykhU8xffJJCm0WGZhnPCTbo9smfHJF3Ng0295lKwG3ONUwxf8GDidTyeBts UBGckIjWxh3lI25xZflNTjk0rLJwJZ6ZUoOKKfL3PaoKG41HRDA/7AlyDiZRKtpTxYAIyKXIHpC/ o1JFLqoZ0PoRQaWgmA2Lu/gNDjF79qzqESIlNYkcAocixMlvo5FAxROVYJc/piEfb3mmz5zGCtZc F+AM+cUXX2BXPUTQAECnbWP06L5gQeylDoOD/fv3c0xv1kyeOSpyHG7MuNGhsiBiiC0DnmJPaagy Eq4MlVVUL+GKcFhunVQiFWVlFeU1SuSkUh4pL6dRHWEtCxiqUaFAPYaQKZGK6kxqqYFQy0lzw9FG NSpaTgyzSjUSWmLxR8qDWnwBn8fnbd269ezZd7BCjx45+vNxk1S+8spLycmOm8aMum3abRNvmzhp yuSp06fcNmXy9rxs3I1UqGxXOfWgoUNI1khh6tSrm+hwNGjQ4JlnnrHihNpYQa1uNRSsS0YSGADm cgStX1++qmYnIjzgDVdeeWXQvN0lnh7y3XP/vbfPnHr7jCnTZkw92zJ92vRTwNSaZRql2txaFUFS E6B+EhXKryU0AySnhJOoaKk2sVqZagZoPW0GE6ZlZmbqg6lj6hC02L8ltwfMmU2KOcPUS6ufW5Dv CQWcflaqr9jt7NL1MlJZSeBlmPzOtm3btu+//548QIO/Wlqwm61EncBqa4MBuMLnn3++Zs0a86SK bYgDmvxycXHni4pKCnG+UEWY4LR+y0ZHqiPO/IGt04LFs1X+34RqTGr5b0A1ElpOBaxAbZz0pJLW q6++GnUIAzqOmlSfqBCuLDef7sjflyx0FV91TTcIJKdKeE81f2ita9euoVAIPDgElrYA7NAAuAXQ 0Ee5QEFBQfv27S2iuALlqu5Xkq/IthfySSoT9Hbu2iUhKYHz2+lE+v/wH4HqDvHyyy9bzsI/WhQ4 7D68fFmJ1+0KS/5MKst2PnD4YHwlMZHDvviN2hW32LBhw7vvvkvA0CCBT6gHcElswF3eeuutlStX XnTRRbpHCP5E+WtcHOIHDR9M1kLSS95A7kIeM27iePrNO3yGlVOBsg0DFhtaa7/WJMKxbW0Ql6jP AXQ6YHmzgnVpDfjPAgwr5tg6FlQJ0YtawpkcohokJNrTMjM2bttSGpRjm78ipH+CbtLtk5KSHObZ XJQPaoDE8Pzzzx81atS0adMefvjhzZs3P/TQQ7fddtuIESP07/eo4qij4EhIqZd6593z8QOOEmwT fkknffcvfTC5TrJ+FQL600mqRDEzmNTGsgNVPcIDtE2nXmqmoj2AIqkVgITp1GAGFDP9NPSURKf2 0G7YsKG++KqXMr+WoOTAAPL09PTmzZuTclmd0UFVetB+bURvnB2oQxwhlv+iQwDxifY257fP50Aq b47Ix5/eoD8QCqz6w6pOneQbfgDmlGnqWFTKHCBsGjMwgH5qOhl/Rfcr123eIG/lmIMu53XcYsPm TfXS0+QB9i+BoqXx+OOP79u375133tm7d+/rr7++e/duhAR/79696eeyadOmeopp1KgRY/7yl790 7hz9qw+1AshhFbIuqOhHfKDFVK+99lo4HE41X+kg3YQJExjwwQcffPLJJ88++6z+8UaVvVag2CBB vvXee+9xsvvoo4+sDZe7OiwSibzxxhuFhYUp5vVd+q1bZwBG6KCoQxz7JYcQrPFx8rJXQnzjpk22 5+cUOIs88tdGPZHKMo/PEwj677nnHn3LVMZWrZVYbMq33lKlyGVC/Hkd2q9cvQpXkGcD+neyOdEE PEtXLktKjv6kzpRYVDWBuzrg/fffJ+JhA/YsVEab8/DYsWMJCRiPy6VLl2It0Obl5bGRPfHEE+dg HgDpWrZs+d133yk5LoGMjAz2RHmLwASJ1atXs0syACP97W9/o3Hw4MFevXpFUdQGVHslJSUHDhxA tKysLMRhL37uuecQhwFQb9KkybfffstOjbvAm6W6s4ezjRCibPOonJNFSp3Uhs0asZqxGekeBwFf 0Lfz8coSZ3EwHFiz7g/X9+9br35d/V1Kp0jRNv+aHxfki6tGDQcNGZxfWOD0uN0B+S2NkEBeIs+g vM77lz6QlJocZz6MOSVLpwP0jiCoRnWxePFitLZp0yaQsFWhLEzSpk0bfZUec7KmdWKtQFlC6frY HlSTJ0+GYqtWrbD6m2++iXk6duz45ZdfQoKtk1v0LFiwgPEcsJPNnyWsFShFEHKOq1OnjjoB9tq/ fz+EwI9bz507F9k5GZCl0WZAbQnVIocQwJykkI7EOEd8nbS6C+5diDdQoo/AzINSfeZF55bsrUtX PDLtjhkjx9zYs0+vK7td2a1n9559e0+8/dYVa1dlF+TK1mCeMfjNO83eYMDl8/pDQX8wMH7Czfr2 KfEkSvqsgeCM0jEVIYFNITc3Fw0OHz6cW2iNbBf7Pfnkk2S1WHH+/PmaTOjc2kLr1q3xMPB88803 mKpx48bkCkQItiEitn6ztHbtWlxBx2PIoUOHDho0SPesWgHMAx9//DFRze129+nTB2xpaWl4Bvi5 BU42SlyhXbt2jCEmESFqG/xq7RDqEza2Akc8NRt/kasYu0q0MH/JUX5BDrnlUzvzp6DZAkg/qV1h Hw1qT8TPpkBaWux3+cx7O6QLTA+GQ4FAgM1PX5+BGkIq2VoBEQJ1EFdZmjSAnTt3slBQjbrIhx9+ iMB4CSP1baJzdgjiAfixwbhx40Do8XjUIfA2aFVUVNAmrWYkJFQcatrnRpFZPXv2RC48HkDGP/3p T9dddx39oOXIBg9//etfkYgkQwOhkovOPwuopUMYEBrmD7+JcyTak1JT5syfV+gqDVSGvBX+4ONh d5mXhn9n0BURP/BVhPyVYT2pau01/x8HCp6BQ+gj97KysgEDBui2pwsInSrFWoEufQJ4jx49xo8f /+c//xnFgVzXCp6B8bATcUK/QGR5ncN6VSBCYBgcAgwvvvgiNuAMRY9GCBwRQsOGDUMiUZpJpXFB VnZ0fm3Asgu0+vbtS+qAmFgOcldffTV3STBxiBtuuIHTB/kcXG3fvp1+a+LZwLk4xAkaVclBnD3B kZoy9ffTcovydPtgxZMkyk955v9dI25hfleUkGB+TDfPGAKUQmfx5u1bho0cBk5SCws5GhQStQcC AIZp0KABeHAv1IeaPvvsM3IF9bAWLVoQ54nw2IwxELJCem2BJPrf5jMCMHTo0IFogXlwAsI1tBYu XMgtwgZsGLHkLz5ZkSmK4uxAmWRLIiWaNGkSyMFGv8vlwvAPPvggl59//jmksaXWAPk1C6BWmjwX h7BARDSAT3AMj5eXE+0Xdb54xqyZW7ZvzS8q8Abkd1XMLxuKcRRcJFjB1uIrKC7asClryvRpHS44 H5sgbRSXRZ1/z5aRkwB1o5GLL76YvBLbs2Gjsrfffpt1owMIpFiFXV8dQjvPAZgLflBhdXU1/Qya hUtYooezKI7I5cSJE5s1awY/+i5qfn5+bekyHq8iYwD/V199xe6AS2HsdevW0XPXXXcNHDgQK77w wgs4x7Jly6jJJ+gZPHhwrdz9FA5xbmcwkZAlnhh9FuRIcmRkZnQ4v0OP3/UYOGjg2JvH3XrbpDHj xgwYOODyKy4n60kznxDJe2Van2s8qAksCxwCrf3zn//UP2zLSezOO+9UG1A3bdqUZU3nr3cI65TB JSKQ3xGfMDlbBpEJE06YMEHfMf76669pMBg7sdBrKy/j8TDq9evXg40QuG/fPtIFfB2KzZs356AL G2xYcMUwnGDWrFkM0z8UEcVyFsAsdQhqcYjnn3/+3HTELABWtIahmo5Fv9UZO15B+88ZLCTLly/n sB4KhViIRNSlS5eynuiHtIZu7JGTk4NmrUgOGBy1BlLUrVu35uXlgYpLnKBbt24cASBqicb5dtu2 bazdZ599lnMHmsERayrnDAASsGmbiWRapEQvvfSSz+cjQmQYQCIyBmuDoMbv2a1g7+xTFgipQ+Bb uJ2NfzjCRm/WEsAV21AZrE6AS0Db9Mfe+o8ACFGWRSLW87SObQC0GaONswcdbxCc5M2A9mNv+q0o rfzoAAWLQ6txNgCripk2SLQToEdx6gq0LoWSAZ0CRK/PKC93Z8+eTXhgm5MIQYuAFr1ZS7CIaa0Q 2/5vg0VdQduo4wxWP13/6UDwnkwF4NIyg4IZGwUdoHetwebOuUAsNu2JBb1rAZcW6KX2x4LeBaxL 9lZ1CIkQtPbu3XvOHMeiPns4hyn/KfiV3Iq0BqLXMXDKToXTTfk1cEqE50CFKffeey+uQKYsDkGG QmvPnj1/rA08XQXPVEH02kB00KmGxQL90XG/AixUsaCdQPQ6BmI7oyjOAqITTp4eC7FjgGrDzo0o wMRqqCzQWwrRrtN0AlF0BqJdZrD2kIkTFxRsBApAL9hC/m8C/hhtnStYGM4G1a8ndzbwH6Ry9tKd csDZzCKDVLtr+/jx4/8HweFGLF+cV58AAAAASUVORK5CYIJ= ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image008.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCAAbAE0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDcvtZG nWVxe3t3cBFlkHErEsd7AKBnr2AotdO8canCLmGKz0+JhlIb25maUjtu28KfaqYSOfxx4bhugDbf bLqQA9DKu4p+uSKUa/4iOk6lMt5qZ1xPME1iLLMVsglADIdvJEeSOTn04oESw6tqVrqo0nXYp7K/ ZS8JS4d4rhR1KNnqPQ81Ok2qapqUthpE2w26B7q7uJnMcAPIXAILMRzjIAHWq3ieaG48GWl1FqF7 fywavCLO4u4PKkJJAKj5V3DBbnHb2qfT7qysptf0bV5RbW+tZe3uGYKrFoxG0e48BhtBGeuaAK63 urWmkw6xcXbXekyNsklUSQTWx3bcuhdgVz3ByAQaW51meTWl0ez1GC3uvKM0s15dMqRJ7DcCzd8A jA5NZehrFonwum8O5WTXNWaQNarIr+UGO3e23IVQig89TWlbJplpeapp+uQWckGpBJLOe9X9z5qo E2M3VTwCDxnJxzQAialfwaa+qpq0WraVFJ5dxNb+ZDJb843FCx3L0PY4IPNWLrUb2S6ktLC5CNBD 9ourq5ncQ2sfOC2Dkk4OB7ZrIun1bTdEutOt9Ys5Hvw1tBoqyG8EcRGwuJc7kAGWGcgDA61ZKwae urabfG2EGq28K29xd7hB5sQx5chBBUHAIOfX6UALFrV0trNfW+tRaxZWwDXYgWa3ngQ/8tAjMdyD +XrXaeEbiSa51FWmkljXymTc5YDKnOM+uBXF6lqM81/dX95HYxX9xpbaXZ6dZXQneQscmRiowqD3 7Zrq/AkH2U3lvu3eTFbx7vXCEZ/SgDyS+8WCbxHf6Vqsn2aC3vpDaXkK/vLaRZG2ufUeteh6f8QN fjtFW40SDVTj5buxvEVJPcqfumodR+H3hq61K6uJ9N3SyzO7t58oyxJJPDVCvw68MpkLpzKD1xcy j/2agZzni7xjcvdpf6zLam8t8mx0u3fzEgcjHmSt3YdhWboPinXfFMs9oz6aiIilhNbblYs6oBjP qwrs/wDhW3hb/oF/+TEv/wAVU1t4C8P2bs9rZywMw2kx3cykj04egDz+98T6r4ctLaS3OjqLsF1S 3tdhwDtJYcYIYMuD/dPtU2ieKvEXiiS5tIf7NJSIP5c0GRJl1XaB3OW4Heu2b4deGZAofTmYKMKD cynAznj5vUn86WL4e+G4CTDp7xk4yVuph0II/i9QD+FAHD6jr+r+GIT5K6WkhcLIkFiUUZBKnfwD kDpnj8DhuieMtd8RXrWLSadGpQsfNt9wbkALjPckda72XwHoFxCkU1pNJEhLKj3cxCk9SAX4zSW/ gDw7aSeZbWMkMmMbo7qZTj0yHoA4O/1vxB4XsLS6+x6ZbrehsrFZ7CpB6N05IIP416H8G9cutfst Wu73y/NEsafu12jAU/41BL4A8OzAiWylcEhiGu5jkgYB+/6cV1Xgvw/pvh+zuYtLtvISWQM43s2T j/aJoA//2Q== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image009.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKb 5hNG/wBBQA6g9OlNycZAp1G4Hjf7e3xq8Z/s6/sqeLPjN8Pxa/2todvBLZreQ+ZGS1xGhDDIyCrH vXwp8Lf+DhzX7YR23xp+ANvcLnEl54b1Axtj1Ec24Z/4GK+v/wDgrcuf+CfPxF/68Lb/ANK4a/BX Z6Gv1ngPhvJ88yeq8XTvJTsndppWXY/L+Nc+zTJ80prCzsnG7WjT1fc/eD4Cf8FZv2Jvj0kFtpvx PXw/qU2B/ZXiiP7LIG9N+TE34Oa+kLDU7DUrWO/069iuIZlDxTQyBldfUEdRX8x5jB7169+zv+3b +1F+y5dxf8Kr+KV8mnxyBpNC1CQ3FlJzyPKc4XPqu0+9dWbeFseVzy+r/wBuy/Rr9UcuW+I9RWjj qf8A29H/ACf+Z/QwrfNUleCf8E7/ANrzVP20f2foPi1rfhOLR76HUptPvLe3m3xySRhCZEzyAd/3 TnGOpr3uvyTFYWtgcTPD1VaUXZ+qP1LC4mjjMPGtSd4yV0FFFFc50BQTgZNFcL+0h8ePCf7NXwU8 RfGrxtMFsdB09p/L3YaeT7scS/7TuVUfWgDmf2vP23v2fv2LvBH/AAlvxm8U+XcTKx0vQ7FRJe6g w/hjjyMD1diFHc1+bfxh/wCDjX43a1ezWvwP+C+h6HZ7sQ3WuSSXlyR6kKURfphvrXwz+0n+0Z8T P2qvjBqnxj+KmsNc6hqUxMNupPk2UGSY7eIH7qIDgDqepySSeFAxXRGnHqB9qf8AD/X/AIKEkk/8 JB4TUdl/4RlOPb71H/D/AG/4KE/9B/wn/wCEwn/xVfFW45wRS1XLHsB9qf8AD/T/AIKFE/8AIweE /wDwmU/+Lr9AP+CNn7bXx3/bb+HXjPxN8c77TJ7rQ9at7axOmacLdRG8RY7gCdxyK/Cuv13/AODb Nz/wpr4lHH/MzWf/AKTtUTjHl0QH0J+03/wV7/ZT/ZJ+L998E/inY+KX1nT7eGW4bTNJjmh2yoHX DGVecHnisD4T/wDBcL9jP4z/ABN0L4UeELHxguqeItUhsLBrvRY0jEsjBV3ETEgZ6nBr83/+C5p3 f8FF/FQP/QK03/0lSvI/+CfBC/tw/Csf9T1p3P8A22Wl7OPLcD+kSiiisQCiiigAooooAKKKKACi iigAooooAKKKKACiiigDm/i58TPD3wX+F/iD4ueMEuG0nw1o9xqWoi0iDymGGMyPtUkZbC8DIya+ O/8AiIQ/YRzxpvjj/wAEEX/x+voT/goYx/4YU+MAI/5pzrH/AKSSV/N+AnXHNaU4xkrsD+j/APY8 /bd+Dn7cnhHVvG/wXg1iOz0bUlsbxdYslgfzTGHG0B2yMEd+teyjgYr84f8Ag28JX9nP4gEf9DpH /wCkkdfo8OlRJcrAKKKKQBRRRQAUUUUAfhV4A/4LJ/t9eBGjE/xWt9cijxmHXtJimDD0LKFf8mz7 19H/AAf/AODhy/XybP48fAeJm4E2oeGL0qp9xDNnH08w1+ZtNfd0C5+tf05jODOG8dfnw6T7x938 j+dMLxXn+Da5K7fk9fzP6Dv2YP2/P2Zv2t4Ps/wm8fxvqqR759B1BTBeRjuQjffA/vIWFe15yARX 4H/8EnHmi/4KD/Dfyn2Z1K6DbW+8PsU/FfvegwM1+HcYZBh+Hc1WHoSbi48yvutdj9j4TzzEZ7lr rVopSTtofOX/AAVt/wCUfPxE/wCvC2/9K4a/Bav3p/4K2/8AKPn4if8AXhbf+lcNfgtX6X4Wf8ie t/18/RHwHiP/AMjal/g/VhTZAMZJp1NfpX6cfnR+zn/BBBf+MKLg/wDU5Xv/AKBDX29XxH/wQS/5 MluP+xxvP/RcNfblfyzxR/yUWK/xs/o/hn/kQ4f/AAoKKKK8E90K/Mv/AIOPvjTc6L8N/AnwF0y/ 2/25qNxquqQq2CYrcKkQPsXkYj3j9q/TSvxE/wCDhHxZPr37dFn4eeUmPRPBdlDGvYeZJNMf/Q/0 FaU9ZAfCwAHIFfSH/BMX9hC5/bs+Pv8Awi2t31zZeE9BhS98TXlqv7xo92Ft0Y8B5CCM87QGODgC vm9unSv2q/4N6fhjp3hr9jXUviKloovvE3iy48242/MYbdEijX6BjKf+BVrN2iB9OfC79hP9kH4P 6FH4e8C/s9eFoIVUK01xpMdxNL/tPJIGZz7k11X/AAzf+z5/0Q/wn/4T9v8A/EV2g4GKK57sDi/+ Gb/2fP8Aoh/hP/wn7f8A+Ira8KfD/wAC+Abaa28D+DtM0eO4cPPHpdhHAsjAYBYIBk49a2qKVwPj D9sD/gol/wAE+/2ffjtqXww+Pvwlk1bxLZ2tvJdXn/CKwXW5HjDIPMc5OFIHtXMfBL/gqN/wTK+J fxg8N/D/AOHHwUey17WNYgtNIuj4Lt4vKuHYBG3rymDj5h0r4P8A+C5//KRjxT/2CdN/9JUryH/g nz/yfF8Kf+x50/8A9HLWyj7twP6RAcjIrN8V+LPDXgrRZvEni7xDZ6Xp9qhe4vtQukhhiX1Z3IAH 40njDxXoHgfwrqXjLxTqUdnpuk2Ml3f3UxwsUMalmY/QCv5//wDgop/wUW+Jf7cvxOuv+JrdWPgX Trth4b8Oq5VCg4E8wHDysOec7c4HvnCLmB+rPxO/4Lef8E/PhrqsmiwfE+88RTRPteTw7pMk8Ofa Vtqt9VJHvXI/8RB37C//AD4+MP8AwSr/APF1+IKsMbR2pdy5xmtvZRA/b3/iIN/YX/58PGH/AIJV /wDjlfT3wU/ag+HXx6/Z/h/aS8Epfr4fmsrm6jW6twk3lwFt/wAuTz8hxzzX80pI6A1+63/BMUhf +CQ2n8f8yvrf/oVxUSpqIGI3/BwX+w1HK0TWPjDKsQf+JKv/AMXR/wARB37DH/QP8Yf+CVf/AIuv xIu/+PqT/ro386jzVeziB+3f/EQd+wx/0D/GH/glX/4uur+E3/Bb/wDYH+KviKLwvP8AEHUPDdxc OEgm8SaY1vblj0BlG5U+rYHvX4M5B4pvDGn7OIH9Tmj6vpeu6XBrOjalBeWtzGJLe6tphJHKp6Mr Dgg+oq1mvx7/AOCDX7d/ivwv8UY/2OfiDrc95oGupJJ4VNxMW/s+7UF2hXPRJFDHaMAMOBya/Vr4 2/F7wf8AAf4U678XvHt20Ok6Bp8l3eMuNzBRwi+rMcKB3JrGUXGVgLvxA+JXgD4V+HpvFvxI8aaZ oWl24zNf6reJBEvtuYgZ9upr5U8e/wDBdX/gn94I1STSdP8AHesa+0TENPouhyvC30d9ufw4r8if 22P24fjF+278ULnxr4/1aaDSIZ3GgeHY7gm306Ak7QBgBpMY3ORlj6DAHi4YDjmtI0u4H7fD/g4N /YX/AOfDxh/4JV/+OUf8RB37C4/5cPGH/glX/wCOV+IYYHiin7OIH9K2sftBfCrW/wBk2f8Aac1z TLi68F3Xgk+ILmzuLNXkl09rbzyjRE4LGM4Kk47V8Xr/AMFfv+CSfUfACT/wg7WvWp9v/DisAj/m 29e3/UIFfg+ODwtTTipAf0UfsHftQfs0ftReB9c8U/sx+CW0TTNN1ZbXUIG0WOy8yfyg4bbHw3yk DJp37Zf/AAUO+BX7C9zoNt8Z7fWXbxCk7WP9l2Im/wBUUDbssMffGK+Xf+DbvH/DOXxAz/0Osf8A 6SR15/8A8HKjg6v8KR/076p/6FBU8v7ywHuZ/wCDg79hcf8ALh4w/wDBKv8A8XSf8RB/7C//AD4e MP8AwSr/APF1+IucdaNw9a19lED9wtM/4OA/2Dr+7S3u5PFlnG3DTy6DuVfrtcn9K+nP2f8A9q39 n/8Aah0A+IPgZ8UtN16JFBuLe3l23Fv7SQuA6fiAPSv5oAwbpXY/Ab48/Ev9mv4paX8XPhR4hm0/ VNMmD/u5CI7iPPzQyrnDxsOCp4/EA1LpLoB/TmpyuaK8w/Zq/ah8DftEfAfwv8atMuYrOPxBpSXE lm8uTBKCUljz32yKy59qKxtID+deg9aKD1r+xD+Uz6G/4JPjP/BQX4bH/qJXX/pHPX74p92vwP8A +CTv/KQT4bf9hK6/9I56/fBPu1+B+KH/ACPqf+Bfmz9q8Of+RRP/ABfoj5x/4K2/8o+fiJ/14W3/ AKVw1+C1fvT/AMFbf+UfPxE/68Lb/wBK4a/BavrvCz/kT1v+vn6I+a8R/wDkbUv8H6sKa/SnU1+l fpx+dH7Pf8EE/wDkyW4/7HG8/wDRcNfblfEf/BBP/kyW4/7HG8/9Fw19uV/LPFH/ACUWK/xy/M/p Dhn/AJEOH/woKKKK8E9wK/CP/gvCsi/8FEdc8zv4f00r9PJP/wBev3cr8Uf+DiDwTcaB+2jovjDy WEOveC7Zll28GSKaaJl+oUL/AN9CtKXxAfBLdK/eL/ghXJC//BOnwyIiMrrGprJ/vfaW/pivwdbn tX7Kf8G7Pxj0nxH+zJ4j+DEl6v8AaXhnxI92sG7k2tyilWA9pI5M+mRWlT4QP0QooB4ornAKKKKA PwZ/4Ln/APKRjxT/ANgnTf8A0lSvIf8Agnz/AMnx/Cn/ALHjT/8A0etevf8ABc//AJSMeKf+wTpv /pKleQ/8E+f+T4/hT/2PGn/+j1ro/wCXYH66f8F1vjPffCr9hTUvDuk3HlXXjLVrfSNynB8k5llx 9Vj2n2Y1+FKKB0NfsB/wcjzTj4FfDu3GfLbxdMzf7wtXx/M1+QNFP4QP0n/4It/sWfsuax4Uk/aZ /ag8QeEb65nvGh8L+G/EGp2/l26ocNcywyNhmLZCBhgBc4yQR+mNt4m/Y9s4lt7XxJ8NY441xHHH eaeqqPQAHgV/NQJHUbVkYfQ0vnS95pKHTcne4H9LD+MP2Re3in4b/wDgdYf41qfEeLw8vwD8SP4V SzGnyeFb6S0OnhPJdGt3IZNnykHOcjrX8yLyy9RM9f0UfAE5/wCCZ/hfd1/4Uzb/APprFZyhy21A /nbu/wDj6k/66N/Ov0U/4N+vgX8FvjX4h+JUHxh+E3hzxSlhZ6e1iviDRYLwW5ZptxTzVbaTgZxj OK/Ou7/4+pP+ujfzr9Pv+Dav/kZvir/146Z/6HNWtTSDA/QLUv2AP2H9T0+bT7n9kr4drHMhV2g8 I2kTgEdQ6RhlPuCCPWvwz/4KW/s7+Dv2XP2zvF3wj+Hcbx6FbyQXWl28khdreOaFJPKyeSFZmAzz gDr1r+iw9K/BT/guL/ykX8Wf9g3Tf/SVKyp35gPL/wDgnHdXFn+3j8KJ7aRlb/hNrJdy+jSbSPyN fpP/AMHFXxk1Twn+zn4T+D2k3jRf8JZ4gebUArf6y2tUDbD7GSSM/wDAK/NX/gnb/wAn1/Cf/seL D/0aK+2P+DlKec+LfhTAD+6Gn6o2P9rfB/StJfxEB+YGCDxX6j/8Ec/+CTvwi+Kfwltf2oP2l/DK a5HrE7nwz4duXYW628bFTPMoI8ws4bCn5dqgnOePy3c4Oc1/SB/wTxs9Osf2GPhLBpqKsbeAdMch f77W6M3/AI8WoqXsBci/YJ/YjhjWKP8AZG+G+1Rj5vBdkT+Zjp3/AAwd+xL2/ZG+G3/hFWP/AMar 1iiue7A8P/bp8NaB4Q/4J7/FPwx4W0e103TdO+F+qW2n6fY26xQ20KWTqkaIoCqqgABQAABgV/OV k4yK/pD/AOChf/Jifxg/7JzrH/pJJX83fb862p7AfsV/wbef8m5fED/sdo//AEkjr9DNZ8K+GvEB R/EHh+xvvKz5f2y0SXZn03A4r88/+Dbz/k3L4gf9jtH/AOkkdY//AAW2/wCCm/xB+D2vD9k74AeJ W0vU5rFZvFeuWcmLm3SQZS2iYf6pinzMw+YAqARk1Mo3qWQH31rlx+zb4XufsniV/A+nS/8APO+a zhb8mwao/wDCYfsiHr4p+HH/AIHWH+NfzW6p4g17XLyTUdd1u8vLiRt0k93cvI7n1JYkk1X86TvK 1V7LzA/Yv/gst8A/2Nfib+zBrHxe+Hmr+CbPxr4X8q4tLjw/fWiTX8JlVJIJFibMvytuXIJBXjjI P44Ab+TTmlcjaXbH+0aBjtWkVyqwHtnwh/bk+LXwf+Hmn/Dnw1rs0Njp3neRGshwPMmeU9/VzRXi eB6UVQHWUHrRQetf1wfymfQ//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/wD4JO/8pBPht/2Err/0jnr9 8E+7X4H4of8AI+p/4F+bP2rw5/5FNT/F+iPnH/grb/yj5+In/Xhbf+lcNfgtX70/8Fbf+UfPxE/6 8Lb/ANK4a/BavrvCz/kT1v8Ar5+iPmvEf/kbUv8AB+rCmv0p1NfpX6cfnR+z3/BBP/kyW4/7HG8/ 9Fw19uV8R/8ABBP/AJMluP8Ascbz/wBFw19uV/LPFH/JRYr/ABy/M/pDhn/kQ4f/AAoKKKK8E9wK /On/AIOJ/gTqHjX9n/wv8ctGsGmk8G6xJb6k0a8x2l0EG8+wljjHtvr9Fq5/4p/DPwp8Yfh5rXwx 8b6et1pOu6fJaX0LAco64yPQjqD2IFVF2kB/L0G5xivY/wBh39svx5+w98crX4u+DrKO/tZIfsuu 6PNIVS+tSclMj7rgjcrc4YDIIJBsft0fsQfFD9h74w3fgTxfYzXOh3FxI/hnxCsJEOoW275TnoJF UgMmSQfUEE+KAbutdGkkB+9Pw2/4Lff8E/vHOgQ6rrPxOuvDt00YM2na1pcqyRNjldyBlbnuDzXS f8Pg/wDgnZ/0cbp//gFcf/G6/nxC85Ap2AeoqfZRA/oM/wCHwf8AwTs/6ON0/wD8Arj/AON16n+z 1+1d8Bv2qdK1DXPgR4+t9etdKuEgv5reF08qRl3BTvUdhX80HToK/Xj/AINsUx8GviVn/oZbP/0Q 1ZzpqMbgfIv/AAXP/wCUjHin/sE6b/6SpXkP/BPn/k+P4U/9jxp//o9a9e/4Lnf8pF/FR/6hWm/+ kqV5D/wT5/5Pj+FP/Y8af/6PWtvsAfqt/wAHBPwt1Dxv+xXZ+N9Otmkbwn4qt7u62j7sMqPAWPtu kT86/EhW3DgV/Tz8cvhF4Z+PPwi8RfB3xgjNpviLSZrG5ZR80e9cCRf9pWww91FfzlftT/sx/E39 kf4x6p8H/idpUkdxaTMbC+8krFqFsSfLniJ6qw+uDkHpUU5aWA+1f+CPv7MH/BOn9sj4e33gH4z/ AA2af4iaHO80+PEl5b/2hZMw2SpGkyr8hO1sDj5T3zX2sv8AwRB/4Jstx/wo28/8KrUf/j9fg74b 8SeIfCWsW/iTwpr15puoWzb7a+sLloZYjjqrqQR+HrXqUP7fn7bNvEsMP7VPjoKi4UHxHOf5tTlG Td0wP2Qb/gh9/wAE2s/8kOvP/Cq1H/4/Xu3ivwR4a+Gf7M2q/DrwbYNa6Tofgi4sdNt2maQxQRWj Ii7mJZsKBySSe9fz9n/goJ+2+Bx+1V45/wDChm/+Kr9jf2A/HvjX4o/8Errfxx8RfFV9rWsXnhjW vtWpajcGWaXb56jcx5OAAKzlGUdwPwWu/wDj6k/66N/Ov0+/4Nq/+Rm+Kv8A146Z/wChzV+YN3/x 9Sf9dG/nX6ff8G1f/IzfFX/rx0z/ANDmrSp8DA/WI9K/BT/guL/ykX8Wf9g3Tf8A0lSv3rPSvwU/ 4Li/8pF/FvH/ADDdN/8ASVKzpfEB5Z/wTt/5Pr+E/wD2PFh/6NFfoV/wcifDu/1H4XfDr4q2tqzQ aXrV1p15Iq52efEHQn0GYWH1Ir89f+Cduf8Ahuv4Ukj/AJniw/8ARor97v2x/wBmrQP2sv2cvEnw M1qWOFtWs86feSKWFrdId0UnHOAwGcc4JqpPlmmB/NXgMK/bT/gh/wDtt/D34sfs1aP+zlrviG3t fGPguBrWLT7iYK17YqxMcsWT8+1TsYDkbQehr8cfjH8HfiJ8A/iRqnwp+KXhybS9a0i4MV3bzLw3 o6N/GjDkMOCDXPWN7eaZdx6hpt5Nb3ELbopoJCjI3qCOQa0kudAf1OrKhH3hS70/vD86/mJT4+fH ONQsfxo8WAKMAf8ACQ3PH/j9L/w0B8dz/wA1p8Wf+FFc/wDxdZexfcD+hL/goU2f2FPjAP8AqnOs f+kklfzft90H2r959Zv9Q1j/AIIeTavq1/NdXVz+zp5tzc3EpeSWRtIBLMx5JJ6k8mvwYYZAA7Cq orcD9iP+Dbz/AJNy+IH/AGO0f/pJHX5r/wDBQjxRq3i/9uP4ra1rEzSTf8J1qNspbtHDO0Ma/gka j8K/Sj/g28/5Ny+IH/Y7R/8ApJHXxV/wWi/Zv1r4E/tv+IvE40+RdF8cTnW9LuvL+RpJAPtCZ6bh LvP0YGlH+IwPPv8AgnD+zl4B/as/a88M/Bb4najc2+i6gLiW8Wzm8uScRQtIIlb+EsV6jnGcc1+v UH/BDz/gm0kSqfgletgY3N4s1Dn3/wBfX4P6Dr+u+FdZtvEfhjWrrTtQs5RJa31jcNFLC46MrKQQ fpXqcf8AwUA/bcijWJP2qvHW1RgZ8RT/APxVVKMpdQP0r/4KCf8ABJf9hT4G/sc+PPiz8M/hJdWO vaHo4n026k8RX0wik81FzseUq3BPBBFfjmhzk5r07xn+2d+1j8RPDN54L8dftEeLtW0nUIvLvtOv 9alkhnTIO1lY4IyBXmYGKqMXHcAoooqgOsoPWig9a/rg/lM+h/8Agk7/AMpBPht/2Err/wBI56/f BPu1+B//AASd/wCUgnw2/wCwldf+kc9fvgn3a/A/FD/kfU/8C/Nn7V4c/wDIpqf4v0R84/8ABW3/ AJR8/ET/AK8Lb/0rhr8Fq/en/grb/wAo+fiJ/wBeFt/6Vw1+C1fXeFn/ACJ63/Xz9EfNeI//ACNq X+D9WFNfpTqa/Sv04/Oj9nv+CCf/ACZLcf8AY43n/ouGvtyviP8A4IJ/8mS3H/Y43n/ouGvtyv5Z 4o/5KLFf45fmf0hwz/yIcP8A4UFFFFeCe4FFFFAHJfGT4HfCb4/eDJvh98YvAWn+INJuOWtNQgDb Gx99G+8jjsykEetfBHxc/wCDcj4KeItUn1L4O/GjWvDsUjFo9N1K1S9ji/2Q+VbA9yx9zX6SUVSl KOwH5Ln/AINrvHIb5P2oNK29t2gSf/HKB/wbYeOif+Tn9J/8J+T/AOLr9aKKftJdwPyX/wCIa/x5 nj9qLSf/AAn5P/i6+xv+CY//AAT513/gn74K8UeE9Y+Itr4ibxBqkN3HNa2LQCEJGU2kMxznOa+o qKTlKWjA/Pv9vP8A4IreK/2yv2lNW+PWm/HLT9Dh1KztYV0640l5mTyoljzuDAHOM9K439nX/ggJ 4z+Bnx48JfGO7/aH03UI/DOvW2ovZR6JIjTiJw2wMXOCcehr9NqKOeVrABG4YNeZ/tMfsjfAP9rf wh/whnxw8AW+rRRq32G+X93dWTH+OGUfMh9uQe4NemUVPoB+X/xD/wCDbXwhd38lx8LP2jb+yt2b MdtrWkLMyD03xsuf++a5cf8ABtf46/6Of0n/AMEEv/xdfrRRV+0kB+S7f8G13jo/83P6T/4IJf8A 4uvvj9lv9kvU/wBnb9je3/ZbvfF8OpXFvpV9Z/2tDalEY3BkIbYSTxv9e1e4UUnKT3A/JeT/AINs vHU0zy/8NPaUu5s4/sGXj/yJX1V/wTE/4Jk+IP8Agn1qvi3UNY+Kdp4jHiWC1jjW109oPJ8ppDk7 mOc7/wBK+vqKHOTVmAjZ28V+fX7eH/BFPxZ+2P8AtKav8edN+Oen6JDqlraxLp9xpMkrJ5UQTO4O Ac4z0r9BqKUZOOwH5l/s3/8ABAjxl8B/j54R+Mt3+0NpuoReGdet9QksY9FkRp1jcNsDFzgnHpX6 aMoYYNFFOUnLcDxn9rP9g79m/wDbN8PLpPxm8CxzX8Ee3T/EFi3k31n7LIPvL/sOGXvjIBr4Z8bf 8G2Glzag8vw6/aYuILZmzHDrGhiR0HoWjcZ/75FfqZRRGUogfkuf+Da3x12/ah0n/wAEEv8A8co/ 4hr/AB3/ANHQaR/4IJf/AIuv1oop+0l3A8Vk/ZW1N/2B/wDhjP8A4S2H7V/wrMeFf7c+zny94s/s 3n7M5xn5tuc18Ar/AMG2HjvqP2oNJ/8ABDL/APF1+tFFJSlHYD5l/wCCZn7A2tfsBfDbxF4B1j4h W/iJ9c1xdQS5tbFoViAhWPYQzHJ+XOa9K/al/ZJ+C/7Yfw4m+Gnxp8LLeW+7zLC/hOy6sJsf6yKT qp9RyGHBBr1Cipu73A/Kvxf/AMG2G/VJJPAP7TRjs2b93Fq+h7pFHoWjcA/XArLH/Btf46xz+1Bp P/hPyf8AxdfrRRV+0kB+S/8AxDY+Ov8Ao57Sf/Cfk/8Ai6P+IbHx1/0c9pP/AIT8n/xdfrRRR7SX cD8l/wDiGx8df9HPaT/4T8n/AMXRX60UUe0l3A/mHoPWig9a/sE/lM+h/wDgk7/ykE+G3/YSuv8A 0jnr98E+7X4H/wDBJ3/lIJ8Nv+wldf8ApHPX74J92vwPxQ/5H1P/AAL82ftXhz/yKan+L9EfOP8A wVt/5R8/ET/rwtv/AErhr8Fq/en/AIK2/wDKPn4if9eFt/6Vw1+C1fXeFn/Inrf9fP0R814j/wDI 2pf4P1YU1+lOpr9K/Tj86P2e/wCCCf8AyZLcf9jjef8AouGvtyviP/ggn/yZLcf9jjef+i4a+3K/ lnij/kosV/jl+Z/SHDP/ACIcP/hQUUUV4J7gUE8UUEZGKAMXxR8QvA3gcQv428a6To63G4WzapqE dv5pXG7bvYbsZGcdM+9ZP/DQfwH/AOi2+Ef/AAo7b/4uvzn/AODlkY8P/CEf9Pmtf+gWdflH+NaR p8yuB/Tp/wANB/Af/otvhH/wo7b/AOLo/wCGg/gP/wBFt8I/+FHbf/F1/MXj3ox71Xsl3A/p4svj t8FNRuVtNP8AjD4WnmY4WOHxBbMzewAfJrqIbiO4jWeCVXjYZV1YEMPXNfyvqXV9ytjHQ169+zf+ 3l+1X+ynqcN18JPi3qkGnxS+ZJ4fvrprjT5uckNA52jPdl2t70ez7MD+kagnHWvmf/gnD/wUe+Hf 7efgGaS3s10bxho0aDX9AeTOM9J4T1aInjnlTwexP0wCGGaxa5dGAA56UEgdTX4p/tTf8Fjv28fh h+0p46+HXg/4k6fb6Vofiq+stPhfQoHZIY5mVAWK5JwOpr1L/glP/wAFP/2wv2pP2ytH+EPxi8dW WoaHeaTfzz20OjwwsXigZ0O5QDwRVezkB+rQOelFIuQvIpakAooooAKKKKAAkDrRXg//AAUn+NXx C/Z2/Y08YfGD4W6nHZ65pMNu1lcTW6yqpe4jQ/K3B+VjX5Hj/guR/wAFFAP+Sp6Z0/6F23/+Jqow lLYD96KbK4jjLlgoXkk9q+UP+CPH7UHxk/a6/ZY1L4ofG7XbfUdYt/Gl3p8U9vZpAogjtrV1XamB kNK/Pv7V9T64M6Lef9esn/oJpWs7AcuP2hPgTnDfGzwkP97xFbf/ABdanhj4nfDzxvdSWfgrx9ou sTQoHmh0zVIrhkXONxCMSBnua/l9vAftcxz/AMtW/nX6Of8ABt2D/wAL8+IH/Yqw/wDpQKuVO0bg fsJnPSiiiswCiiigAooooAKyfFfjnwd4Gtkv/Gni3TdIt5ZPLhm1O+jt0d8Z2guRk4BOOta1fnP/ AMHIQA/Zl8B4/wCh7/8AbK4qormdgPudv2hfgOoz/wALs8I/+FHbf/F10+jazpev6dDq+i6nb3lr cJvt7q0mWSOVf7yspII9wa/ljIOOtf0Yf8EyBj9gP4Uc/wDMn239aqUOUD3aiiiswP5h6D1ooPWv 7EP5TPof/gk7/wApBPht/wBhK6/9I56/fBPu1+B//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/AJH1 P/AvzZ+1eHP/ACKan+L9EfOP/BW3/lHz8RP+vC2/9K4a/Bav3p/4K2/8o+fiJ/14W3/pXDX4LV9d 4Wf8iet/18/RHzXiP/yNqX+D9WFNfpTqa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/wCCCf8A yZLcf9jjef8AouGvtyv5Z4o/5KLFf45fmf0hwz/yIcP/AIUFFFFeCe4FFFFAH5cf8HLf/IB+EP8A 1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflF1rop/w0B9Hfsw/8EsP2tP2uvhinxd+Dmj6 HNo0l9NaK+oa0sEnmRkBvlIPHIr0R/8Aggf/AMFCkGf+Ec8K/wDhTJ/8TX3v/wAEBVX/AIYBteP+ Zs1I/wDjyV9tkA9RUyqS5gP5w/2lv+Ce37Xf7JdqNY+M3wivLXSWcKuuafIl3Z5PADSxEiMk9A+0 ntXi5B6E1/UZ458E+FviN4U1DwL420S31HSdWtHtr+xuow0c0bjBBB/yK/nH/bZ/Z4uv2Wf2pPGH wQkD/ZtI1Mtpkjnl7OUCWBj6/u3X8RVU582gEX7Gn7SviP8AZG/aM8OfG3QLibydPvFj1i1iYj7V YuQJoj65Xp/tBT2r+kXwt4h0nxb4csfFOg3S3FjqVnHdWc6HKyRyKGVh9QRX8tL9M1/Qh/wSM+Jz /FT/AIJ8fDvVbq58y60zTZNJuiWzhraZ4kz7+WIz+NTVXUD8/f2nv+CJ37c/xW/aN8b/ABK8I6D4 bfS9e8UX1/p7XHiBEcwyzM6ll2/KcEcV6d/wS3/4JRftd/smftgaP8Zvi/o2gw6HZ6XfW80lhraz yb5YGRMIF5GTz6V4/wDtTf8ABZH9vD4X/tJeOvh14P8AiNpsGl6H4qvrHT4ZNBgdkhjmZUBYrliA BzXqH/BKn/gqJ+2F+1J+2Ro3wh+MfjixvtDvNKv55re30eGFi8UBdDuUZ6iiXPygfq0DkZoppbbH 1r4q/bx/4LTfBX9kTXrz4XeA9F/4TbxnaLturS3uxFZ2EmPuzSgNlh3jUZHQlTWSTewH2vRX4Y+L f+C+v7fviS/kudG1XwvocLNlLXT9BDBB6bpndj+dY/8Aw/L/AOCimP8AkqOlf+E7bf8AxNX7KQH7 zUV+DI/4Ll/8FFf+ioaX/wCE7bf/ABNdJ8HP+C1X/BQDxd8YPCnhHXfiVpsljqviWxs7yNfD8ALR S3CI4BC8fKx5o9nID9UP+CjHwL8f/tMfsfeLvgt8Lra1l1zWYbdbGO8uRDGdlxG5y5HHyqa/J8f8 EDv+ChXQ+HPCv/hTJ/8AE1+rX/BSP42/EL9nT9jbxh8YfhZqcdnrmkQ27WNzNbrKqF7iNDlW4Pys a/JD/h+X/wAFFQcf8LR0r/wnbf8A+Jp0+e2gH6f/APBIn9lH4v8A7Gv7MGo/Cj412Wnw6tc+MrrU o006+FwnkSW9rGvzADndE/Hpj1r6d1tx/Yt4R/z6yf8AoJr5Y/4I+ftS/GP9rn9lXUvin8b9cg1D WLbxnd6fHcW9kkCiCO2tXVdqDBO6V+ff2r84vir/AMFq/wBv/RPiD4k8Kab8SdMWzs9ZvLSCNtBt yREszoozt6hQKSjKUgPi67/4+pP+ujfzr9Hf+DbsgfHv4gEn/mVIf/SgV+bxdpHaRjyzZNenfsu/ tjfHf9jnxJqXir4FeIrbT7zVrRbW8kubFJw0YbcBhwcc962lG8bAf0rfSgHNfgyv/Bcv/gokXVW+ KGl7SwB/4p23/wDia/Zn9pX4j+Kvhx+yn4u+KXhS8SHWNJ8IXF/ZTyQhlWZYd4O08EZ7GudxlED0 2ivwZ/4fmf8ABRX/AKKhpf8A4Ttt/wDE0f8AD8z/AIKK/wDRUNL/APCdtv8ACq9nID95qK/Bj/h+ b/wUUBBPxP0rr/0Ltt/hXqv7O/8AwcQ/tC+GPEdvZftG+BtF8TaHI224utHtTZ30P+2vzGOTHdSq k9mFHs5AfslX5z/8HIf/ACbN4D/7Hr/2yuK+5vgL8dvht+0h8L9L+L/wo8RR6lourQ74ZFOGicHD RSL1R1PBU8j8q+Gf+DkP/k2bwH/2PX/tlcVMfiA/HM9K/ov/AOCZP/Jgfwo/7E+2/rX86B6V/Rf/ AMEyf+TA/hR/2J9t/Wtq3woD3WiiiucD+Yeg9aKD1r+xD+Uz6H/4JO/8pBPht/2Err/0jnr98E+7 X4H/APBJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/kfU/wDAvzZ+1eHP/Ipqf4v0R84/8Fbf+UfPxE/6 8Lb/ANK4a/Bav3p/4K2/8o+fiJ/14W3/AKVw1+C1fXeFn/Inrf8AXz9EfNeI/wDyNqX+D9WFNfpT qa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/4IJ/8AJktx/wBjjef+i4a+3K/lnij/AJKLFf45 fmf0hwz/AMiHD/4UFFFFeCe4FFFFAH5cf8HLf/IB+EP/AF+61/6BZ1+UVfq7/wAHLf8AyAfhD/1+ 61/6BZ1+UVdFP+GgP3K/4IC/8mAWv/Y2aj/6ElfbVfEv/BAX/kwC1/7GzUf/AEJK+2qxl8Q5bhX4 n/8ABw74btdL/bV0fX7eIK2qeB7Vp8D7zRzzpuPvt2j6KK/bCvxW/wCDiTW7a+/bM0DRYn3SWHgW 3Mw/ul7icgfkM/jVU/iEfAg+90r9sf8Ag3o1We9/Yk1LS3fK2fja8CfN03RQtj86/E4HBzX7W/8A BvDps9n+xRq2osPluvG92U99sMIrSp8IH5Tftz/8nmfFD/setU/9KXr3L/gg/wD8pGfDv/YA1X/0 lavDf25/+TzPih/2PWqf+lL17n/wQe/5SMeHc/8AQA1X/wBJWofw/ID9O/8AgrX+1/e/sgfsl6l4 h8K3Bj8TeJLhdI8OyK2DBJIrGSf/AIBGGI/2yn1H8/8Ad3d5e3UmoajcyTzTSF5ppnLO7E5LEnkk nqf/ANdfp1/wcm+OLiXxz8M/hok7eTb6Te6lJH2LSSLGCfoIz+Z9a/MNs4xRTVo3A7b4Gfs5/HH9 pTxK3hD4H/DXU/EV5Goa4FjDmOBT0aSQ4RB/vEfoa93X/gid/wAFIXXePgNH+PiSw/8Aj1frb/wS 4/Zv8Ofs4/sZ+D9D0/S4YtT1rSodX126WMeZcXNwgk+ZupCqVUA9AtfROAEwKmVWXQD+Zb9ob9m3 4xfsr+PF+Gnxw8LLo+tNZx3a2q3kU/7lyQrbomZex4zmq/7ORz+0R4DP/U56X/6VxV9Z/wDBwQoH 7dcJ/wCpNsf/AEOWvkz9nHj9ofwHj/oc9L/9K4q0Um4gfuh/wWZ/5RyfEP8A697T/wBK4q/n97D6 V/QF/wAFmf8AlHJ8Q/8Ar3tP/SuKv5/e34VNH4QP2y/4N4QW/YT1pR3+JGof+kdjXyD8UP8AghF+ 3Pr/AI78ReL7AeEPsd9q95eQ79fIby3ldxkeXwcH86+v/wDg3d/5MX1n/spOof8ApHY19y62oGjX XH/LvJ/6Caz5nGbsB/LOyNG7I3VWxXr37IP7EXxr/bd8U6t4Q+Co0n7Xo1it3ef2tfGBfLZ9g2na 2TmvJbvi6kH/AE0b+dfo5/wbdru+PfxBz/0KkH/pQK2lK0bgefp/wb9/t87ldk8G4DA/8jEf/jVf r5+0Z8MfE3xP/Ze8WfCLwz9n/tbWfCc+nWfnzbY/OeHYNzYOBnvivSO2KjuJ4rZDNMyqirl3ZgAB 65rnlKUgPw/H/Bv1+31j7vgz/wAKI/8Axqj/AIh+v2+v7ng3/wAKI/8AxqvvD9oz/gur+xv8CfEl 54M8OPqnjbUrCZorlvD0aC0SRTgr9odgGweMoGHvXkn/ABEofCYk7P2YPEJHY/2/B/8AG605qnQD 5K+JX/BDX9vr4b+E7zxg/hHRNaisYWmns9D1kTXBQDJKoyqXOB0XJPYGvj+eOW3ke2niZJEYrIjD BUjqD6V+uT/8HJfwmY/N+y/4g5/6j0H/AMar8t/jv488O/FH41eLPiR4T8OvpOm694gu9Qs9LkkD G1jmlaQRZAAON2OAOlVGU+qA+7f+DeP9o/WvC/xy139mfU7xm0nxJpkmpafEzcQ3kG3dtHbfETnH XyxXuv8Awcg8fsy+Ax/1Pf8A7Z3FfD//AARSmlh/4KOeBTG5G6PUFb6fY5a+4P8Ag5CGP2ZfAY/6 nr/2yuKmStUuB+OZ6V/Rf/wTJ/5MD+FH/Yn239a/nQPSv6L/APgmT/yYH8KP+xPtv61Vb4UB7rRR RXOB/MPQetFB61/Yh/KZ9D/8Enf+Ugnw2/7CV1/6Rz1++Cfdr8D/APgk7/ykE+G3/YSuv/SOev3w T7tfgfih/wAj6n/gX5s/avDn/kU1P8X6I+cf+Ctv/KPn4if9eFt/6Vw1+C1fvT/wVt/5R8/ET/rw tv8A0rhr8Fs19d4Wf8iet/18/RHzXiP/AMjal/g/VhTX6U6mueOlfpx+dH7Pf8EE/wDkyW4/7HG8 /wDRcNfblfEP/BBKQH9iS4YD/mcrz/0XDX26HBGa/lnij/kosV/jZ/R/DP8AyIcP/hQtFAORnFFe Ce6FFFFAH5cf8HLf/IB+EP8A1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflFXRT+BAfuV/ wQEI/wCGALXn/mbNR/8AQkr7aJA6mvwU/Yy/4LBfGr9in4MR/BTwL8NvDeqWMepT3outUafzd0pG V+RgMDHpXrDf8HHf7TrDA+CngvP+9df/ABys3TlzAfsPrWr6foOm3Gt6tfR29paQNNc3E0gVIo1B LMxPAAAzX85//BQj9oyP9qn9r3xl8Y7CfzNNur8Wuit2NnAoiiI/3lTd9W967f8Aa1/4K4ftdftd +F5vAHinXrHw/wCHbni80bw7btCt0v8AdldmZ3X/AGchfavmDOBzWlOPLqwA9M5r+gL/AII3fDNv hp/wTz8BW9zbGO41q3uNXuAVxnz53aM/9+hFX4b/ALM3wG8UftN/HXw38EfCSN9p13Uo4Zp1XP2a DOZZj7IgZvw96/pU8BeD9G+HvgjR/Anh23EVho2mw2VnGP4Y4kCKPyFTWlsgP5xf25/+TzPih/2P Wqf+lL17p/wQe/5SL+Hf+wDqv/pK1eF/tz/8nmfFD/setU/9KXr3T/gg9/ykX8O/9gHVf/SVqp/D 8gPVf+DkTS7mH9of4f6yUPkzeD5YlbtuW6ckfky1+cQbYyvj7rZr9jP+Din4G6p4x/Z+8LfHDRdO eb/hEdae21Ro1yYrW6VQHb/ZEqRrn1kFfjkWyNmKKesUB/TL+yp4q0nxr+zR4B8U6JcpJa3vg/Tn jZOn/HsgI/AgivQO1fi//wAEvv8Agsxpn7Kfw+g/Z/8A2hfDmoal4XspnbQ9a0sCS4sFY7jC8TEb 4wckFTlc4wRjH2gP+C9n/BPLZz4s8TdP+hZl/wAaxlGVwPhH/g4LGP264QP+hNsf/Qpa+S/2cf8A k4fwH/2Oel/+lcVe2/8ABWn9qn4R/tf/ALUcfxV+C+oXlxpC+HbazMl9ZNA/mozlhtPb5hzXiX7O P/Jw/gP/ALHPS/8A0rirePwgfuh/wWZ/5RyfEP8A697T/wBK4q/n97fhX9AX/BZn/lHJ8Q/+ve0/ 9K4q/n97fhSpfCwP2z/4N3f+TF9Z/wCyk6h/6R2Nfc+t4/sa7z/z7Sf+gmvhj/g3d/5MX1n/ALKT qH/pHY191anA91p1xbRj5pIWVfqQRWMvjA/lmu/+PqT/AK6N/Ov0c/4Nuz/xf34gf9ipB/6Uivzl 1CCa21C4t542V45nV1bqGDEEV9Sf8Eiv23vAX7Ev7RV94h+Kltdf8I74i0n+z769s4vMezYSCRJS nVlyCDjkZyAcYreS90D9+q+I/wDgu5+094n/AGf/ANky18HeBtWex1Xx5qjaY11C22SOzRN8+09i 2UTPo57mu+g/4LHf8E6Z0Vl/aJs1LAfK2m3QP0/1dfK//BypbXeoeDPg94gs9zWK32sRySfw75I7 Jk/NY3P4VhFe8rgflB1+duT1zXd+Af2Xf2l/iroS+KPhn+z5428QaazFE1HRfC91cwOwOCBJHGVJ B6gGuFI445r9wv2Uf+Cv37AGj/s8+D/DOv8AxNXwvfaT4etLG80e60qYeRLFEqNtMaFSpIJBB5z2 NdEpSjsB+SY/YS/baH3v2RPiX/4Q99/8arzPxH4a8Q+DtfvPCvi3QbzS9U0+4aC/07ULdoZreRT8 yOjAMrA9QRkV+/w/4LE/8E6f+jjLL/wW3X/xuvxG/ba8feFPil+1z8RfiL4F1Vb7R9a8W3l3pl4q MomheQlXAYAjI9RUxlKW6A9b/wCCK3/KRrwJ/u3/AP6Ry19xf8HIf/Js3gP/ALHr/wBsrivh3/gi t/yka8Cf7t//AOkctfcX/ByH/wAmzeA/+x6/9srilL+IgPxzPSv6L/8AgmT/AMmB/Cj/ALE+2/rX 86B6V/Rf/wAEyf8AkwP4Uf8AYn239adX4UB7rRRRXOB/MPQetFI2euK/sQ/lM+h/+CTpP/DwX4bD /qJXX/pFPX74p92vwO/4JPnP/BQj4bH/AKiV1/6RT1+925duM1+B+KH/ACPqf+Bfmz9q8Of+RTU/ xP8AJHzn/wAFbv8AlHx8Rf8AsH23/pXDX4Lmv6LP2tfgCv7UH7PniL4Gv4kbSRr1vHF/aCw+b5Oy VJM7cjP3Mde9fntrf/Buv42SMnw3+0lpszfwi80WSMf+Ou1ehwBxLk+TZfUo4upyyc7rRvSyXRHD xxkObZpmFOrhafMlGz1Xdvqz83Ac9Ka+AwOK+4vGf/BAv9sTQI2m8K+J/COtqq52R6hLBI30Dx4/ UV4z43/4Jd/t5+AjI+rfs461dRx5zNpLRXikDv8AuXY/oDX6dh+KOH8Tb2eJh83b8z87r8O55h0/ aUJL0Tf5XPpb/gkL/wAFL/gH+zb8NZf2e/jU17pH2rXJr218QiHzLQeYqLskC/MmNv3sEc84r9TP Anj/AMF/Enw/B4q8A+KbHWNNuF3Q3un3Cyxv+Kmv5uvF/wAM/iF8P7trDxz4E1jR7hfvRapp0kLL +DgV0/wD/at/aA/Zm11dc+CfxMv9HbzQ89irCS1uMdpIXBRh26Z9CK+M4g4BwucVZ4zAVUpyd2m7 xb8n0v8AcfW5HxvisppxwuMpXhHRNaSS9Ha9j+jlN235qWvz2/ZC/wCC7fwv+I8tv4P/AGntGj8I 6m6hRr1lvfTpX/2wcvDn33KO5Ffevhrxb4b8Z6Hb+JfCevWmpafeRiS1vrGdZIpVI+8rKSCK/IM0 ybMsnrezxdNx7Po/R7H6nlucZdm1HnwtRS8uq9UalFRhwxzTh9zivLPU3Py6/wCDlv8A5APwh/6/ da/9As6/KKv6bPi9+zh8D/2gksIfjb8LtI8TJpbSHT11a1EotzJt3lc9N21c/wC6K4n/AIdtfsH/ APRq3g3/AMFK1pCooxsB/OTRjNf0bf8ADtr9g/8A6NW8G/8AgpWj/h21+wf/ANGreDf/AAUrV+1i B/OQSR0rsPgx+z78av2h/E0fg/4M/DnVPEF87hWWxtiY4s93kOFQepYgV/QbYf8ABO39hzTLgXFl +yv4LVlOVZtFjb9GBr1Dwf4C8F/D7TF0TwN4R03R7NPu2ul2KQRj/gKACk6vYD5T/wCCV3/BMDQv 2G/Cs/jfx9NZ6t8QdatVS+vIFDR6ZCeTbQsevON78bioxwBn7EA2jAowPSg7u1Yybk7gfzX/ALc/ /J5nxQ/7HrVP/Sl69z/4IP8A/KRfw7/2AdV/9JWr9evEf7AH7GHjLxDeeK/Ff7NXhO+1LUbp7i+v rjS1aSeVzuZ2PcknJNafw0/Yv/ZY+DPi6Hx38KPgR4d0HWIInjh1LTdPWOVEcbWUEdiODWjnpYDs viT8OPCPxY8Bat8NvHWlJfaTrVjJa39tIOHjcYP0I6g9iAa/CL9vn/glN8ev2PfF+oa14c8OX/iX wE0hk03xFY25la3jJOI7lV5jdem7G1uoPUD9+QcJ8w+tNnht7uBraeFZEkUq0brkMPQj0qYy5QP5 XtpP3qXHGK/pO8X/ALD/AOyH491CTVfF/wCzb4NvbqVt0lxJoMIdz6kqASaxj/wTe/YOC/8AJqvg 3p/0CVrT20ewH85QGDkV2X7OP/Jw/gP/ALHPS/8A0rir3T/gsP4V+CHw9/bX1T4ffATwzpOkaXo2 j2kF9Y6NGqwpdlS8gOP4gGUH0PHY14/+yD4bvPGX7WXw08M6fEWlvPHekphRnC/a4izfgoJ/CtdH G4H7ef8ABZj/AJRzfEIf9O9p/wClcNfz+544r+ob4g/DbwR8WPCd14D+JHhe01rR77aLzTb+LfDM FYMNy98EA15f/wAO2/2D+/7K3g3/AMFK1hGfLGwHz5/wbu/8mL6z/wBlJ1D/ANI7Gvu+TO3Irl/h R8Fvhb8CPDcng74PeAtN8O6TLeNdyWGl24jjaZlVWkIH8RCKM+iiuqqJO7uB/P3/AMFW/wBi7x3+ yt+074i1weGp18H+KNWm1Hw7qkUX7j98xke3yOFdGLDacfLgjivl4LlQ/rX9SHjDwV4S8faLJ4b8 b+F9P1jT5hiax1KzSaJ/qrgivKrz/gnV+w3qM7XN5+yx4LLN126LGv6KAK1jU01A/nHgUecg/wBo fzr+gz/gol+xmf21/wBkA/DjRZo4fEGmww6n4Zml4X7VHFjyieyyKWTPYkHtXTn/AIJufsIqMp+y t4Nz/wBgla9rtreO3iWGONVWNQsaj+EAYxUyqc1gP5efiL8NvH3wj8YXnw/+JnhO+0XWLCVo7qwv 7cxuhB64PUehHBHIzWKBjmv6c/id+z/8E/jRGsPxZ+E/h/xEI/8AVtq2lxTMn0Zhkfga4L/h25+w iTk/sreDfw0lar2yA/nJIB4IpAgByBX9G/8Aw7c/YQ/6NX8Hf+ClaP8Ah23+wf8A9GreDf8AwUrR 7RAfjn/wRW/5SNeBP92//wDSOWvuL/g5D/5Nm8B/9j1/7ZXFfYfw+/Yj/ZO+Efi218e/DL4AeGtF 1iz3C11LT9PWOaLcpVsMOmVJH0NdH8XvgL8IPj5o1r4e+M3w50vxJZWN19ptbXVbYSJFNtK7wD0O 0sPxqXP3rgfzGnpX9F//AATJ/wCTA/hR/wBifbf1qY/8E2v2EO37K3g3/wAFK16z4J8GeGfh54Ws fBPgrQrfS9J023EGn6faR7Y4Ix0VR2AolPmA1qKKKzA/mJEUxOFib/vk1INL1VhldNuCPaFv8K/p mtdI0mzXZaabbwr/AHY4Qv8AKrH2W2xlYF/75r9el4r1ebTCr/wL/wC1PyuPhnHriP8AyX/gn82f wm+I3xL+BHxG0v4tfDuWSx1vRZml0+7ksxII2ZGQ/K4IOVZhyO9fV3g//gvH+3B4cVU8Qab4S15V +81/okkTH8YJEAP4Gv2cNpbsPmgX/vmq114e0O+XF/o9tN/12t1b+Yrycdx1lubTUsZl8ZtaX5ne 3a9j0MHwXmeWrlwuNcV2tpf7z8vPC3/BxN4xhCp45/Zs0+b+/JpeuSR5+iyRt/6FXpnhH/g4S/Z0 1Jo4/F3wh8VaWzH55LcwXCL7/fVv0r7c1X4JfBzXwU134UeG7xW5YXWhwSZ/76Q1zOr/ALF37JGt Bl1D9mnwO27q0fhm2Qn8VQV49TNOEKz1wMo+cZv9dD1qeW8VUdsZGX+KH6o8p8Df8Fkf2BfGyp53 xffR5G4EesaXPFz9QrL+teteDf2vf2W/iHtHg/4+eE75pMBY01yFWOe21mBz7YzXH63/AMEyP2Ed eBF3+zV4djZurWtu0R/8dYVxPiL/AIItfsB68jCH4W3mms3/AC00/Wp1YfTczfyrikuFK3wOrD1U ZL80zsi+KKa95U5+jlH/ADPpjV9A8F+ONJ+xa9pGm6tYzDPl3MCTxsPXDAivDPit/wAErP2GPi6k smrfA6w0y5lB/wBM0CRrOQH1xGdufqprzqw/4IyfD7wA7XHwC/ab+J3gl2bcsWma6DCW/wBpNq7v xNadl+yj/wAFLvhq+fh/+3rYeI4V5W18Z+Fw272LozN+tOj7HCyUsFj+V+anD8romt7TER5cZguZ eTjL87M+f/jR/wAG8tuxmvvgB8cmUdYdO8U2YbHoPOhA/wDRdeJeFPCf/BUz/glz4gbVtJ8Kapce G7ebzLy3t86hpNymeSyoSYsj+LCEetfoXY/F7/gpX8NIVT4lfsw+FfHVvH/rL/wL4m+yzEepguwN xPopFbnhn/goP8M5Ln+yPjN8N/Gnw7u84f8A4Svw7KtqT3xcxb4se7Fa+go8TZ/7F0cXGGKpdU2m /vXvJ+qPDqcP5LKsquFlPD1Fta6X46W+ZxP7FX/BXf4AftSCHwh4vmj8F+LpCqf2VqlyPIu3/wCm EpwDz/C2G9M9a+tkl3rwd1fMXxg/4J//ALCH7bGkT+M9J0bShf3mWXxN4Nuo45PMP8beXlHPruBJ 71xfgbQ/27/2AIl07Wbu4+Nnwzt8JG1r8uvaTEOhCOT56hcfKGJ4/hFfPYzCZTjpOeBbpz6059/7 sv0dj3sJi81waUcalUh0qQ/9uj09UfahcdqcDkZrjfgz8c/hn8ePDCeLfhp4ljvrf7txCymO4tJO 8c0TAPE47qwBrsgc9K+eqU505uM1Zrue/TqQqRUou6YUUUVJYUUUUAFFFFABRRRQBleOrie08E6x dW0rRyR6XcPHIpwVYRsQQfUGv5yLv9uL9saO8mjj/ab8bKqzMAP+Ein6Z/3q/pA8R6U2u+Hr7Q1m 8s3lnLB5m3O3ehXOO+M1+V8v/BtbrNxO8x/aytvmcnH/AAiTcf8AkxWlNxW4HwX/AMNy/tkf9HO+ Nv8Awop//iqbP+29+2FcwtBP+0z42ZXGGX/hIp+f/Hq+9f8AiGl1j/o7G2/8JJv/AJJoP/BtNrAG R+1lbf8AhIt/8k1pzUwPy8v7+/1O+m1PUryW5ubiRpLi4mkLPK5OSzMeSSe5r76/4IJfsf8AiL4n ftB/8NQeINLaPw34LEi6dcSr8t3qLoVVU9fLQlmPYslfQnwT/wCDc/4J+Etfh1v42/GbVvFkEMm9 dL0/T10+GT2dt8jkf7pWv0E+HPw18C/CfwbY/D74ceF7PR9F0uHyrHT7GERxxrnPQdSSSSepJJOS amVRWsgN5elFFFYgDHAzimeZtHzClY4Jr5g/4Ks/tg+If2Qv2am1/wAESCPxF4h1BdM0e6ZQwtWK M7zYPUqiHH+0RXXgcFXzHGQw1H4ptJHLjsZRwGFniKvwxV2fTn2uMPsLLn03U9JQ4yPyr4C/4J0/ sP8Ah7xz8FrX9rz9pbx1r2ueMvFdjJe2ms3WvTxyaVaEkqUdXBDcbic4AOAMZz7P/wAE5P2rbz4+ fAzXNY8aa+t03g/xJeaTJ4juCI01C1iO6K5YnADGMjd7jPeu3HZT9WdX2M+dU2oydrau607q6t+h w4PNvrEabqw5PaJuKbu7LXXtoz6Vkk2rkCuT+Hfx0+FPxY1XXND+HXjmw1e88N6i1jr1taSZeyuA SCjggY5VhkcEqeeDXm3x2/bo+Bngb9n7xn8VfBPxO0XWrjw7pbmKHT75JM3LkxwrweQZMDIyODX5 2/sn/Cn9rmH4deHovgz8UdH8I+KPi5rb+IdT1fUtWWHUL21gm8uOOKM581f3txOQeHBxnsezLeH5 YzBVK9afs7NKPNom7NyvpeyWpy5hn0cLjKdGjH2l027au2yt0u2frR49+Knw/wDhZoqeIfiR4w0/ Q7GS6S3jvNSulhjaVz8qBm4yewrchvYbiFZ4ZFZHUGORTwwPQ1+T/wC234a/as+M37S3gn/gnlrf 7R0fji4uLmDUtSvo/C8dkNPbDkyS7JD5gSHc+Mr1UdTX2zpXhPxdob6X8JPix+29Zx3UKQxw6P4d 0210q6njVlEaZeSWQAjauVIJzweazx2SU8HhaNT2qcppysk/hvaL2vrrvYrB51UxWKqw9k1GDUbt rWXVb20+Z9FrJkZYUGT5ScV4Dc/t0eGPDX7X2s/steOPDf8AYlnpHhdNXTxdqmopFb3AIQsoVgOB uxuDHlSMV03xj+N/hTWP2Zdf+I/ws+NHhqxju9Lmt9D8VXl8psYbxgUjLOuekhA7kHseleXLL8VG UFKLSlaztp7221/8z0o5hhZQk4yTcb3XXTc9XSXf0FO3e1eHfsq3njv4D/spaNqn7XXxr03UtUhi kuNS8RXV8nkLG7lok844EgCEfN3zx0Fdlo37Tv7P3iCfSrbRvjBoFxJrl01tpKR6khN3MoUtGgzy wDLx/tD1qamDrQqSjBcyTauk7O3mXRxlGdOLm1FtJ2bV1c2Piv8AGb4a/A/wt/wm3xX8XWmh6SLi OA316xCCRzhV4B6mug0zUrTVrGLUrC5SaCeNZIZY2DK6sMggjsRX54f8Fbtfvf2nf2lPhd+wF4Kv WkN1q0eq+IlhY/uchlXdj+5D5r/8DFfoR4Z0Sx8M6BZ+HdMi2W9jax29uv8AdRFCgfkK68bl8cHl 9CtKT56l3btG9k/nr8jmweYTxeOr0or3KdlfvK12vloX6KKK8o9QMD0ooooAKPwoooAKMZ6iiigA wPSjA9KKKADA9KCAeCKKKAGhAOg/Oo7qytLqMw3VvHIrcMkihgR+NTUEZ6ijbYLJ7nF2XwD+Euke Lv8AhO/Dngey0jWGb/SNQ0dTaSXI/uzeVtEy+zhgO1dcsI8vB/WpdvuaTbjvTlKc9ZO/qTGnCHwq x5v4x/Z08Map4tf4oeA5m8L+LzCI31zSo1X7YoORHdRfduU/3vmH8LKa6rwlq/ieWH+yvGelx2+o RRjzJLUlre4H99CeRz1RuRn+IfMd/bxgmkMeWzn9KqVWpOPLPWxEaMISvHT8hU+6KWgcDFFQahRR RQAUUUUAFFFFABRgelFFABRRRQAUUUUAFBOOtFB6c0ARTywwq0k7hVVdzMewr8uf+CgfxvuP+CoP xP0/9i/9lX4enWpvDOtveXvi64uvLtY2RGikI4I8obsbzyxxtB4J+6v299b8V6B+xx8StX8EGVdT i8I3n2d4c70BTDsMcghCxz2xXwB/wRw+Hni7x1+yl8WrL4C+O7Lw78RdQ1W2tIdZu4yz2dn5YYMu PmUsTKA3YgHqOPtOGaFLB4Krm8rc9OUYxveycvtStq0l0PjeJK1TF4ynlSXu1IuUrWu0vsq+l2e2 fsC/A/8A4Kj/AAe8a6J8NfjV4o8LN8M9Dsms5tJe4guZHtwrBFi8tQ4OccuQNvBBrM/4KdateeI/ ih8Of+Cc/wACba18O2/jzU0vfFUOjW6W6valyPmCAZGI5JG9fLHWvUL79k3wt+y98GdL+IFj411y 6+JFjdWQk8ST6/dSPrN/LNGjwNE7lXik3MBGV4HIwQTXQ/tK/sN+Ifij+0p4L/a4+EXxGtfD3jHw pbNZv/a2mm7tbq1ZZVwVV0IYCeXHODu7YzRDNMLLOPrlXlStK3LHli5pe7JpN9Xe/wCASy3FQyv6 rT5m7xveV2oNq8U9Omlj5S/bx+CHwi8fftLfCv8AYA/Z98Kw2M1jplsvjLULVmH2fS4XeVIpTnBY AzzFiMlpUJPOBnaH448BfF3/AIKCat8fLK5jt/hL+zj4b+zaTJb/ACW7PbxvHBDF675txAGcqg9Q a+mtG/4JmX+i/tKap8covjZd3Fv4o8Pix8YLcWA+3XspYGYxShtsCSgKpCqSq5VSM5GZ8Pv+CUNl 4Q+E3jb4LX/xJgm0LW9R1C98OwWmlmJrWedCkUty28+eYV+VFAVV5bkkbfQp51lcMLGk6rdoct7O 95v94/W2i8vuPPqZLmU8RKoqaV5X6WtBfu16X1fmfMXwK+NWofCf4afFT/gq18U4lm8W+OdQuNJ+ HOnzHJQs20suf+WcYCL/ALsBHVhnuPhp8PfH/wAGv2XfAPxo8R/C6D4ieNvi58QNP1Xxh/aEMl3q P2ASfaY0t0WRXZ40TzMA7Vb7w2jj2s/8Er9P8W/shL+zv8T/AIgw3OsWOiw6foGraXYGO10wRSiU OkLMSzyyLumckF84G0ACvUf2Z/2XvHPw6tdB1r45fEe38Ua34X0UaR4d/s+xNtZ2NqFClxGWJad1 VQ0hxwNqgDOefH55l06M5U2m+e1tdYRjaEVtZJ6vbXU6cHk+YQqQjUVly3vppJu82+76LfQ+cf8A gpp4svPB/wAAfE3xj8f/AA7t7fxV48az8L+BdI1KKG5u9LtNrvK3y7lSZy0jHYTt/dgkla+ffjB4 N8aeHvgv8I/+CUPw6Am8SeIryLXfHUiy5W0lmYyLbt2CxoS757xqe9foT+2f+yBrX7TurfD/AMUe GvGVlpGo+BPEh1KBdU003dtOrBQQ0QZdzqURlycdQetcRc/8E0Y7X9pe2+OXhr4pTWtvdeGZdL8S edal9Qu5ZZA81xFPuAhkkGULBTsViExwVWV53l+FwNOM370eadtWlJLlgvRK703e4sxybHYjGTlB aPljfS/K3eb9W9PJbHzufs/7d/7ePhn9kjS7iS6+E/wZ02MalbNMfK1aW2VIyzgH5laQhB1yiseN 2Bi+Lbf4XfGv/gqBda94H0uz0H4c/BuRtb8X6xDuW3kvIFUSSdSAS0UUSqoGRCSB1r6h0r/gnBrn wt/aV8Q/GT9nj4tw+FdF8aaWll4k0n+yvOnt1G3c9nIWCxu23IZ1bazE4PAGD4L/AOCSWl+FPD/x K+HEvxUk/wCEV8bXUt1Y2NvZn7TFMYysX2iYsTPHEzF1QbdzHLE9K6IZ1ldN3hUaXs1GKs95P95J 6WctXbp5mMsnzOpG0qd3zuUndaqK9xLrbRXPKP8AgnjLqXjX4q+Nv+Cg3ivw59q8RfELxQ2hfDjT 7zJYwlh5soxkhI4YwrOOiwuO/P6TW+duW698V4d+xx+yHdfs2+B9E0Lxl4xt/EGqaDo50zS57Ww+ z29lbGTzHEaEsfMkbDPITlsAYAGK9ziGK+UzzHUsfmEp0/hWkf8ACtEvkvxbPp8jwVTBYFRqK0nq /V6u/wA9vKw6iiivHPZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigCvfWFlqNrNY39rHNDNGY5YpF3K6kYIIPUEV+TP7dHg4f8Evv jXD8XP2OvEuqeHbjXpmTUNHmmSfT2Q5bYIimdoPQFjt7Yoor7bgf95j50Z6wlF3T1T9Vs/mfG8Zf u8LTqx0kpKzW69Huj7W/YxtdQ/aE8N6L+0H8ZvEN7r2tWsW7S7W58tLLTpGXDSwwxoo8wgkeY+5g CQCAa+lIlVo8kUUV8/nkY08znCKslslsvRdD3snblgYzlq3u+r9WP2L/AHaTy0/u0UV5CPUDy0DD C0BV447UUUuwC7VznFII0HRaKKYA6KB92kCqzciiigGOCKOi0oAHQUUUwCiiigD/2Q== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image010.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCABVAKIDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2RHWR dyMGHqDmlrwi1vbqycPaXE0LDvG5FexeF7ye/wDDdlc3T75pEyzYxnkiuqvhnRV73OahiFVdrHnc njLWtO1W6SO782JZnAjmUMMbjx612PhbxmviC4a0mtjDcqm/KnKMB+o615nqf/IWvP8ArvJ/6Ea6 L4b/APIzSf8AXu38xXZXoU/Zc1tbHJRrT9py30PUqGYKpZiAAMkntS1k+KrhrXwtqUqHDCBgD9eP 615J6h534i8fahf3skemTta2aEqhj4eT/aJ7fQVnpe+K3QMk2sFTyCPM5qTwHYxX3iu2SZQyRK0u 09CQOP1NezUwPPvCl3r0ei63Ndm9e5jjDW4uFZjuw3QHr2rS8E6vrupXN2utRyIiIpj3QeXzk57c 1veIZpLfw9qEsLtHIkDsrKcFTjqK434d63e3c+pPqV9PPFDCr/vXyF65P6UAeh0V5Ld+LfEHiTVj Bo7zQoxPlQwYDbR3Zv8AIq/p+meN01G2a5muzAJVMgNypG3PPGfSiwHpdFeS+Jda1lPF15Z2N/dK DMEiiSTAyQMAfjVe9u/GGiqk97c38KFsKzuGUn0PUfnRYD2KiuStPGn/ABQ51i5jU3CEwlBwHk6D 6A9fzri4NZ8W+IbmR7Ge7cryy2+ERPQUWA9dmLLBIU+8FJH1xXFeD9b8RajrBh1iKRbfyWbLW3lj dkY5x9ah8LQeKINSmfWWvPswt3x5soYbuMd+vWqPw91rUtQ8QtFe39xPH9nZtkjkjORzQB6bRXm2 paZ42fVLprSa7Fu0zGIC5UDbnjjPpWTeal4u8N3EL391coX5QSuJEfHUd6LAev0Vydt8QtMktYnm ykrIC6jopxyKKQHllex+C/8AkUdO/wCuZ/8AQjXjlex+C/8AkUdO/wCuZ/8AQjXq4/4F6nmYL436 Hk2p/wDIWvP+u8n/AKEa6L4b/wDIyyf9e7fzFc7qf/IWvP8ArvJ/6Ea6L4b/APIyyf8AXu38xW1b +A/Qypfxl6nqdZniO0a+8OahboMu8DbR6kDI/lWnRXiHsHiXg7VotH8SW1zcHbAwMcjf3Qw6/gcV 7Gup2LqGW8tiDyCJV/xrhfEXw3mnvZLrRpIgkjFmgkO3aT12n09qwv8AhXGvf8+9v/3+FMD0jxDc w3HhjVPJmjkxbPnYwOOD6V534LV30rxGsedxsuMfRq3/AA54S1TTdB1u1uIollvIgsQWQEE4Ycnt 1qx4E8L6joVxetqUUQSaNVUK4bOCc5/OgDgfD1vql3fNFok5iuTHk7ZfLLL3APf6V2GkaL4yh1iz kvrqZrVJVMoN0GBXvx3qvqvw31C3v2n0SZDEW3IrOUeP2B70af4W8Ww6layT3MhhSVWkH2wnKg88 d6AMzVv+SnN/1/R/+y12HxN/5FVf+vlP5GsvUPB+rXHjc6nHFEbX7Uku4yAHaMZ4/Cui8baPd65o ItbFVaUTK+GbaMDPf8aAPPnVj8MYyPujUju/75rrfhdLCfD88SlfOW4LOO+CBg/pU/h/wnIng640 fWEVTLKzfIwbb0wQfXIrlpvh1r1nct9ilikXoJElMZI9xQB6ldf8es3+438q8o+GriLxHK7dFtHJ /ArW94V8M69puqSy6k5aFrd0ANwX+Y4xxTfBXg/VNF1p7jUIohC0DRnbIGySR2/CgDAj1zxJ4p1m SPTbqZC2XSKOTy1RB7/lVXxJp3iGxggbXZpJI2ciPfP5mGxz9OK17v4ea1Y6i76RKhiyTG4lMbqD 2NQXHgfxVdqFuWEwU5Akut2PzoA5Ciuo/wCFc+IP+eEH/f4UUwMCvY/Bf/Io6d/1zP8A6Ea8cr2P wX/yKOnf9cz/AOhGvTx/wL1PMwXxv0PJtT/5C15/13k/9CNdF8N/+Rlk/wCvdv5iud1P/kLXn/Xe T/0I10Xw3/5GWT/r3b+Yrat/AfoZUv4y9T1OiiivEPYMbVPFek6NefZb+5Mc20Pt8tjwfoPaqf8A wsDw9/z/AB/79P8A4VxPxL/5Gv8A7d0/m1XtP+GZv9Nt7sans8+JZNvk5xkZx1pgdvpnifSNYl8q yvY3l/55nKsfoD1rRuLqC0i8y5mjhjzjdIwUZ+prw/WdHu/DerfZ5nxKmJIpo8jI7EenSu91S6tf Enw+s7jU70WSvIvmS+WX+dcgjA9cZosB2VtdQXkfmW00cyZxujYMM+mRU1c34FtbOz0F49Pvhew+ ex80RlOcDjBq1eeL9DsJ2huNRiEq8Mq5bH1wDSA2qrXOo2dkyrdXUELMMgSSBSR+NYx8e+HQM/2i v/ft/wDCsTx3Z6TqV3YzX2riyzATGDAz71JznjpQB2txfW9tYPeySj7MieYXX5ht65GOtU9I8R6b rrypp05lMQBf5CuM9OorB1vVdN03wSmnG8DvPYbbc7CPNG3APtn3rmPh9rmn6Jc3zajcCESogTKk 5wTnoPenYD1mism68T6VZWVtd3F2EguhmF9jHcOvpVP/AITzw7/0EV/79v8A4UgOirFsPFukanqA srS5L3B3YXy2HTryRWjYajaanbC4sbiOeI8bkOcH0PpXlPgX/kfI/rN/I0Aev0UUUAeAV7H4L/5F HTv+uZ/9CNeOV7H4L/5FHTv+uZ/9CNerj/gXqeZgvjfoeTan/wAha8/67yf+hGui+G//ACMsn/Xu 38xXO6n/AMha8/67yf8AoRrovhv/AMjLJ/17t/MVtW/gP0MqX8Zep6nRSUteIeweSfEz/kav+3ZP 5tXpPh3/AJFzTv8Ar2j/APQRXm3xL/5Gr/t3T+bVp6b8S7ew0y2tTp0zmGJYywkABwMZpgM+KoX+ 0NOIxv8AKfP0yP8A69Z7Z/4VQuen9ocfrWP4g1y48Sat9pkj2kgRxRLztHYe5JNdd4j0ttH+GVla SgCVZkaQejHJI/XFAFPS9Sl0z4W3cluxSWW7aJWHVd23JH4Zqn4N8Gp4jinuLmeSKCJtiiPG5mxk 8n6irOn2El/8K7sQqWeG7M20dSBjP6E1H4I8Y2vh+3ntb5JDDI/mI8Y3YOMEEfgKAMzxnoNv4d1N LW1klkR4fMJkIznJHb6Vp/EP72jf9eQ/pVDxxrlpr+qx3Nj5nlrAEO9dpzkn+taHxD+9o3/XkP6U Aber+H7TUfBFpqMzSiez04GMKwCn5QeRiub8EeG7PxHPdpetMohVSvlMB1z149q7mVGk+Ge1ASx0 0cD/AHK4jwJ4isvD93dtfmRUnRQrIu7BBPX86AOz8Q6FoMOh2Nvq15Lb2tmNkLbxubjGOnPTsK5G 50/wSbaT7Pqt4s207CykjPbI20vxGvf7QvdNuYGY2str5kWQRkljnj16VHAngj7EnmyX/wBo8sbv vfex7cdaAJvhhdSxeIZrcMfKmgLMvbKkYP6mq3gX/kfI/rN/I0/4af8AI1/9u7/zFM8C/wDI+R/W b+RoA9fooopAfP8AuHqK9R8I+ItJt/DllazahbxzxoQyO+0g5PrXQjRdMA4060/78r/hSNoeluMN p1mf+2K/4V21sTCsrNHHSw86TumcbP4DstRuZp7TXI3aV2faArAZOexqofh/rmnSifT7yFpF+60b mNq7VvCuiOcnTLUH1VMfypU8N2MPNsbm3P8A0yuHH6ZxUrFSWl/vSG8NF62/E56z8Ua3o2IvEemT NEOPtMSZx9ccH9K63T9StNUthPZTpNEe6np7EdjUC6fdwjEOpSsP7s6K4/MYP61WGgo1ybhUS0uv +e9odu72ZTwfxzWU5Qlraz8jWKnHTcZq/g/S9cvftd6kpl2BMrIVGB7fjVH/AIVvoP8AzzuP+/xr ord51/d3SqW7SJ91vw7GrNYmxh6V4P0bR5xPa2gMy/dkkYuV+melXdY0a112x+yXyuYt4fCttOR7 1fooAzNO0ux8NaVLHbB1tk3TPuYsenP6CuJvJ/AN9OZmMsTNyfJR0BP0xivRLiBLq2lgkzslQo2D g4Iwa5YfDPQgMf6X/wB/v/rUAec67HpcmpLD4fEzQMoUeZklnJ7Z59K9V1Dwhp+sw2n9orI0lvCI hskK/Wk0rwTo2j3a3NvA7zLyjSvu2n1A6ZroKdwILa0itLKK0jXMMSCNQ3PygY59a56X4d6BLKzi 3lj3HO1JSAPoKseLNRmgs47SweT7ZO4JSEZk8oH52Hpx3qP+1n0zCqrGGSLz0jnYhoI0X5i5OTkn AA96tU21dEOok7F258MaXeaTBp1xb+ZBbqFiJY7kx6N1rL/4VvoH/PO4/wC/xrG+1XEsV0kt5cQS XT5l2uNkYYbpOMZ+RAo69TW3/bc9tpouIIpG2bD5UxJZ1ZfkGcYDElfWqlRaIjWTLmkeD9K0O++1 2SSiXaUy0hYYPt+FN03wbpWk6mL+1SYXA3YLSEj5uvH41VTxPie6ljVnX5pMSSYRIoxgsMDPzNkD 1xmp9JupNY1sXkqGFbe3Eaxbs/vGwXz9PlH1zUunJK7KVRPRHRUUUVmaBRRRQAUUUUAFJRRQAUtF FABRRRQAUUUUAFFFFAHI+Ilj07xBBeyxi5jvIxbvCxK42ncCD/Md6200izuraNrmCOQlT2wArHJX Hp0/Kiitpt8kWYwS5pIk/sTT9277JFklieOu4YP51INMtBapbeSvkxsGVTngjoc0UVlzPua8q7EL aDprIENnHtClcc9Cc4/Pn2q1bWVvZhxbxLGHYs23uTRRQ22Cil0J6KKKQz//2T== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image011.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAd8AAACVCAYAAAAZtPDmAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AAHnjSURBVHhe7X0HeBzV9b3V3AvF2GBagISENJKQ DumEkPyT0DEQAzEQQu/kByHEoYNt9e1N1b1X3G3cG7j3isFU0wwGA9be/zl33khreW1rtStpJc39 vvPtzOzMK/e9d8/rr01d5OVo9HdPrFv1u+tfnHhV2c5dkrd6rTy/cqW8sGaFgyZA/zWr5IXVq2Qg 0sG/ZbuUbd+2tfe0yb8b8u5bv1su0s0kmyOOOOKII81VPNu2vvznwRXy3dKg9Ah5pX3YK9kRn2SX +CWnxOugkdEu5Jb2QA7TQOGRDiGXnI7/flEWkn9MGLdx1vvv55nkc8QRRxxxpDlJ8YYNZX+dPE66 BAulHQi3fcgPw++XjJKgtCkHyhw0DbyA37ouDQFByURFKDvkk7YRrxzvy5e/gIS9ixd/0ySlI444 4ogjzUEeXjxv+Sm+XMkOF0kGWleZkaBkGWSUwvCXE4EYQnDQeIDeSwNKuBYR+5SA21SUSFbQJV8t zJNpH300bblIjklOR+ogG774YucqYBOw3lwTvOYzgu/UBfa3sVhJiDxvvGtVUlunBO/j6a6+WB+N 3mG8a9ayORpttxHxsfUUL671Rbw04O+mqqonjfeONJUsi0ave3zJYjnBPVBySt0w6GxVkXCtFhaN vpJvhUO+TYbSsJUWZUif8mL8koBDkhn2ybfxO+jNN0eZ5HSkDjIZxu7miWPnnVb4rJxenIvKS4Gc BvQqzpdTiogCOb2wUE4vKJBTi3KBPANe26h5djp+v1KQK2cWDJTTil6Qk13Py6nFz0sv9/Pyc1+R DHv9jYeM161CgsvnTz+3//Oqj9OL+stXgDN4XRirv4N1WJ/7r+f2l5f3frTXeJu2si0avWLYZ5/d ftuiJbffOWdW+WMvL5a+M16UKyeNlQtHDpJfjaiQ74RcyIPPy2nIj4eL7+HvD//Oabg+HZXz04sG wO3+uO+PdBkgP3r+aVn8wQf3myA60tiCTPGXfy9eUtUVCZ8RdEvb0hJpE2QrK6IkbHU1k3BNy1ev DSE4aDywIsTfChcqRi7JKvFK27BXTkJBnb1//3wRyTRJ6kgd5P6Fa487f8RgaVNZKBkVXskoQb7W iiXzPnXOyg7KgF778N9RwPIBN7JQGWL6tCkrAvBb6pVufpc8sGiJGK9bheSvWDy9p7tQ5ya0KfVI VsQHULdxdJcEugSLZdbeD9KafJft27f3tilTDpzt90uPgFc6BVzQi1syyqAbVqIrkceQb7KQf9qy nEdoa+PHt15A/s2E7gnVP/zNjrjkKyDkZfs/a1X5Mq2k//IVg0/xw/igdZsD4s0KhCS7rNwyOoAa JSVeGiEHTQakjwJpkVHilw4hD2rKPql87bXBJikdSUDK3tgt3f0FMHT5MHo+yaBhop5LgpIdRr6P wAiWgIA51wFlgOXgSOA7HAJgb0QNwTDdUKbCYTnRVSiT9+wZaLxv8ZK/cvn0bj720EAvrNRoLxoR X3/1RVdUbBZ8nH4tX7Z0n315gee6KWOlpy9fOqFh0w5llvMzMpk/lARNYwbxUN3w1yBeXOsLy01W JAHmyQrcg5BPcufLwv37HfJtCuknkv1LJEi2kiwNBcECYhmcLNTACO1y1v+YgPi/NjE4aHBwGIBo U8LKUVDOLkTBOXBgmUlKRxKQjVVV/U91vSBZpUXI227kaUOUQAau2UrLBCG3Yb5XA1kXwKBVgKzx y9noOWjJMK0yA6UwtmUwvC55bPYMmY0yZ4LRoiV/5bLp3QIkX+jVti/aq0DDH09/9UMXtCJnf5Je 5Fuye8c3bl04Vbq4n5OOoWK1oVZPCuNfE3bO32BrN8u2vdQVexu1zNe8lzToJ/KiXfmxenh8cqIn X5Y45Ns0cuvcKUu7hdg9ZicKE8sqKFnIGBnsblMgo6AlkBlBzZ6JqJnDQeOCaRSUthzj9Xul7PVd ZSYZHUlQnnp5Uf9j/PnQp02w0G2Fla9JvhmlHE83k9rUgNFYHQ1IIzVqXhhbN4wuu1pZjsrgR4m6 +dvxQ+VXs2e3EvJdPP2YAG2LZfwzWJkpZzdrXfVZN3QJuGXWJ3vTgnxXRqOdCjaszb9w+GDp5imS HKR/G6LMHr4w4Y4Z3qCt1fk1sQSsMO+kBMZt5vXqvO2Vk0C+ix3ybXwZ9eabv/3BUNTGKlkgkDDV 4wPWsiJrdjPuK5BQIOUMZKLscAT/OeTbJCjxSnaJW77qK5ZFBw4sNcnoSILSTyTzzjkzpWOQLV7o lb05ZaXI4/xlBYfGCnme+V6JgvrH8/KjgQYU35bzOzcqSSRfGjv8B3+yBgWlWzBXZn7aOsbYSL7d SL4kXq3g0I5wsiB1VFt39UfnoEdmffJxk5Pvhmi0y/QPP5BzQXaZ/iLpECmT7GA58hEqX9qLaIhQ 42+umde05ctVDObe/j9OXJMD8zHtO9LAkG9PkO8ih3wbXyp37Jh2EmtBMBYZWuNiwpCAmfC8Z2aw Cw0TixkEicgaWm1icNDgaBtxyVneXI7xRkwSOlIPWf/FFxXfQOs2B61Ti2iZp9kyYZcxrpnvSbo6 LgbdJzDMogZUK6xoPZewW9H+LyAZeJYTKZQ/DRoiMNR/NcFpsWKRbzH0h/irfaE+WdE3ek0R0oV8 n1+6eODZJS7JCbus+QLlIF3OAQDxZSL+nBxZ06NigZMmsxUevMOKCVABHZkeyNTBzsN017bzPunh dci3SeTpTVvleE60Qubl+Ba7ma01vSEr88DosCbPDJKpmQYJR1JWYnbQoKg2WPy11vZ+O+SVZQcO LDDJl7A8P2Lwt0YvWXK8uW218szSZdIhmId8DGJgrw8MXftQULK1e9Ai3izt9bHSwFpyZ7XejgQS r47d2a1k/Oo9CVnLDoxtqUdOdLml34p1/zHBabFSsGLZ9GP8IJMSEFBpKRCCjqmj+PqrL7qmwZiv d82ac388KCA55ZzlzvRG+tszlkm0YdhYzQ+0qaaSxzzCoQ6TV5jXtMfRRpy41h8Iky5VDOOaeRRA /u7hKXLGfJtC/r5gLmqNqJGHYdxhHA5KeECNv14z4ZihAId4GwCsjeLXFI4ag49nEY+0R4v3awUD pfKN3fVu8d47aVLvi4sK5ZkF8x40j1qlDPv846u/VjQQLVC2wKzaP/M1idfK81ZeV2OlaXLw8yPB mlWKd2PSVssS0xEGUP0D8bQPB+XvM2ZsMkFqsZJfTb4kFuZrVuqpk0N1lwyamnwnR6PX/Hn4UOnm z5cs7oOgaY00RzzZ+0Hys/OS6kKH7WxY+aTmf5Nn6pjnEoPlh0W+lt89PYUO+TaFXDp1krTjOIQW BhohJoqDxgcLrH1tFZQs1lDDfmkLkvg+0maxyByTbAnJhmi0170zZ/7yl2UlcoLfJZfMmNSqyfe2 hTMCXf25khWG8anWeePjp4PLZLnIBSZYLVIGrlxukW+1nkG+vE6x3jnhavbHTdftfPPc2aFjfcXS HpWATBIthyuUcO2Wbi2SbWJUt3yBnp4Ch3ybQi4aM8IiXy0QDvk2HUgELKwuaVMJcMwd6dIOlaKT C/rLqHfeKTVJlrCMeO21HecFfdIlVIjWXrF8O+xp1eR77ZSxkhPkul6rhyF+ejQ8jnfnSv6mjftM sFqktBbyvRAVqU5o4WaWmLFaQluaFvnqPJkmzGu14ZBvGsjvRw+XtmhdsSvMId8mBLvkKqD/Cq6J 5I5IfslGC/h7eD7388/HmeRKSLZEo6eOe+ftPecNKpGOYY7Xw/1ylxxf9EyrJd8Fn3zy8UnuF6RN GDrW8d2mA4cSzvHmy7J9++42wWtx0hrIt2Dj+n0n+wokI2KXMZCurtO1GjUc8z9oDW8awCHfNJCL xo50yDcdwMLAsUcC6cCjA8/KHSATPvhgEJfFmORKSP5v/tw+34Zb3EJOJ3SwhwME/+/FC94xr7Q6 +dvUCR93gT4yuREG9REvLRoLJV45CZWsmyZPdMg3STQV+b4cjV7/s5JAVccgKs1cw1zJ7mXYUv5y xzRDvBb5Mr/hvzjhb2w45JsGcvH40Rb5MiEc8m0aoCBYpxRZXVNtQ175MVq8Uz76qF5bRq4VOe3h hS/d8qOKCEi8WDJ0Ih03R4loJeuOl2YsMq+2Kinfue3OMwIF0IMHerD0Hjc9GgulIWkLYrp1/uwW a/haOvk+9/LKu3u60epli5fkquXYChPjyUmTJF6dPKWTVR3ydcTIQeSbJrWyVgcUBK0Zl4UlO+zT E0hmfPrpyPq2eCfv2b33nJJiXdLCAs+N1NuGYQh06VhQTnQVtcpu56eXLvqkky8PBhJGULv5gXjp 0VhAhahtaUR6+Qtkw4EDa00wW5S0dPItXLrsk64BljOWLRsW2drEq+u8tXwDabJSxCHfNBCHfNMD 3HavXdgjPyiLyNj33guZ5ElYKrdvW/DDioC0KzVdzRUwdij4OSRfGgDUznu1QvLdFo3ecf6wUmlf ym0jI9Z4L7sJ46RFYyEjHJJMpEv7UJH8c8rUj7ZEo98ywW0x0tLJ99bZM6RtiC3aUu1d4uQqu5u5 mngPiivKZEy4mwoO+aaBOOSbBgAhtC91y9fzB8rSqqqJJmkSllnv7ZFvBQulQwmMHSdYsYWnXV30 g2CLz4uW74BWR75D3nrrta48vYg6CMEocoP7MPQULz0aCVn85YElZT45u7hIyt5+93oT3BYjLZ18 fz1mECpQLFfcRMRq+ZJwq0k3Np52yzgm3E0Fh3zTQBzybXpw/98fRXwy4p033SZZEpIdIieW7dq2 7Ty0eDuEi1GwkI4o/GxNW4A/7GblLMyyYrR8n2tV5Dv5kw++f9Hgyr3tWCEpD4PsYAB5rd3yh6ZH 4wEtb93gIyjdUQb7LV1a74pXukpLJ99TI/lagdJ9wRkWO266bLCWPSXxcslR7LMmgkO+aSAO+TYk SHYErrXWi18lRfM/ZzWj9XW2zyVLqqommSRJSN4W6XzD1Im//CZaztnsamZXKv2AX9xDlluGWv5x jJMF3wXyfaFVke//Vi/75+n+YsnRvXa5fzP0Yna1Oji9GhtcE4pwIG/kIH2umzhBVogcY4LdIqQl k+/CDz/c3c3f35o5fwipxiNfg9hnR4O+z5Y186uB2hD4RxyuJa0zq+3rGMQ+02seKZjnnGrUFOKQ b0OCBYA6NYUEGV4nYkDfmWiBcazvexG3DH3jjQKTHAnJrmj0uIrt27d+HzXvHK4xNPvDcus+bf1q gaP/Zv2hhoFjvrmtinwfWjIf+vFZs72pC+7nzM3rD2e4Gg0ea5asnhIWlhO9hVLx9mvrTbBbhLRk 8i3ZsnV3Nx97mli+Um87M3jQR9jqscoogz8lRSBcVBypw1BEckrLrEmUYS+uuT2q38An7WEDaNct +Ax47TXg+3zHJacVPy/L9reOU7bSShzybXhwb1c9pUSPp8N9RYlkBV1yHvS+tKpqgkmKhGRrNNpj 2p535VwUxk4gcZ6KUj3Gq37Cb9283SJfaymEVQHo5SpoNeS7/MCBtWe6BkIfMGAkX57MxY1MaDBV P4emV6OB3d4lbhjBsGTC0LYNFsh33AO3To1GO5ngN3tpyeT79KIlu7t6uSFOw5CvzpDmiUgcIqkA WeJZFlu05dwrGpXJcJ50qnDLWchH30Yl/gclPvkhyv95KOs/iHjkR6h4/xj4iQGvz0M4z8M7PyoN 491SXAfld4FCWfbJJ5tNtBxpLHHItwGhZAeggGhrS1ugPA/ZK+cGfDL0zTfzTDIkJMtFOlZu3br9 uzxwIVwEYnEp+WbZO+zAj0wSi0O+bR5cvXBtt0CBzkJVY8Z1lqgIqfGiflJMAglBN+B3ISwMW0C7 ws8p8cizL7/cYo4abMnke++kSbu7+FHmtEs4xbYT+tFJWxxPHsx8yrLMXz9atW75Loj22XWr5Zwy 1yX3LXvpkv4bV13ifXXLJZXvv3XJiH3vW9j77iEYouB/e/G7D9h7yWh8M1sk20TLkcYSh3wbELaR Yau3zI3C5JX2QY+ch4K0qKpqjEmChGXqu+/ID0Cm7UC8Vney3xz3COgYIlu+KKitnHynfPTRn380 pFQyQsWonCDu1AUJjy0HGDYem6npEy/tGgM02npesJWGnBzX1VcoA9evbTFdgC2ZfK8fMWJ356Cp 8KZ68wzoR1u5Wq6hM3Y/o/xyYt7lUyetXFhV9aQJhiPNVRzybUBo4WE3EQ1sEMTrlm+4CmT022/X q8VLuXXq5Fu/E/BIx3AhyJX7E/MMZuMfDTmNgBpy3Ldy8g1v3Li2ewjGC7rgRiNqJLl/NrvmQcZN Tr4lSCemmQ5JMExByQn55bvMMy1EWir5bolG/3Dj2LH7WZm2Kr0NYDv1cBWPZAX90iEckuO8Hrl5 zvzFA1aubDHDEq1aHPJtOOh6P+oWpMda7M/KSzjGO8yoPiHZHI2eNWnP2/JtGGkeMZhd4gbpcjaz 5X6bMk4mYu2YfvtAtjAI+pxp2jrJ9+9zZ0hHGK6MSAmMGEnOtFKM8dcKSopJICGYtKox3khDVAiO 8xVJYN26DZxQZ6LSbKWlku+maPSGX3lcqAQz/ZB2DUG+cDcT+SOzlHu9F8q1kyfKFpH/mSA40tzF Id8GBAxMVkVY2oY8cnZBnoz74IN6zWqmDHl1x1tfQwHMZmsXBixLW7yGTHTLOhBMSSn8JAGzwKJG 3orJd+a+fRWnhFySHeDsz1LoA3GvjCFfTZ8mzu8IB8eetWtReyyQdiVhPVTjLyOHyszoF7800Wm2 0lLJdz3I93yvGy1Sk4dM71ZKwXKNMt4uWCynR4rlvoUv3Wi8d6QliEO+DQcaVh5scP6gMln0xRf1 Oo93QzT69ftmTb/xPBTutqEiU8hJovyl0WbNG9ckFy5NwC+XGbG23FrJd2U02uOmSRM3cylXNggt K4R4c+IKZzrHkm9T53dNQ4YBYJjYDV7C9PPJqQhnaPPGZ02Umq20VPJFHrvhJ4hXh5BJuzhhShos x5Vh+FEkvxkakQmfffBr470jLUEc8m04tAfxnln4nEz/5BOXUXfCMvK1XR+d4yvQbqesSpCr3VXK WrEScS0DriAZ49eeZNTKyPf5tRsv+PHgQdbyKx3f5bpn6EN1QX3x2tYbr5sKJt00jByXttKHFaoc GNxH5s1v9mO/LZl8fww/OzYk+XJDGK7ZjRTIA/NnssvZId+WJA75pgixBgU11pywT1u8sz/9tN7E W7pz087vVPikbQmXoyBtmE5KrNaEKi7C5043GXjGMd6sUjeu2RKGEdednFrnhKtHF8wv7uSDwSep 2bObI9CPXXFRpAH56jghgDTMZEWJ4WKFCsjG87OLcmXevr0vmmg1S2mp5PsKyPeHQdPyZb6KE6ak QP2Ew5JTXoK45Utk587FxmtHWoo45FsfUE8kQY6vWpOcdHKVFhiPtAdZnpP3giyoqgoaNScsY3a9 +uWZnoIolyfptpCxrTcSh5Ivn+OZEglP6yHB2mlIY976yHdrVdX4y8aP0qMZVS927wArKIeQL0Fd NRE0bPhl3mHY9Bl/w1qh6hYqkL/PmeqQbx3QVC3f9ijvVlxQtuKEKymwfFeEpWswTxYc2O+Qb0sT h3zrAxhN3U0K+jKtlwwaTDxrH3bLrwaVyqS9Hw4wKk5ItkajXyvdsfGt78OPDjwInyShY7ccQ+a1 Mdh1QStcalT0+vZJJ3rzkRbNIS/bBtsP8jVd5CQn3W6SR9MVyW9HVEr59tfONdFrdtKSJ1xd4C2S TiijVgWYZe3QcNUb0A/X6rNC392fL2tF/m68dqSliEO+9YDdouSuVRWcfYzriF/aAV9zF3A5UYlR b0KC2nSnSW++Ief4C+FWEYyvR7Ij1uEIbCVpF7PdQqoLWhn5bvj88+9cPXqotA3kIZ4JVFKaCqZS pd3iSCNr2VFQckpLJYdpHS6Q7u7+MgF5wkSx2UlLJt9fKPkWNUxeg34yIkHJDPmkhzfX2Xe5JYpD vvUAyZezjEG8GdweEK2sthGf/LiyVCa8997TRrUJyc5o9IzSrVt2n1vqlXYwunSfrSFtEZmlKPYY b9wwxUMrI98Jb+0edjYqKxmotDR5l3JdYKflQeSL61BQsnhGLJ61KymWC0cOcsj3KGhs8l0D8v25 3yUdUEm2NreJH67k4ZfjHPJtmeKQbz2gNV3qCij1S/uQW37k88hykXotJ6LcOGn8Fd+EO225c1UF DTAMMVu57NbmpCEa5USNVisj3+df2yId/cXWEW/x9JFu0O5KgOSLCpZFwMxTAWvms3ado+UTKJKK t14bYqLZrKSlku/qaPTB870e6Rpk5buBKnpI/xxUIk9w58vL0Wgv47UjLUUc8k0QMBpZWthoHANo pXrlApDc6Hfe6WdUmpBsjkZPeXrFkuHfjASkY7BYZyxzja5OwCFZlrOVTb9poEmgCaRRKyLflQei 93yj1CPZNOphxDOePtIN1STkR57ihDmrh0MnYmmXNNMrIB1g4G+cPPFVVO66m+g2G0ln8vW/unW4 Z/ebwz2vvz7cs2v7cP+uV4d7d+0e7n0Vz3a9Prz49R3Aq8Ndih3DXbsBfbZreMlHH8rZPJIvgrg1 VC8LyJdlvmPAJb697+wpeHPX8OI3Xx1erOHYjrDuUngQpkSgcUGcinfDPbhVumPL8GG7dnUwajmi lO1Yc04IfhcCll52qXvx/Ek3FLy5XVH45tbhLsD/1o7hg9/bPXz6558OXycy3ESx8cQh3wQBo5EF w8ix13Zhn/yoLMyD8CNGnQnJxmj0jDFvvCZnl7i0e5nLiawxXtMCIvGWlqIQctkQZztzZiX/ixOu eGgl5LtWpO3Tixa92M2XJ9xGMpM6S7Fxb1AgrNkwtLpVKMm3suY5hxl4/ur3hoTlppkzTzdRbjaS ruQ7cefuXWcU95fjXYVyksclJ3vy5RRXnpzkdkmvYo+c7CqWnt58OcFXoOiBvNXDlysnefHrGijd A6go+zk8hPTijOfKBqjwsaJdgV/Yg27hAjnePUBOpP8IRw/fAIS3UE52F0oPbwHiUCC9cE2c5MY9 EO/+JE+eumHFq1B6wq3v5j4jaz6r23m+Y1/dKV/JfRJuDIT/+XAX7qFlXtvP2v7W574u7xzu/pBn 0E93pGF3xPcEhL2HZ6D0wu9p7oFyZkF/+WZ+f/k1ylrfaVPlyRWvyMi335K/Thr7w+JXt/5wbjR6 gol+asUh33oAha1DxCPnhnwy6p13HjeqTFieW76k/By0dtuWugzRcskJSRIEq+tT4VcpN9awyCQL 5Gsd3F0rPIdDKyHfIe+9fupfxwyXtiEY+Qh7JlhZiaOPdAXTFpU5nUzHNKfB1bTH80hIciJ+6RzI k+KNmxaYKDcbSVfyHbF7567OwXzJgK65iiCzDBXgUmt1QQZ0ngmd63wODgeABK1fVow9+M86oUx7 ovBeNstVg3Q92/YYYapwIy+4kRdgA0q4nr9QD+GwDgxB+LTyhngAena1uT743ppVb1f0LbhBogPk lTqS7+BdO6W7Pw+NBJd0Am9kh+ge/T/YzyOHo273dXnncPfxnrGM8WhR65mlsyzkx2ykeXbEp0e9 cn+GHOinHdL+VFSsfloRkUsHD9r4xJJ5M5fu3z/TqCE14pBvgmA3EFqqv67QQxLqtY53UzR6zujd r8m3eR4v92pGwlcbI3Y5sjataQHYhkr/57MECnkrId9ZH3yAlkiR9kjoHs4cL7f1mdaITWOmjZU+ +p/JAzSuWUAODO6FQytlVVWVz0S7WUi6ku+EN0G+Ic6Kx/eErlzg5Clco9woqZUz3CQoq2JkrROH QS9nzxfSBs+ZNkQG348TrvoD7pEkaQ8467kC/gR5jCjCRuIAaWZFuLwRFU2+X6cJX4wT8pXmLdoG ANcnunNl2f46ku9ru6RLEC1+zk9AODT/1snvpkdGOCRZ4Qj0BlBv0J8OUfGXYENHGzuwH1oZAxFz h7GgW44JuORskPY/F74kT6xa9p8JH+75sVFJ/cUh38TALsDz3IUy/v33/2NUmJCISPvQtk3vfjVY iIKEmjYLBAsvElYncrGAkzR5zVYuWrvWIQm41wJzaJgOi1ZCvg8tXKDnJNNIqbGy97uOp5O0gjFe NP4gJc6iz2TLHdCZz7oXNfMA5wAE5Jji/vLvVcsd8o2DRMl3LMi3C1pvNMaZIZSTcuQftC7ZA5UR KcNzpEcZyx3Th+XT6p2wwo1nJBwgiz1WWoaZ52rCkzzgJsiXvWwZlWWoUPIkM+QPnnylZIewaoWA +cbkozqBeQphhVt62heenYCW75I6ku8wkO8xvnyEp1gyOSNfu9tZ1uL5lWbQWen4VSBNEW61v4Sm M98z+icBgxe5f4MeWsMWcsQrXZEeZ4GILxpU/nHJu++sNGqpnzjka8MkAq/tFghgTXxCJgcRdggW y6/R+lhSVVWvLSO3RaPfvXnKpL5fRwHIYouXia3u018mPrtJ6CcSXP3nMy/IlwUG72hBx/O6ohWQ 76gP9njOKM6XdlqLteJqkZZJy1SDXVbQJberzKbxU3I0frElwHSr/c1hwfASuKZBRfqQfAlr2RHB uNBdLmfzyA0vTpTZH3xwjIl+2kvadju/gZYvx23ZeuTMcnWHaYHwoWWUyfxUnT6W/qvDbIjXesb/ zb0JS6qQwV+6zzyH1rZVQcMz9cvkcbUXDENdwfyK/MvvdC9xtHy9+bJ0//46ke+IXa/qWLF21TOf avybCXQoD2XKrtSqTbTLGRH7PvXPHg7EUcEyDkT82hruiPx2oqdYHpg7R0pe3/WwUU9i4pCvDSqX 8WeGNJkcYO2OS1c6BIvkHFd/mfbJJ/81qktYItu3fXSWK19rUBaRMnHhr2Zg+m/5WV3Iq8Nl/ksU LZx814p0vn/ulI/bufMlBy0YJT8WrIaYgapdfSBH5o9IgZw2aoi0LypA+nGTFfxPAgb4zsHplyCq 099OdwPU1jMqIvIVj1uWfPbZ60YFaS/p2/LdvaubvxjhYPkg4I6GCdealge7n34w+SJhXfIb5lNc KwLS05OPlm/dyHcUyLe7t9B8C/tC8lId2u6nM4zODos439TWrdGZpcOAtA955RyfWx5ZuDDx42Id 8j0YGexuYPdThQcGjy3ekE7kuXDYII7x5hq1JSQ7otHvD9u+tepbJR7pGHHpaTtKuibBrbGkQ8OS NFo4+fZbvLjrxaMGSXutyRtiJBnquujDFKZ6g6QRlmyUlfbhQrlt3Ur5RUWlTs7Q3hGmp+7BjesG SEud8IP8eCyI7Mk1q+pkKNNB0pl8j7HJV8dA4Q7Lh5aXVOed9IOmgbnu6SlIiHxP8BbhO+oqonZF t72Ncbv1gN3SsOn+IjkT+e/BRfNl6PZddT+D2yFfAyUmQMd9UCg53oPn2RG/fDMvVxZ++eWTRmUJ y6Ad2784ubi/Nas5Uqzkm8XWr3Z1xHQzx4YnFWjh5Dt+74ef9nQNRJygS9ug67hOA7R8aWxAvu3C HjnRM1Amf7pXSne+Ku1ALFmcGct3aIQainyZjmFrtutpRbkyf9+XTxk1pLU45JuecMg3FUBeKbV2 OMsMeqW71y2XjR7yZb/dyzsadR1ZHPI1sA1CBUnRGmftGPTI74cNlvlJEG9o65Y934FbbbkNHUlQ uytAhDr2QEJky9ch30RlXTT6u9+NHCqdOCFFx20sg5Kha2StilNKwYktMDadQIBXjBosK0R+vQn5 4lvl5dJZCZf5hoWR79X6NhVghU1JwifdAh55fMHieUYVaS0O+aYnHPJNBRBvHUe28nR2SUA6BYvl ksljZOyHe46+6ZJDvgZQnNUVzPuQdAi65VtF+bJU5HmjqoRkh0j7myZOvOPM4nxpj9Yuu0M5Y5Xr zDTj6qQJ6Jtdpg2VeVsw+Rat2/BsFxgNe+xFexGoU5IgW7/x9JEMWMAqInKMJ1fmfbpvH8PAzT1u n/2SdA7YvRgE0zfO90lCZ2VqZc2ns6H/MnFSs+h6dsg3PeGQb4qgk9Zog2ADUDHXIcRwkVw9baIM i0aPvGuYQ74WdPZfCBmpLKwLrX83fLBM/+STR42aEpJNIt8Lblv74deQIJxclRXhMgEujreNs1lP pgWAfppWU5xwJYUWTL5XjR61jEMCuvxKC7/RX+x1SsGtBP1y4bgR0m/HjvYMg4hkRjZtnXUsKliZ urwJ6aizUuN9nyysHhPmU/aUHONzyfgPPihSZaSxOOSbnnDIN0Xgbnr45dhvTsStw5TUTTdfodw9 f3bV8i+jvzWqO1Qc8jVABsqqjEjbQLH8JOiXhVVV9TqPlzLk1e3yFX++7tOs6wbZ4tUZzjDQ2jrj zFzuWoX/UPj1vYbQfQsl38X7oqf8YIi9hSTjaBEujUBDGHZFiVeO8RfJ47Nm7t0cjbYzQeFpVI9/ H5U2HqqeyTXGDWi4ObacHcY1atvZqMjdMGm8zI9Gu5igpKU45JuecMg3ReCMb1SIszgsBDvOzU+Y f7hD2rGFuXLLtCmHH7J0yNcCSbBDsFAuGjJIJn/00f1GPQnJ1mj02/9dNH/QN1EDahs2BVszKTMn iZetIzxjxtctEGmIrBZNgxT4Fkq+njXrop1DXGuIOGrBJ7h1ntFtPF0kibaoPJ1WnCcj3ngz3wSj Wryv75LjPWbDlIZIRwN2N2fr2krWtP1yqrtQCrdtq1fvTGOJQ77pCYd8UwTokasdsnQpIlfIIK9X 0J6HJCfglZ+gcTD/04/9Rn0Hi0O+Fnii0PmI/+KqqoFGNQkJWkNnDUKL92wQOImXy16YwWvGkQE1 OtQxM6zVUrP+Y0Y276QSLZB8YST+74ce7sNqeguoQ+1NQAGgbqnjeLpIEp0CLrlx1vS4Bmr1p5+u +UFlBd5DmnNooUHCwLQL6bwBa2MAv3QK+uTX5eVp3fXskG96wiHfFEHzMuPPMsmyTxvEPBWSLPzf 1Z0rN02dLMs+//wWo8IaaZXkG1v4Ycjahzzyq8EVMvH9PXcbtSQsT768cNaZXEbEbgcaYBhJzZQk WY4ngwi5FlVbuiBDq4uCCYZMXI5WcO0wpgItkHwvriz/v2Nc+bqvbpsS1jKhYzN5TXcC43O9rwfs PKFggaLuAKRZD3exTPzgg7gGau7evSf0mTpNcmCMdMznIHcA3td+liiUGAjmGbviEZQ/DBtRJ6PZ VJKu5DvizZ01m2zY5KE6ZpklDvUj/WDnz3j/HQ61v/GDfOu+yQZ3uOru5d7O/NbkR1t/aQ/GPV5Y +czo5ZD/6gJ8p7tmcTIk94+G3VUC9qCRUCTdwS/B7dvWGhXWSMsnX8aJhYkKIaxuAm6czi0CO4Ew L6wsqfcYL7uah+zcLl8Lc3kSMiJ3roIfVovX9hvhsFEdJvPfIeFNIVog+f5j9nTJ4jrsSsSNWwDq 7HHqkXFkAUhQp9SR2Q+aG+RbE+EsvWVUePDMJTlIy4tHjZTg6tU9TTAOkae2rA93d+ej4FlbhKre dRkCz+rFvaY9wsoJWdV5IYGw6gb6aGWU8cxnbk1Kt0rlOK9bIm/u/sgEI+0kbcn37Z27OoWgy3CJ 5MBYZqHssjeKeuW2i5oX2CJWMF+wTMMv5jctRzbwLMVxOQj0l+4z/c1QFcnOam0yvyPfa7hrfRcX /IYVNy7FM3kPpNHDm1vn7SWHv/aqHOPPUzfUxmkeN241FVjZPlqFW3s3GHdTQWc5R2WZ/+lERu0y xn+szPNwjdrfHxV0H9+q27HPUP4jPrl80kRZH43+1KjRkpZPvlQIMwfIR/viGUcYgLKwdAi55bdI gMkffni7UUdCsk3ktMINa9//WrAYbvE4MrhtK15rz/Q3NiyNjBZGvi9XVc36epDEU4i0RBqGItqj YBkSq+ZZbVTqCvt7FECLfKkj86wShRI11+NgZHq/+OL42SLZJiiHyNqqqvDvhw2Stmqgbfepe0O+ +gxu15d8tVJgkS+PusskCSDsbcNu+WnYd2BzNHqFCUpaSTq3fEm+bUpKUAmnGzYpGZJlWeaaf1OB 4n0W8oG1mxnfZ9pZZUuNts7nsMKSGhj3tTeHZRfP4C+HHaqPM6z2m+GoG6wZ87jWfI48hXCTfJcn Qr6BfLjDlRwm/5qepyZBAnG37AN+Nf9ZtkOPWdSjWpn+/B96UTBOKQJ44CRXgYRe277VqNGSFk++ phVjHRnGfXhxjQzcLuSV3w0bXO91vBui0R8O3r5NvsEzNsOFKJgeXVak5/GyJqgFhf7XCk9jogWR 7yaRM2+bOf2TrgEeA8f1dNZpNLqXMg0fjZSdfxPqdsb3mlY0TPheCybd5EkmJORiObVggIz6cG+J CcphJbR9u3QMFNW4Ydyl0T5o7L9eYNoxfiQID/KcyWMIIw9HL1y5MmCCkVaSruQ7YSfP86U9sE6s 0VONWEZMz5VWnLXFi/ByuAitYe0xY5km1KYwPfgNwN844ao/6Dfzo3Hbbo1pJYDPzZwRzav2f0cH J+3xMAlrtQWAb3kY/it1JN+hPNXIX6BlpW2Yh1LY+mpiIE2sZXg1OOh/Wz9KrKzIknytiVK03QTv 9aQntZvmm1QA6dQt5JGfB3xvTtiz52SjylZCviwkJF5tMfhBvB75EWptk/fuvcOoISHZKNK9eNOq vWf58iU7VIAWEmujPPaNtVRTE9ValcmY8cLVGGhB5Dvm3bf+eaprAOKBdIR+eeSbGhElJHYbUfcw Rlq4iDj6OAysQsixeEPAWnBRCKGrdhGX3DJtkjDNTVAOK+4dG37z7cEkFxpFnhvKY8hiiF3TAv8l VDmIgeYlxhF5GGVWCR266IDW792LXkrLsd/0Jd+3dnXzIc+UlOF7EjDSRsMEw0yyNT0LWZFSRZsI nwO18xa+4ek+Vus5xWA+1LwI6NAI8xXvWY6Z/3n6EsJW3R19ZOjBIKxEANrq1WV6XjnVlVtn8q3U lm8e3OJ4JpfUkOgO9auxoBUjVsQBntFrg8/0rGNC40rgG1auOMfGXo/Pcqk9CwB13UDkm1Hilq/B ltw3ecKVRpWtgXyZYWmw+OuXjqjt/nn4UB6SUO8tI2+cOP7hb4Q90q4ErRzUejO4OQcTTkmeOmSC moISL0yNhRZEvr5N6+TYkmLVN3XLGrwenK8tDrZ6Sb6MN+OcSOEx+QOwCJJu0d1SyUDNvmfEI6W7 dw4xwTiiLIru/9o/Z0/RCXzqho4dGj+QDno4AitosS2VQ8ITD9b31rWVhtrDgufcUzoj4pNvDonI yi++eNUEJW0kfbud39x1ortQOgW4RtuNNCuCbXBLB6RdJ7jVOVis28vy/G4uM+Nxjm1hQNtF+A7e R/nnWJ62uFAJrDmWMIXQ/G2RBs/+5tBWu7ALYDhwHfLimVfDr8/qBHzHb0EE7cNF0jmUL2cXPCtL Pt4bNqo5ogzZtUNO9DyHCl+udAwVwp0idSu+X40D6qBjLfBZO6QdYaWfV3JwnY00Y2XYyn/QL8si t6QdZH5N+YqbHskAFaeuwSIZuGplTSWnRZMvlMgxEu2aREu3LRT/E1exvPTFF3ea6Cck3E7QtXbV R728hSisLp2xzBm22hVFP7RWRb+ZuCQDGsiY8DQ2WhD5XjppJPIpx2UQLxMPq1JliFdJmM8QZx1q MDo4KqgfuoPravLldYlkBf3y21HDJH/79q+bYBxR+olklr22a9zxPi7FoBsgGhZm+oGKGcmXi/E1 j2j4gepwHAkMF4FrjR+fIb7awxKUbFQ2OsEAPrZokUO+dZThb7/d+V9TXpQ7p0yW26dNlFunj5Pb Z0yWO6ZPkrumWbh9Ov4D7lRMkjtn4Dmu75o2RW6cNUNO4nnAeqQk0iHF8VGwoonKfDYIs+9LM+T2 qQzDVA3PPdMmyJ3TXpS7p06R+6ZOwP2kOoHxsuIzBdf4Hvf/njRW7q6o6GpUc0TJnT394n9NHCf3 znhR7ps+TW6bYukknl+NAaaXphPS7iDMfFFuw+/1k0bLX4aUyPfzn5NTXP2lU7gAhZRr8tFgIu+F abfZOka5AilnskzZZS2VgG1pB/75E/jWqLIVkK8h3g5hRHzMCFkcjf7bRD0h2RSN/iKydZN8VQmX RBYwY7w01tCbjhXZXUBsSaH1Q9iGvSnQQsh3wjvv7ujhydVtP3nIuXZzmUqOdjeTMNklR6LT7kIg nj7igmmHXwV1BTD9UGnrjFbQnROmbKxLl7MtyCfX/nJopS4xUIJk13AF0gFGVCep2PkF6aAkFDdM 8cBuZvwyTZmOOhHIuud+4Tlolf0g5JPxH753nQlKWki6km+ysqKqatyPubMZWswZg5jnkNZxwlVv qI78koU8dKynQFZHo/80XjuSoGyIRrusrqp6umDX5qf/NX/m5p9XBOU4DhlGPGhAcSyfSwQ5xMBy ycoU7Xat9EgGmpbs7vdLr6Bb5n1y4CYNWMvudobhQwuVJ9+cnft8dGk0ep9GOkERkezbp0158uSi FyRbCZWkRuPJAkfDT73BL609WWOF2sWoxEBSiBe2RkALIN+VBw5cczEKRicQYU44CHCMB3HjkgAY p+ouJCUi8x/v4+njcND3SZLWNXsyeE7vaf5CWfj5geEmKHWW0Ju7patngGRUMv3hphlj4lgwK2w2 +SYaTobL2mSD91ZaKvA8A/n8eH+RnJP3wvUmGGkhLZV810SjN5yPeHVmb0wQNsEeQ0wVoJ+MMPJL MIDyWpyW4/nNVVBB/kn+9s1fnBwolI4ojxkBdkfTdqBccuKdTqCLkyb1BdOSdgkt384oo8GN217W gLRk8uUYXqdwsfx19DBZHo3eqxFOUJBQvwxu3vjlN1DIcuCWbpJBRdIPexKE6o0G1RhGBZ8T5t2m QAsg337r11xzlo7VWHrnGKrqHxUei4wYV8QLxo/X1WmTCPQb6IkEzgoUykPXYKHcNn9WvYzetPfe zfs+CnBmSSHcZp4g+XJmNsnX5JV44TgqrMqGvSQqg5PCtNLh0eEPjkv2mTE5rQx1SyXfV0C+Pw16 pR10r+WKeTBOuJJBpubFsJzghf4cSbmUvv5q4DfDK6Qr13tzeJJlk2O/2pg6ND2SA9wsAfmGvHL7 5MlvbYtGz25Z5FtdqGmcAjrY/lN3IYn3YaPvhCW4daOchFZMTsQlGazdquGDnpSEWVuKqDGxF2pn VXc1o+CwKzpeOBsLLYB8n1q9XNoG8yUzzO58GjjqlnHyS7ZNtjrWbk1u0pnGieRjpKGSNtNUnyE9 K8LSC63eiW++US+jB8N87lVjh+xvF8mXbJJkEOFW8uXezMw7xi8SZ2xYjgjEsYLky8kkVve71csC twahNc3lVxUhOd03UMZ/+u5qE5Qml5ZKvuvZ8vUUSIdAPvxHGqS65VsNv3Rz5Trk20Dy4uefz/ym txANK+TRQbAxtJk6STLFIKFXBKSTzyt/GlIpr0S//H0zJd8YA6sTUCxS0VYQfjmjtCNaLn8dPULm Hzhw6J6adRCO8d4/e2bpGXCLi7Dppxp627gr+dIvy299ng5dzbFo5uS7pqrqyfOg48yKGD2rbi3Y 6W3HtyZ9EtA/Kk9W69nqauJ+rKy0/XJomSza9/H/TFASFvfu7TN6+QpQGUM+0ZY5x3zZasWvXbgT Il+gHG6hkmev8bUqI/hl64s9MGgVd4QRuXz0yPdRs/6uCUqTSksm3wu8xdIhgrixjKV6zFeBNEWe 4XCC8daRBpB7F89z9wwVQtdIS527Ey8tkgSHKGEDOgS9cgHIt/zDD5s5+VYriZkURhpGLRP3nYLF cgGMaX0nV/GQhMiWTfIVVz5avCReY+SUYJuLjoBmTr7/Xrls5XEBl0U0OrbLdK8Vx2QBHemkvBAK HlqOPPrxeG+R/Hfxgk+2RqPfMUFJWLZXVYV/7OZaSBZoGmarYqaz723ibIhCDmL+JlrvpVs3pcUE nZZMvj9HvNrpMALD0AB2QfUUAPk6Y74NKXOi0T/+IuL7vAMnWtHOxEuLZKG84dOK/bnlFTLw1Veb K/kasDbBzTMqaOBwr7Oa0awfOUxmfvJJvSae7IhGf5q/7pWPvxoskg5lLtEZcVzPZ1pTluGMCUM6 oxmT74xPPvjBd4KejzJDRdbYV0ORL/ShZEAjCj94YMPZ7mKZtm/fLBOUektg40ZrQg5brCBda3IY 08PMXG6gfNTVnSeFm1enhcF2yDcJqJ4c8m0MKd311s7OXja2uN1oJH56JAWWfR+41ivnlETkgWXL min5aqYEkVSyuw0Zk90FyKRcR3XRoAqO8dZ3OdG5oS0b5TRfvrTllPOIS9dlWmszScDs2ubYY63w pCuaMfk+t/KVB0/jAfVc+B7yIPzMvCkmX6ajEmJIMjkmG0LNFNe3z5qZEmPXb926C8+Be7qEgd3m JFykA7uOaw5bSDGgo7alHvn12EFcntLkXc8O+SYB1ZNDvo0lp1cUSTZsDXtQ46ZHMuCcAPBINmza mZGQ9JkypTmTL6AHJdCYefW81T8PHSRTP/74GqPLhOWJxYuWnIkWb1aE+/PCXRYs011g7awUO/bY DNCMyfe+ZYulkw9Gm/HgmDt7ORqAfLlTlI7JkoDROu0VDsnDixbVa2Z8bVn95ZcXXlZSgtYvwq5p AT+5ET7nBthdz7XDlCw49oi8emzIJaHt2+eaoDSZOOSbBFRPDvk2lly+YIp00smMDVAudSUFJ4n6 5aRQQP4yblQzJV8dN7MNcUg6o+D9ecQQWRqNPmr0mJBsiEZ/ftWEUY+f5be2XGtT4oL73HDbct+a GAPdkJCdMd8Gl0GvbrvgpKI81ELZ3Yx4VCKtdSJbrfglC+jC2jAFGBRBZcsnvwRZjnh7z0UmKEnL xDfeWn68u9DMoGReQkWCp+U0AAFZQyOIC9I8O+CVvw4dIgs//fR8E5QmEYd8k4DqySHfxpJ7Xlki xwbRwOKuV/HSIymgbIJHsvB7XNgrvx02uHmSL1sNGUEQYXlE2oY88ruhlTLt44+vMjpMSDZHo9/M W7fsk14BHtDOU2y4CxHPqjQGUvdWtTbO0FY2iKy56Km5ku+d0yfO6YqKkC6lIWFpHFLc6iWgiyxW pnRIgXv8euTx+QvX7hbpaIKStPDYyT9OHIt8inyjy1Hwy6MKea15KpVgpZSz8wNacTm7slSumzrJ Id8GEId8W548vWqlHOvl6UYNQL60MwCHzzoEXfKNoLe5djsHtAbRPlAsl40ZxRZvvdfxBjatlzNC RXCP48fcupAndZBgAe6ixPWVevyWtUkC93N2yLfhZPa+j545f3Cp5HCSG5cBocWovQ2JLsupC2jc wuzN8Ekm0ronWqivfPaZtftMCqVo3Vo5zo/WL9f6KQFbteC4YUoKIF+kdwaIPicckXZBj7ywpmkn XjnkmwRUTw75NoZsjEavfpbk6ymSzGo+TCGYllrh5lGMLjmpeGBzJV+/dAoWyh9KS2Te55/Xq8W7 QeQrA1e8vOcUz0DdF5dbf1mtLPqBa7aG7J1OzFpi3d2KXZQN0QprCDRD8h395hvSTddO8uSiEEgE 8YDelawahICZlgFp586XvjOnCVqq3UxQUia+9Wtv/Jq/QDL1zNgQKnBMF/rbAOWNY9goH5khtH5x f467SFZWVQ0yQWl0ccg3CaieWg75bvriiz1zgCHv7tkzcOvWPY+vfGXPfUvn7rll7uw9NwN9FS/t +Ttwc8oxG/7MBGbB/dkKPrt55uQ9t8ycueeOBYsOXDBpomSFaN9rpUNKANvLoVLwTDvwSo/mSr6d 0Gy/avxIruOt117NG6LRP7g3rpWvogaSA+iuSMjo1ePItnFgi0tJC+Sl1/TfJuhmgGZGvluj0csu Hz1cssPseeBkKC7PMWnSIC1FAjqBAT014BHfmjVjTVBSKojXty8fM/z9jshruv90JCJZFUwLK54p hW53CgLmsqmgT7r6iuWueXPXvx6NHm+C06jikG8SUD01T/JdJPLrop1bH/7f4sVL7lswX/4yZpR8 vyQiJ7uLpYerQE7wFstxiFcnX6F0hj3nUa88qrGDHuvohY33pBydUca7Is3IHzyasXPAJV3hXyeU kc5+j7QPNWxaWiec8RQybzMh39iCilYnE+gnaA0tjUZ7m3ROWO6fMDp4dt6TcmwwX9r7ipAIMFJI nC6BYk2cY/w+6QZ0RYHuGiiSboEC/e3IvVyRQEzILki0tAfixbNJNV7IaJ0Q/k7IgGcVDEhL8q38 4I1xJxfl1lSCND82cJ5EnuJhB+eBFKd9/Gm9elHqIqO++GRLd1ce/CPpcmMPxKu6QpdCaCWFFS23 tEWc6M9vxw6Xce+99y0TlEYVh3yTgOqp+ZFv+Zat0YuD/ugpyO8dYXcyWZnmDGLEJRN60t5DDu2x 8qnnn7O8A9WNICveqQfKAzdi4hbBrKBqLyYwiP9x7T3D1kDl0s7vcDsb8U5D8rUTgglFsPWDxOD0 bwS6c6hIrpkwmi3eeu/e02/27PY3FuT9K3/RfHlq6SJ5YtkS/C6Vp5cukWfiYnEMlhzhvYbHs3Ge HQ4M55OIF6+fB/itxnX5EhmwYF7ake/caPSEKyeN2dwBRlT3zyaJVCI/lHuFBwnoJIgUG2zNb+VF 0jVcKLcteEnWV1WN2RmN3s3wbBI5c4fI88TuBI4UpLyKbwhzqy3fZV988f75o4ZIVgkMKQ0OKhh6 nmjccCUDu0uby+WgS7SEe8Gf0tdeC5ngNKo45JsEVE/Ng3xn7tnz/FPzXvr8gqFl0sWbr4fXs9xy K9XqvdMVteLY2DhS3jvSf8nCdhflkfNZTiouSMOWr9ZQUBvhBhq6jhe1lcoS1KCK5VehYNWyaPRG k96OtCApXL/+pz8ZUo5WKE8DAtEyL3A/5DJucsI8wWfmeSpRWSptQgHp6PPIsa4C6eUpkJNcA/Uw jRM9A6UXau+nFBfIycCJ7rqhB9zo7i2Qnvjld6cWFcjxcLs95xYMRm2/EkYJFcq2PGowXpiSgeqJ lRcYbOiO5alT0C231vOEpmTFId8koHpKb/Kd+OGHxxbt3vLGt1GpPM4/QLJD+daB9NAL52xYR/Ux HtRPGvBLU+Eg8vWnIfnaE1FoONR4kHyD0i7gkmsmjmdXc1qdVepI6iR/2wY5Plhora3mOjs1POwG 8ppu6IYhXz3kgOCB9zpeao2PZ6ECyGVI1ilJtt91APJwVkkZvivDPZdKheEeZ8mzIgHAD3ZvZVd3 fx0cnqRhDLYSL/zjmHlO2CMnuQeKd9vmm426G00c8k0CJi3TlXwn7dv3xD9nTZMe/gJpq3sjuFCG YLORvzWdOb8hpiJdPYG1NcLO7+lLvkwoGA7u1VzmhhGzdq66IOSLLoxG63U6kSPpL4PfeqvnaUVP o6ZcaC39KYkAYRAHas8cFyKZcJp+qiddwd22FSBB5nueDETiraTB4Hpv6+zgg4mV3xwZNDbZqDzo Ljl8RkLnJiEVIF3m7aBXcni+b4N0OcMPVBqs8WTrnjok2vsL5bbJ42VVdN8pRu2NIg75JgHVU3qS b97WDbf+IOJBw4g7AnJ5JsoR7be2cg0OF6d4z1s67HinK/la4wI0tFbrgLPRrp0wVpaLXGrS3JEW KI8vXVp2TCgf6W4txdEZwRwn4rio5gmgIcgX+T1LD87wSpYSMIH8p8aD5AlUky+fmbAcDeUgGxus SFby2oNWNvd2paGie2xpG3dTBuqLJyeh9cFeJNUXWtuIE0nip2MGyb82r3LINwXSmsnXvWHNc+dX +CVHeyfZOxSWrDAqyyFrfFfDzrxnQGLOwX/WskHzf2uDHe+0JF8Ejl2O2k2BmlT7sFf+XFEuS6LR 20yaO9ICZey+d3v1RotMt/VkQdbzNJEHjOEh+SoB24U5Xt6pL5jnUBCyteYOP3loBnc041isdkMz LDQorAwaUo7nTm0wnMjLVusZYTekzPu2MEBqoBoiPkq+qMBwzkRpiRUHGElWZNrB+HUKFsi4t95o VEPukG8SUD2lF/n6duy47TzEtUOoCPmKvVIoNywnmpdNZVmHCwG7mxk2PQfkrD1JKU73ZgM73ulK vkxIbo3XKeSVayaMk9mffXaxSXNHWqgs/HjvIp5e1I7bInKjExbmCo6VMl9YxKtbQNbOL6kA81y8 sShjSNgNnQkyyypxgzBJanzvaGDPDci7pAQGJwKQ1OEe/CIJ0gDVHC1IP2L8TRqGfHW8l8SLZwDJ LiuIlkrYJb8D+a2p5/r4+ohDvklA9ZQ+5Lu8quqFP4wdrss9M8LIa34um0E+Y1i1DLG8cE8E5j9A yxbjwMo0K7L8NXFrbbDjnZ7dzkjMiLXW9v+NGMIW7+0mzR1pocJ9tf/7yjJpH+TRjWyBwjCza4r5 QQnQIt/qMcyGKLg0EFz6Y5MwCoeSoo6dEh6FGhQYwupwHAnspkZtn2NhhEXIBnCjZo0v/+P7qQLd o+FjPHiPcPA5Wu3cVSubhry4vzy9eZ3LJEGDi0O+SUD1lB7k+8KGDV2uGzd6WbdAoWRw97TyClSW SajM06w0+3RlAsnXyoN8ZnRip3cDpHuzgR3v9Gz5+qVzsFCuQM3qpc8++61Jc0dasLy4/9Oic1DZ 0vOSmTlDaJ2VcHYwSIOtNpIvSJnGuiEMtuJI7tr/Vf9PMjsa+B4Nj2kBEDzFqBLPuG45luhTTr5E rJt2ePBMZ6EGpW3QLX1mTX1vYTTawSRDg4pDvklA9ZQe5DvyjTe29AoUSHaQS/9KpU2kRCdHthnE sHJiH0mYeS8GCD97ezjMoqsYiBSne7OBHe+0IF/NWLy2xgk6Bj3Se8xIWVbPMd4t0ejFpVvWy92L p8utwO2L58hdC2fLXYtfkjuA25fMtbB4rt5XP9f/+Mv/FsrtixalLe6I8+xI+OeSBXLnogVyz8IF cvfC+Rr/OxfOlEdnTWnyTTZEJOv2uTOndQnkgWyRD8pDKKQAatVcI0jy1UJrxokajHy1hUgjgdYh iL7GiPA5yYvdahwL5r0xKkeDcbMG5jnyOfO6Det57XdTAIRfu+qr9QXyH0T/rArCecDcT/b+wyRF g4pDvklA9dT05Fuxd+8vfjW4zFqnXml1H3OORBbn51TnMytvWZMIDarTGe/EVjirnzch7DA0Vlhs PxqffI27Mf3+WhNigCLcCrFQrhwxVOZ89tlvTHonJJui0Z88u2Th5yejZtY2xDN5uY+nS1vSnUPF 0gnPauCudc89RS10CnlaDriVZNAHUA8uGCfEDxUcXp9R8EKTk69/+e6Ofxk/FnkAtWfNGxYRVU9s IoHF1pZtVOepFAP+Wwdn0P/apEhjwl8+rwtiv41BjB/W+uEjvJsMbPdtfbG7G/mb11kof10DXnlq 2+ZGMegO+SYB1VPTk2/vadOGdEYYdKkcwbLJPMayeaQenOp05jd8h++ayqddzuPlg3jP7Oe1Ee+9 w6H6O5YPawme7r5l25h436QKtvtNQr7quaV8Rj4TRMwuRZLC3yaP5RhvvdbxbhS5NG/NSjnDX4RI cbIJ/bFrXZZfh4anlSCND1aY+fGHcmJxvmRWE5uDlEDzvbmmkdRWOA2dZSy5s1Z2yC+nugpl4nuv /9wkR4OJQ75JQPXUtOQ74OV1p/92yDDJVtth5SPbjms6JjR8UvOtulOb+EyPUXXD7KBvzTOA/tqw njFsdYBta/QbVgAI8/1Bdqiu8UkA9JO/TdLtzBYO14Vx3SNrQfCzc8Qnvx9cLou+/PLXJq0Tkl3R 6LcHLltcdZKrv7Qrc0k2yJfbEyrpIiFVsUS88LQGpDH5XjN9vHQNFrfu5QcNATUs5tomX0INDbvW 2ZUfkB7eIrntxTFPm+RoMHHINwmonpqWfEfvefvzU31uLadWupGYLHLSe413AmTFvMj5HPzF93RX bYD9n+ZV679DviU0DDWwSVgrlkdANQ/YfhDV7sIuanc548H4NFBa8rfRyZdGn3s1l/P4Pi7b8EuH sEeunzKZY7w3mHROSHj4ce7qV+T0YJFkc7N6XRLCDQa88BNAJK2dkmJrNK0MaUq+JTu2PNUjkIu0 8khma1543xCgLqsLei2g3HHmM8e1u4S8cu3USQ1u1B3yTQKqp6Yl379MHintQ9w6kvYU5MSGE4Gw aQtV411H8mV8aJNIdDqhMoDGkl/agX+yyUFsNNE95lXu669nqtOWE3HuadNo6xW17w99xgmQ5Aj6 yfkdVthtmGWF5CedsW3CnCrY+b3xyZcJZkWSW/dxOdEfwqEDS6LRP5g0TkxEMm56ceKInu4BMCRF 6rbuk2v7Y/ulmbdWWFoT0pR8H1s4V9pGeOoOwmTXSB2kBrF53iZdGkfTG6SGLwxDE/FJT1+xrNm/ v8okS4OIQ75JQPXUdOQ75YMPvCcGBkombUeI46QMF+NJIuahCbhXQqwj+WoLFDZJu3lxbedPuMvW KVvAdJPbs9a0sOmf5edB9/xf38G12nxcK+z7wzzTby0/a8oHn1mErMsA1Q8+TyFUdwDC03jkC091 Bqn2qYf0fNmbpr7IMd6rTRonJGuj0WuvfXFMxelBN2pkxVCWGwlnDZzXbNlH/0i+JBxe1wpTa0Ga ku/3dP9k9oTECbOD5GAbFl7bxiUWKA8ZLCMoM+1DPukzbHB0czT6e5M0KReHfJOA6qnpyPefEyZ4 j+d+6zopkhvHWHaVYePKBO0u1hZq3WysbjMZNt3Asf9pfiSh8z/OoqZftFWWveKOh3zOvaNrIwNQ bqEbRwTcqaRf9JN2kVzBX2tVRTZ3nuO65fIy+M13Ugw7vzc6+cJ9bhvYEYR5UUXJl8ui0UtM+iYk qz7//DsvrF4ux3r6w10SrnUQurWjCjMAEq20FIAS8X/1VnvxwtUakIbkO2Tnri+7+gs0HBpGLQwO GhQ28cYCz9nl/1VvoZS9t+thkzwpF4d8k4DqqWnId/r773d7cPYc6exBWSW5obKWgXzD1qFNkiTT xMg3AK6xSFbzIONHd7hemPabrU4uMYROOSO/q9slx3iL5fiAT7r7fHKc1yPHet2K43FNHOfDfR1w jK9YugSLpavfhXuvopvfI92DPjneXSTHud3SKYh4hkjA9tLCFMLO741KvgB3CuKSl77Tp7DF+2eT vglL/1eWy2nBQsnUrg4oCbWl6jHeCmYAZpISgCSMjKI7Eznkmy7kOxtp/6uykqp2EdsYMw0bJs85 iEEs6drA80xUVtv5cuXfyxauNEmUcnHINwmonpqGfJ/ftq3bX8ePkS4gKIssYTsQR2stPMnXtE4T IF/tdbHLO/MgW68gcJItezDbRYqlOyrmvxk9TB5cvkjyN60X3+aN4tu0AeCvfV0Dv0Ggjghv3CCR jRslBPA774Z14t+8SQo2rJer58yS7BDzagOlJX8bt+Xrk67BAvlLedmBV6LRK03aJiRbotEfDFix XHq4XpC2bM2GQbaMjBoShtkGa08WwViRNc/ihas1IM3I94mVK/OOLRqAsCBMmsGZXq04fZoaqLy2 RUX2DyOHyKZo9FyTTCkVh3yTgOqpacj3qunTu507pFzas1XK7mYSLGwvJyPpEB+PxVRCpl2pYxmm G9zsxVT+7GeZZW45EeR77dQJMvGjvS+bIDSqbKmqmvAMOKZriC19e8lqCmHn98Yk305Bt9wydZIs EqnXciJk8muefGWRnBoqkuwIZ90hjIiI/au1L0IzALugTWtXI0vyOTg8rQppRr73zJwt7dlTwZ4L DhUgE+ruVg4aFiwLccDJjzkwhCcV5cmIt99+zyRTSsUh3ySgemoa8j1vuL/bSSyjPJ6y0iLZTCWl GPKtQMsV/+ss6Hjhrw2SbwX3O2dr17JF3OyiJ+LnfXWnzI1++TsRyTBBaHQpWL1Kunk5xt1Aacnf 1JAvFW6Ubrc2tTuC9wE19l2h1EtGD5elIFATv4QELd7fXDF+VOhYL2fcIeG5hpfuq78IK6458K/L iTRyyAhKvsg0DJcZUG+1SCPyHfPZx7/+cXmFtXUkC3MEhZjp2BDdzjocYfInyIV5Umdmmjxak3cJ 802TwFRCWHHUtLHSxxoqqfmvejeguG7UAfw2DrhjEY9TJHH9adSIjxZGoyeb5EqZOOSbBFRPTUO+ g3btuJRjpDVlhPmQc2hgS9TGAyBSPaGrruSLb/itki9tU2lY2oVdcu34sVK+dWsP43WTScGKFXJs gGUuTtiThe1masiX7xI1RkNrRAh8FhKqS6BA+k6dKCjQPzBxS0g2R6NX/m/ZkgOnMOMxA5BINfFs f41BsqFhYiawYT9rxUgj8n1oxYJ3u/i5xSF3NmM4mEZ2WsYJexIg8WaxosaaNuKdiThncc9oxF/z qOanGL91+KIJgAol173rVpA6T6FE00fDHma+t8iXpz3V5PEUAi2XLD3c3y+nBIvkf4vmpny/Z4d8 k4DqqWnId/Ked3W/fdtmEDVbo1rhqim/vDZhPhL4HcufLvuBbSoPSTd/odw7dfzY2SLZxusmk4Er V8gxzYN8AU0EBLYShYsD73iWWR6RTv4iuXH8OG6gca2JV0KCFu9fn3tlmZzozZX2ER43Z7o2aLDs BGwIBbU0pAn5TvvgvVvOCRZKdpiTN+xDtRMotIlC8yWgh8nzGf1B3DkMwZnw/AXxKPQ/hqUpQL8J 6IQTBUm+uNbeHIYXeT6jvGYCYdy4JgOWJ/jFA/+P8xXIY8sXpdzIO+SbBFRPTUO+I17dKR1DsO1a bmrCxLSzgLyJOOv8jTqWY9rwbB0uBNQOhORET6H4162PGG+bVPqvWiFdggwfbUT8ONQbdn5PCflq AKH0CrRmuG0kjTsSqh0ySt/Jk2TB559/28QpISHxPrF4wZe9AvlosbgkA+TL5UQ6q5k1JkSCxinV hbdFIk3I171y5Z5ugVwNCwscjX0N+cQJd9JgPBF3kguPPONxfmXMp6jJ68448JetYoBdr7YRaWxU hwMVV1Yw9SQihp0TWaijSpCuxqcBjIGC+g9LDgxiB1SOzox4ZPOBA/NMsqVEHPJNAqqnpiHf8k0b DfnGCxPBFrAFqxUc887hwB4p5DUOC+osZzSijkHLd+Qbb6UF+b6g5NscWr405Cy8FRyEt7Z27OYr lhunTpZF9RzjpTyLFu/Jvnxry0gaKRgkawyXQPgQiZoxXgdHRJqQ75UzJ0l7zlJnYUWB4ySNBjFW BpYfuC53y0kRt/x4UER+UhmQn1aG5Ce4/tGgElyXys8qSvG8RPFjg0Tv6/LOYe8HlckPicFhICQ/ HRSW7yFcx6Kymc1ZpiRm6Mk6fP/QeCYPlt+IZMCvtvCnfahI8jetfhcV4K+apEtaHPJNAqqnpiHf 0g1rLfKtHiKpBYTNbgUnlpbMy8jT2vsVkK6BQql84400afm+Isf6zZh23LAnAVtHqSBfPY+UNR4a CCrR75I+E8bK3P37v2nikrDc/OLkxb3ceTAEaKVwWjsCaRlRGgnLEKmfCSV2K0YakO+8L75YfYw/ TzKC8J+VJg2bqUjVDm+KwO6ttiCWnHCu5L+xU24dP75jumPV55+/wd9XPv9c/jR2JMgEBlcnD/Kw EFZcUq+v6lYLwS54+PMz6G1O9EC9dp+LJw75JgHVU9OQb9nGdTUtX5uAY4kYYUuYfKu/R36jXUfc jkXL97k1K9ODfFe+It19Vqs8bviTga2jpMkXDnFT7YywpcSOIY/8c/pUjvHWax3vJpG/P7FiifQM u7WLObvErS1pazkRDTa73/gL/9RwE7yOEzYHNWhi8l0TjZ7TZ9yY99ojXbNCMLrcs9VOQ53wFCfM KUFAshDvr1R4ZOw7b7lNcJqFbBTp/tCcGRs6B/Kq51JwSVCdDVxdoWWYacF0QLroygCf9EBa/Wn0 MId8jyItf8x3u3SETnXuAStndphs8jVILC3plpm/ALCFeayvUP63ZJ6sjEabfLZz7ooVcoKPld0G 4BZbR6lo+dKxrPKQruO9buyYA4ui0e+aOCQkG7744uf/XbJAjvMONAbZGhPMsNeDMrE5EaWE20aG rEXepSjMDvkeHU1Mvvm7tl57ZrBQ2nPiUAj5RStSCA97MmJq0IeEO1nAWHSEYbxxzNgDq0W+YYLT bGSdyPCT/PkoA2jxooKre92mWk9wL7uafJlPONnLJ21B9LfNmiprRdqa4CQlDvkmAdVT05DvjPf3 QKccTrRIUpcEkoSTJV80pKxjLXGP35yIS345tkwGvr7lVON1k8kzq5aBz1Dp1XkhtcOeJGwdJU++ ASXBbr4CuX3WdFlcz72aN0Wj/7h2/Khh3EAji1sOxrhvES+VwERHopFIEAFrAw0+d8j3qGhi8n1h /WrpGC5Aq9cv7ThrlzuTMTycUKREjDRsgO5U5o9jPPkS3rp7vAlKs5P7Vi2XDjw4BC3SDN2vPE48 kwHc02PVTIVXJ6gxLUrcclpxnsz84rNXTFCSEod8k4DqqWnI9+X9++UYkC9nJ+vRgbr/Mn6TJV+U fQ5Z1my04ZVOoQFyzbTxMmrvBwXbqqoKTBAaXZ5b84p09PWHraSdihf+JGDrKGnyRY2ZxHvp2MrP l0SjPzNhT0hWfPnZb/otWyQ93QMlE0aGBy9oDSu2i0MTFmGCMU1oVp0DC01IvhtFlv9+7HDJruDO OCikyGMZWqFieMKSFWZ685oT9lKbrtwJ7WxuENCMZezOne+cGORWdzAEmo7x41p/cKYq08Pc20a0 MihdQx65Zc5LayZHo+1McOotDvkmAdVT05DvecOHdzsZFea2iF8Oe0hChnwPAu2JZVMO/e9IgE3Q k4qs4cTMcpe09w2QU9x50m/9Rpm85+2B/Ta83Cv07ru9xkajvaY1MOYb/HfVy9ItxJU1iFPccCcB W0cHk++oWuQbJxNVFxYqzCedkdHvmjNLltf3PF7If5bNl55oFfEAY3Wb/exKtOxy5mxV6yB8a7Yz DzmmkWbYYIh0fMqEzcHhwcqMIV9Lt9azxiDfole3L+/hzYd/SDd2M0c8hnxZiMPSLsT1rAgTl/8k Tb78nvEkgjqJo3Dz+mZNvtP27Pnp70dVoNJSYMiKcbTjyfsYHKSLuoK6Zw2fhgbu2vkDz9ki/klZ hZRu3n6RCU69xSHfJKB6ahryvXX58m7fGzsS5Ms5ONyIBXlEK8ux8UyMpGjX7aVGVn4G+VaUKqdk l3i197Md7MUp7IoeUSl/Hj9SrpwyQa6eMlGueXGSXDNlklyLawu8jr0/GiZJn8kE3MJ976mT5Oqp k+Ua/N4weYL0mTBBfjh6tGQGwC0c4owT/qRg5/dY8v3TuFEwhFAoDWQ5u35Nk1u7oQiODYEM+XHY Ld0CBXLVqOGf1Xev5nVffvm7J5cskuN8hfCHCWm3eGMSVjOdgQY+5j8HCYBEx/RkRmdB8aHFGZTT ixqWfF1r13Y+w5W3LlsPwKDfdnhq0lBnscemeV2g+RHxYOtZSRzXuM/SmbrFklOJymHYJ99HgX7q pZk/N8FptnLP4jlzjuMpXmrgWXGBPisBrguOWFtmctOS6rJSQb3E6vsooB6RPnRfuxapX1ZuodMT YPCD2zYnbfQd8k0CqqemIV//++93uxKElRkuQnoFpC3yh+63wDk3zCtstXL4SCtwdYx7dbrXev+g /MC86EWD0CPtQx7pkDJ4DWo/8+hOXp2AbDZCdRkrEBu+VMCOXyz5/sEmXxpobYVYLU9VkO5aBYOG Ggq7CLsFXXLvS7M4xvsLk0YJyeZo9Pb/LJ4vpwaKoFwWyBhDwevYewcpgE2+vGZh8UkGarANTb4j d25fcjryyqHhSRJKNCzwzK+IG64zOHuS2zFyVjAMRXvk5e/5/WvGfPDBMSY4zVYW7d8/B5UYkCO3 oGRaWvHUuIJ4rUkrNBb4JVQviZAvx+z8MKo0Orwn+aIlAr229+fLZZNHOeR7GGnp5MvtHq8eMWJi e5QpPWOX5KuTYC3ytbuMrf3HmTdrhd3BwbDzeyz5/m4Cu51RYLUQIwMp60OZ3LWKu1exMHOMN+CR K0cM3b8sGq1XVxRavH98cuki6eEeKDmlxVq7sQ7Cp1/szkahVNJ3kDrQILBwME1JvkzfQIN3Oz+2 Zrl09qPQxg1T/VGzsxm7rgjkTZ20gbiV+CQHeaqHq0Dyd+yYa4LS7OXehfOlA7dYRYE9pIeoNrT8 JkC+MKpcE62bnjBvVOIZWr8si+1KPXJi8fMycs+eFe9Go11McBIWh3yTgOqpaciXkr9ihberb4Cx G8wrrPgxntY9wYqbbv0bL/wOamDn91jy/dWkkZID8s2I2HvuwphVwGCDeDNKrULfMeiWO+bOliUi 3zPpkpCgxXvbY4vmycnahVaIAHA7PRAva1IkByVfa4z3kEA7SAIWSVmtRUO+qFj1cuU2GPmurKpy n4VWr9aS44YpCSj58DpgbcVYHbdyxLNE89Tvh1XKgma4vOhw8ujLy+7mLl1ce5iF8mF11wOcKJXU zFOA3ytZs7wDlbg2bnCZU9dAgdw4aTzX7//EBCdhccg3Caiemo58V+zf7z0zUiAZZUw/9joBtCFq R6zKIDnDaTTVAXZ+jyXfX04eYdVeIhHTjcWXjHJh3I7xFUnf8eN4EP4fTZokLFeOGjWSLd6sCLsw OC4H91noYxOyAQpkqwf0aRlrVmoI6BwEdUrRgAYh39Uixz4076XV3fxmEl28MKUIuuUix5uYjyKl kh0ugyF0ySMvL0jp3sRNLRM++fAPvxgUlrY6fm61/rWSSuJkK8TujlYixfNE9M53YQxUjwq6x2cw ssgnbaHPcyIh+cesWQ751pLWQL6U+1YskE5oNGnjKFJi0o1xZX5sgDi3VNj5PZZ8fz1xGG7Y8mTL IQTwJY79BKVjwCX3zprJMd4zTFokJMig/7hp6vitPQPFMB4uGEw3jIdVY6qZtYzCr+RrDGlsgB0k ByR4DfnyWUA6oEVz4YSRDUK+kQ/f+NEvhpVIpxC7gW0/U4mYwm6TL/NPZYVkB8NydkVY7n1lXr0r iekou6LRDv9ZtmBd1xAJjPGHXll51VYvyxKHbkicvE9A58gbFolb5U8JnL9K4vY73HvXIy8sX/6a CU7C4pBvElA9NS35zt37oXwtAruNyl9W0AqXDvlozxYrfcxDMWF2EB92fo8l36tmjJcOXMNltv1S Y11i7dV8y4ypJN7/Z9IhIdkUjd74n6XzpZtvgPDkGI4rWWO8xmByDFI3DwABMzF1yRENgAmkg5TA Il/oG4nOQnO8t0hunDWlQch3wp635MQKjxJhwwwhwMCxtafHBNLYASz8qDx2Av7fkCF75kWj3zLB aTEy54v9j30NZUaXaqGMcEKUZZitmaGERaLUeR31bpd1veYe6kafeF7djQjdslfst0NKZGb0s3rN 9XDINwmonpqWfIO7dh33x1GDtnT2F2gjTecJaH5hnnPsdZ1h5/dY8v2/ZfPlGPvQZO4+EvFIN9Sy bwXxLhfpbtIgYXlg1oz3TvDmSmYlDSS7sdi6JvECekgC/OMZpnqOaVDX8VozOmMC7CB5kASVfGmk fXKGu0hyN61tEPK9Y/Z0yQpzt7IGJF92jSr5xgCVuq6eXBm1c/cqE5QWJ/cuWyyZ3v6IP8oIe6q0 0spKrSFfrdBS5wnoHeWOREsStolYx/F4TWNRwTHmgBznGSgPLZ03xgQlIXHINwmonpqWfCmFm1cP OcM7ABUx8ASX9SFc1bPv44XbwaGw83ss+ZZv3Sw9PUhcGmhkoG6BfO1qXhaN/snoPiHh5Cru1dzD lyfZ3IOZmZMes2vCjO9agH+auQzUeBC8dpAy6PIcFJJyNxLdK9/Ny5N5+/ennHxHvvPOqFPc+Voo 2dPBylbc8CQNumsMHZc7RIJ6XOH5w1CJa8HiWrNmzClcc8nJL4hzZoQT6EhkXPpRT/KlHlH2LAI2 3+Le6i0BTBd0TqhQLhk7Ql58992vm+DUWRzyTQKqp6Yn303R6DUPzJsunUIFmlessPH8afbCIN+l OC1bJGwdxZLvgzNn/vYctFS4VrJtsFj+8eLEqvq2eNcdOHD1AwtmynG+XLSguTYRnmlBZrcyCzlb RCQDXJd5rDFg3bkKCejsWpU4qF8b8Z5Tr9pFCfItLZb2IbfcMmnKlya5Uibr9+8/+4ZJY6U9W2EV HE6gsW2AWjHIgCfxWAYP8Sopw29YuoWK5JnVy6pMcFqkLDkgV/0w7I5mch90Tn4JQ88VKDOo0Fpj cOxZYlqTROPoLi6gR0OwSub81vQq0E0dY8Z/2TCwvbyFMnXPnoRJgOTbraWSr691kC/lntWLvnvu 8DLpEPSbrWEZRsaZYMXv4DAf9MyBxYP8jSXfMe99eupvRpTs6ul+Tu6dN0eW1HPLyK3R6H2XjR0+ /vggp6ajJq4Tq2j8mTg0/vi1C50+Y22d3d0kX9wf0jJ2EBfUka0n6FEnsKk+oT8aTtuYamJbLSI9 3zbsle7eIpnz/gcpJ99nV648+5fDKq0WGElXN2tpAPIF2XCtIbvPday3DOSL39NQqRi46pVrTXBa rDyyetmOY2CIs3XmKeOP8sWxXhi7rAi7oEmacfR2WNgGEm5VEzeBZ7EtmtKwdACB3rvi5fqRL4gx 1i1tZdvGKEXgCTyNTb7new35sszFCVPSUFsJ8vU1PfnyqMv8LZs39HQVopHGXdFYWWMjirbHzke0 O/hPK/ss/7RRNf8pYu3XQaj1XksC05G9dJxXpeQbsMiX4t75ypSbx1a8vUHkK/ogQVl94MBVjyx4 SU5wocWrSrcKsnUeLwnAVi4Rq+xE7uvyztHu6/LO4e7r8s7R7uvyzpHukYgxxMvJMNZeqeZ/GmL+ IsPrxgms2OAZDXJnr0v3RzVJllKpePst6ekutE4t0o0aGD5mPBOeVIH5idD4I4+FefykR77lcr1q gtKiZd2BA8u+4bO2CLWGcwDmBy7fI/GS0FKud7qHSk8kKKe4i2TBvi9KTXDqJCTfroFau50xnEq+ 8fyrH6yW795GI99NIN9fgHzb6774psISJ1z1h9FVmpCvLQ8uXfp+16J8yeZqlRDnG8SEFeHmEkDL 9hjy1biwskVO4Dv2M0DtBMF42m7YMO+0CDB+7Nkt0fKaA/2cVDzQIt9kZHM0+q9HF82Xnv4CaQtj z1ZJtRGggdSxJFuhDpIDKzTsIrT29bUWuDMzW6DuubkF91+tXgaAxM8q4W5FA6Vs09ZxJtlSJtui 0Zt+NrRc2jGTKRmEJJPdUtUFjbAzYU1YD31Wh3vEi+PJWQHu/cpWXkh6egpl0Ntvtwrypdy3YAH0 W2y1cpXAoBttTVBXdj6J0VltHca9P8o7yFeZuO4WLJS7507dgjLf1QTnqGKRL8hDw2hgG91qP4g6 hOMI90q+n3zUqC3fGvKtr95r38c+g3vaog7IcWnQ7WzLM4sW9bx6+sQtHUJoaFXC1odZ0bcbACYu sa1du1eAdot5FnbBBu+1h065ohYO0Uei93V552j3dXnnaPcE4wOwjFa4dIfHk7xJku/STz/t/RBa vMd683QMlyfYWIlAw89fkq/VPeEgFbB2ONIMy8S0u5k1cU1C2waOGYDdk5Vh6REqlmdWJd5leDQR kayCtetGdePpRSR8+EVCzAxzBjvSnmFLJQYD8KddeURy/FYeu2jkkLQxTI0h102ffCvTs53uSmfl hWyQIyteliFLsd6Rtzibum3EA53nyi/Gl0u/t9eeaIJzVMlfuWz6cf4i3ZEsC2lXvTSKBjqef/VE 52Djdzv/wuuSjiHqHXFJcXy04qwIyrEBl2w9cGCx8TotpM/M8bs6hPKlPVp07aADLiNVHXA2dDlP BQJKOMSAuOhQlNuC2im8R5hKmHZVA+zF03zCBsUh+mjGoH2G/eYEtcyyIlTYiuXUZFq+W6LRRx8G 8fLMUU6cYu24uibOrep0TSLuVfn2hJAahSd6X5d3jnZfl3cOd1+Xd452X5d3jnRvEa81zqs7PJlE tRKZmZ5dGwC7OJDxc9A6PAEtgvvnzZaNBw5cZZIuZTL144973DRxvLRny4YVLlS+2kRckllhyDel QBxRYDMZ12BAcjh5z5crT69Y1qrId8Fn+279kbtQOuhhKNAze0N0fJ2Anoi4+qsvkOdQpjmBMhMV 7GMjBTL49TemmOAcVQaCfLux5aYG1w4nQEMd17/6oWnGfF0wpIwP0yK18SHUngLH+dzyqsgFxuu0 kEdXL+r5wKKFr/Zw5Utb5EVrsh/sDm0QCVjzodUqtsiXnEDY9orl2YBl23CFtorV7vFZjS6aPxAf cmJFseTARta723nup3vPv3Lc6JdOcLPv3wWluTWjVC9X0BmTNcRhgfexzxK9r8s7R7uvyzuHu6/L O0e7r8s7R7qnXq17q7ZoMqhNvCQkXWML4o0E5FS0Bu6eNUPWRKP3mqRLqYx4880/f68yglYRjSnC xBN3WMBMeO0abarQDgU1MwQ9hEOSjZbfGSGPPLFh3W0mOK1G8peufb+TH+WulORrTeKwunOZB1gO 4+uvPrAMoSGYiF864Pr68ZNlZR13vbPIlxOujG2wW3RMy1p+JQP6saARx3xJvhf4eOwddcNyaLWA Uwnu58183sONtE5TKdi5c9N5QwdJFx97RyzbZO3jYF1bE7IIPqOebCAP2Nd8rmRs5Qt9N44+mius MsSKCeJX4YFt9tZMuEpENkSj/75rwQw5JuSCozC4UHimMb6WQtndAKOgNSE+Q2vIJg4HyYM1yRJT 4LnURGuY/M8vWWG3dAp7pCtaGr08BZK/db2s+vLLv5qkS7kUbViHFliR+m2B+cB0P+l1CsFuVRAO z5ZuA4PXPuyV3qPGfDwjGu1pgtNqZNm+6I97ofWbyYlXTHut6AZ0IlYmjHVc/SUF+KEVa1a0QnIK yKBw27YCE5wjSj7X+aKFqPMAgDY6Sxa/Kc4jXZDnF+xrXPL9tduj3c5KHHHClCw4cSkz4Lb2YUhT 2RyNnrD4033v/HfNy3JywTPSJZgPPvCAG5BfOOyllUMSD1u0Pm0UZIEvMpQzCNgNHSrDtfaKwH7Y e5a3FNBeo8GQCV5kz127oF9OLUiQfCfu2HHiv+fOkRP8eXCIi/tD0i7EyS/Wet1MNQAR1NZKAG5N x9qQG8q2+vEdJI9MVHC4uxEnW1nPvJJd7pbssnzpXDJQvltaLH3HjHpz9scfp3xyVaws+PTTvLNy +8N/DjcwTMxcYaR5GGEkIRA02AQrCaaicNhnR7sHWKNm63pIQAv5mN27PzTBaXXyj1kzYPg5jmbp msMQ2axpq+4Pp8PD3dfhHR3SwD3LcrBI7p4zQ2aLtDfBOawMXL54enevW0k7S49/jHHrIBh/6nnf Jeht1G7nNex2Rmu7A8c6Od9Fj9qrW1gPfx/7DCAhVXrRqs+TbWnW7RxPZrz/1rA+Y4Zu+NHICukM TsiGfcoOgROCJFu2AElEbIzhHq3hDJ2bAvA5n4E/rKE1Ow/H01Fd7+vyztHu6/LO0e4B5PnMklKr Aop4Zgc80iNR8u03ZPDmXwx4Ts7IHyCnFObJqYX5cmrRQDnFNUBOBk7BNZ+dVlgA5AEDFHx+SlGu Aa/rc1+Xd452X5d3Dndfl3eOdl+Xd450nwddQ+fuIvkKcEbBQPlqwQD5gSdf+k4bJ6W7tkrlq1t6 z4juO9kkWYPJLbOm5XXXNd0e4dag1qQfK6O1GVTbGKUCKJA8jrKiWNpVuuX80RWyNRr9mglOq5OH 504f0D0wEAaMk1gC0D9bDJxVTDKIp78koDV4l+V+JdK2vFAuGBKSG2fPPir5FqxZDvItAvkyf/Bb QN2IrSQkjy6BxiXfVzjhCpWf9txxjGefN4TeS+B2pEC6hwtlQ5pNuDqcjP7oo+MfXrX067lrXgnf PX2yfNuN8HuKUFEEsbKXwG7xsreG3bDaA2IDFfhStA656VM8fTRnsELBPIIylI08E965MbEVGnui 0a7Lqr6ITP5if2T0x3sVI/ZZGAmMrgU+43+1nzuoP6jPYR9/GBm598PIBFzPq6qKbKiqesIkUaPI 5M2b2901ahgqXP3lBE+enOhm5StPernc0tPtlhN8A6Qnn3sKUoh8OdlfBPdz5StF/eW2yeOWmeC0 Spn35Sd/PPeFftGTXblyossDFEPv/aWHd2Ac3SWHk9yFmr49kd7H+wukhztPvj3waRnz6pajdod6 F8+ffiYqiCe6CpE/CjRf9PQizCnOH/Rj2d7GW2q0JRr9+a8HDth3UmGu9PIUogzkxw1XvQH3Toa+ eoG4zszv3ywnFb4ZjXaaB754csvGyMWjR0dunTFDLps8US4cNUJ+Nqhcvl8akXNKAvLVcEBO9bmQ RxBvF8o48kpcnTRj9EIlpGdxrhyPCvOx7v5yxsBn6j/b2ZHWLYs++sA769N98tK+fTIfWAQs3vcp fj+VpbheYp6lCgsNFgCLgZ/m5nYwQWm18qt+/bpT1wug8/kA9RNPd8mCabnMgOlNf5bu+0TWf/H5 UUnBv3x5N6bZXCCe26nCtPfefWp99KPjjbeNIhf163ccdTH/0081T8YLVzKg29Qb9We8bNbCXbLG 793b3b9xY/cHZs/ufuv48d2vHT+o++w9b9+9HLZkMfLUQoUV93g6aa5g/mA5mo14zsLvso8/dsjX EUccccQRRxxxxBFHHHHEEUccccQRRxxxxBFHHHHEEUccccQRRxxxxBFHHHHEEUccccSRBpaioqIn cnNzJS8vT/hb+7qgoED69+8vwWBQpk2btmDIkCFnmU/rJXDrosLCQnU7Pz+f8Ju/jigvvPDCePs7 hG9Wv3792rpcrs6lpaVnET6f7yyE8TjzetrIVVddlWWHkTCPHXHEEUccac3y0EMPybXXXitXXXWl 9O59tVx55RX6W3N9lVx99VV6z9/77rs3qWVDV1xxxUV0h7jmmqvlssv+Wify7d279/irr74a4bxK br/9dgHZfueOO+649p577pG77rpLHnjgAcH9s+b1tJGxY8dOQLjk3nvvlbvvvlvmz5//nPnLEUcc ccSR1ir/93//B5K1iJdES1x11RV4djlIubdeWwR8pYLX/Gb27NlfNU4kJBb5XlntLu7rRL4I43i8 q+RLsi0uLv4Orq8lIYOYQeKX8b+0I9+RI0fKddddpzpmWEG+zWKnL0ccccQRRxpQHn74YW35siVK wrXJl7+8J0iW9n9srZLs+vTpUy/y7d37iovovk3mV1xxWZ1bviReEthtt92mLV+SL8PCZyQ3kHPa ke+oUaO0wnDNNddoOBcsWOCQryOOOOJIaxeSL0mBBMGWbu/eVz5g/qqWgoKC+SRdm4T5/rhx47T7 2ePx/Nblcl1McNxVPzDi8xV/x+fjf4X872d8RvKNJfSbbrpxsvlfMWzYsIs3b958yO5JdrczSZbd tyTfvLy8k4LBoO33xWgNn21er5aVK1deXF5efvELL7zQxX6P4DWed+I7brf7N/bz2P/9fn/OxIkT L1aHDiPLly//xeDBg6u/seKr/lzE/zk2bf9H6EcxsmTJkhMZ5zvuuONitN4vvvnmmy/u37//xZMn Tz5kfNgOWyyMX4qxY8d+07x6iMyePbv9lClTDvuteU0F4fl97Dux7/Eaevm5edURRxxxxJH6yMMP P6QtWpKh1eI9lHwLCweed+utt1S3iEmCkUhYRowYcUnfvjd+efPNNwl+paio8C3zSZuFCxceB+J5 /6ab/q7/3X//vfsmTZr0Q7vbmSChX3fdNXLjjdfLzTf3xe8NQn/uuuvOA0OGDFltnFJBuEC+/O4q ueMOq+V7ww03XHvTTX3VfbrRt2/f6pYvyKZzXl7/1bfffpv84x8387vNfftaYeH9DTdcL9dff/05 zz775J+vv/5vXzCcDAP///vfb9Dfq6++bB3DA0JcPWzY4EMqBCD/1bfcctN+y70+eO8m/F6HCkVf 6dPnb1XPPvvU36Cj9XTLDufcuXMrzedtNm3aMPTf/37kVX533XXXouV+ufztb9eqW9ddd92bFRUl B7WS7bAxnH//O+NCN/syfPhGw7znmWeeOUhvlGHDhjzWp0+fDf/85z80DIwrYenMujevsrKwGnE+ wOcMl502BMNFHSJ9Pp03b/ZPzSeOOOKII44kKv/6Vw35Epdeeukh5PvII4+cR6NvjwGTfMvKSmTS pPF9QVzVpAzyrTbiixYt6vm///1PnxN33nm7vPjii7++4opLL7Kf2d3Ptrv8tcPB//PynnsPJPoV unfllVeMt/2hWyRf3F/Le/v9K664TMl3zJjh3/vvf/+jbsa22PkOUXN96TlPPfW/6/v0uU7fscND 8Du4p+/x+UMPPSCI0x/p/qOPPtrzvvvu22pNHKsJ79VX4/veCOM11vfPPPPkvaNHjzT/We4vWGCN +UYiwd+TtPmMsP2x3SPoxn/+8+9Svk/h/3zGyXFMA4Ld7jXd2ldqZebhhx8ebz5p88wzT/2DRGrF tyYctg5svzdu3HjG008/+R7vY8PB/6gHOzy8J4nPmDHF2dvZEUcccaS+YpOvbdhBWh+CWHcTILjd ubkDdv/tb397h8RII0zQ2L/00mwZOnRQX7aIbCNdF/K1x3zt57axjwXDYZPEtdde/bdt27ad/cgj //qM7/N5PPI13yr5orX2PO/tcBGxxG7DJl+7AmG/z1+SE2GH5bLLLpHCwrzldD8UCr3LFiq/sciw puJg3/N/6PLeUaNG6HOCxDhnznQl3wceeGCP/T79pF9oBWvcYt/nf6tXr1B/7biQ9FFJYssd1+w9 uE4uueQSDQP/53d8H2n0qO2+HT6bdG0/7P8HD67ow1YurwnGwX7P/rXduOuuOxCPOQ75OuKII47U V2zytUHjSgNtG10aYd7brUDipptukvvvv/+rY8eO0pYv3yUOJd9+1d/UtHxrxnyJRx99ZPWKFS8X LFw4v2Du3JcKHnzwniWxfvXv/7y6yZYv7/lNbfK1yQ8EqeR7//336resJKDiIP369Zs8f/78gtWr VxesWLFCfw168v3DyZAhlT7bT4tUL1cStLvg+ZxhHTCg/9olSxar2y+//HLB2rVrC1atWjWA744Y MUzDYsd5/vx5i5cuXTiTz+gmn5PMEL7efJ+Sn5+bZ/vL37vuuut1Pue9DU6So1/0c+HChQUPPfTQ RwyTHS6+f/fddz5HP+xvHnvsUYGeH+Z/taWoqKAPKwx8j25A70+ZvxxxxBFHHEm1xJKv1Y1KY20R F6+tJTK8JwGxi1NnFY/mt4eSb0EdyPfSi2zSIWqv862sLH/aCsuVcvnll2oXJ59zzNd+Ho982XV8 ySV/VfK1CYjh53hoLLEdToJB//577rltP8K2H/7ux/f7Qej8rW7x9+7de/nSl5dM7H0NKySXafhJ +rNnz842zhwiY8eO1rDEkm9+/sCZ1IEdHxK0eb1a6C6/ob8g+ygIvTquTIPLL7/8oG/y8/N32u7x HT5zu4u/tCsyNTq5UuPGeOL5fvixf/Tokfvtli/f4/t4/qWtB7Sk9X20zPejNb1fPXTEEUcccaT+ UjPmS1jjiCRejiXa4DP+cn3tY4895jWfVpMvvyfqSr4kFhp5EtDVVx+6ztcKj0XoxObNm0+4557b N9j3tcmXzwxRKfla7loVCFQUdqijh5E+ffqci/f3Mjw2QdFN+94OP91ky3fWrGnTrrraGgPl8+ee e+YQ4oyVcePGVL/LMHKp0a233qQtX/s5u/DN69Vyzz13VfvN8fb58+f24fv2N0wP86oKydf+n2Hl swEDXqiOgx03ovazMWNGCVrq3/nf/x79yH4n9j2bwC0dXCHPPNPvjcmTRzu7dTniiCOO1Fdqxnxp 1HuzRaUTrrZs2eLWF44go0YN73vLLTepoaZhLijIO4h8+/V7XN0mbPLlmC9btDTiBMjxIPJdvnx5 jm3sbQLgc26yYZNCbfIlYsnX/o6TkOD+ThHJ4vN48vTTT1eTCt1hxcD+5XO6xfDyF8+Xz18wa9rf +qBVetXl+s3jjz92CHHGCidcMT62ewsWzFv8zDNPz2R4bT+nTJl8iBuMI//jO+zmXrRofh/eE1ZY DiVf+z+Cz5ge9j3/s7uV+ct7honjw4MGDdqnjkD69ev3CcIZ5XP+b+uD38Wmy2WXXeaM+TriiCOO 1FdiW77sYrbJty4yduzYvmg5Vhv33NwB1YRA8n3iiUNbviRfvl+Dg8kX31R3O5N4Hn74QXWzLmO+ Nvlydq/l9tW6JGfIkCGH7XbmpCUSoe0OWu93hEL+O/x+7x0ej+the0ay5d5Vyzdv3vAX2z9+x+fl 5SV/M84dImxV2uHm77x5cxaPGDF0pn1Pt2IrLZTNm9cX8TnJmu9cc03vDzjpjNc1bh2dfP/9739N tcNIt/Lzc8Xrdd8RiYTu4C/jSXg8nmPVESMTJoz9B+PP/yKRyB3UySOPPHKHrSe6Fw4Hx5nXHXHE EUccSVQOHvPVMd46k++kSZPQ8r1FjTFbRSSMyspykFEpUC7//Oet1W7b5MsJV3zfJoUHH7xfKirK 9DsQgrpj/8fWVzgcepd+cczXfl6bfPmMsCdcPfLIv6onH9EN/hcKBdDCq1B/uEyK12VlZedwjSv/ Z+uWhArCLbjkkktO7d37klNvvvnm71prhC3yuvzyy3TC1eOPP05CVPft1iHIqtptxgc6+Ozhhx/u MnLkcH2P3zP89lIje2ax7UZhYeEgEOqpCOfTvLf/IwoK8pfwG1uXDM+RyJe/fOZ2Fz9HP6kDu/XO sC1cOF+WLFkkS5culsWLF+o1Wrwd58+f++ayZUv0Od+58cYbv8L/Fi1aIIGA76AwDR486G312BFH HHHEkcQlttuZM2gTIV+uDb3nnns+5Pe24be7WK0JW9Zzoqbl21tnO9vv2//ToNvkaht4LmMaNWq4 tiqP1PLlM+OWkq/X69GlRra79jv2tf380kv/dA5nU8eGh7DDQZC4eG/eUfIdOnTok9xsgjqz3bXe RxyuYtesRdb/+99/7+WEK9s/PuOEK7rxxBOPP81JYvZ/tX/ta64v5vsU3hP060jky2/5bPXq1d99 6qkn9FltQrfd4jXj1r//c9WznW13bLcY7tjv+N6//vWA0+3siCOOOFJfIflak61oiLXruc7kS9m2 bduM22//pzHMVjepdU1jb42Z0u077ji45WsZf/t/3lvX/CVR9O3bZ9dLL8150XhT3fLld3Tr4G5n yz275UsZPXrUqttuu1X9Znhq/KnxF2E85+mnn/5/t93W9wu6wdZsjS4swuL6Xpu48FzJl+L1est5 upLlPwnM8qP3NTYBXinPPfecrvO1yMsiMrvlS7n33rsHcactO2w2+C4J7q677jhQWlp6tXn9qORr fW+9Yx63cblcnf/738d1nTb1xziauKg/vOaz5557po+93pmo8ccmaasiQncefPDeV7Zv3/QT44Uj jjjiiCOJSigUcpWVlUlJSQm7YSUSiSREvpTp06dfeN111104ePBgCYfDUlGhXbra9Wy7i2frJ06c eCz8uwiEIodDUVFRuG/fvhcGAoFTjPMqcHc83TJuLiap4P1r6R+fEbiuJl8u/xk7duyFDz/88N+G DBkijzzyyK22H3Z8g8HgOXwXfv3C7XYXM9yIv4bffjcWcL+afCl0//rrr79w+PDh1XEtLbXiC7c/ f+qpp04dN27cVbFuLF269EfmcxUQ9IV4f/eTTz7JMHI2uXg8HoEuI3PmzPmNeU3FdoPuM5zmsQr0 cQHDDf3qO+axyvLly78Bdy9Ei31mbJrwl+B3/fv3PxHX79rPbb9smG92P/TQQxdarrZp8/8BwWVV FVkSzYMAAAAASUVORK5CYIJ= ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image012.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAANEAAABBCAYAAABPXEGsAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAABl0RVh0U29mdHdhcmUATWljcm9zb2Z0IE9mZmljZX/tNXEAACvZSURBVHhe 7V0JfNTF9Z+9j9wcARJyEO5bRFERA5pSxIiAoqINt4jUora2VNv+o6D1QG2rtOJR0VpQilgRDTEi YBSQKyAEkgBJyH0nm2R3s/fu//vmtxuSzbG7IReV8RMTdn+/mTdv5t1v3kjXrVvHXK1hVlx8WlXl 3RKJYo5EIelvs1oav+uNf4gcDiaTq5jZZMy3Gg2f39Kv/xbR3tRjvRHWqzD972JASlNbk5g4cOHu T//2Y3HB/dUWO7M1lDHmsOMbUe+eOYiIMRtjclXUmH6hj9msjjRMqEeJSDRz+l3+ASFLjBaLibAn ARodYoLzUrPTZzImZTZb6SOTbnh64/r1DV2N6H6zZ95vUijvMwEusVjc9nAikUwkkuROjYx6fe/G jSWXC1diYmLon44ciaw2G/raLcaBw/r0i7c5RFYxa46TZvjBP/CtSAI4JQ36f+r37N97uXB05fuc iFYm7/7soNF2o77eANCxwhJCsqT3ExEBL7axoQo/Nj90wGppUsqHXYksT33Hr107cMXu7ZuyS4vC HBDiIoeIOQif9NPYRPyfdrGVBamDWHb1vqooxp7z1Pflfp9SVPTwPpH9NofR3IKomxO4nY0aFMbG D+x/Hp+/19FxRyfET0wp1KydtHPHjFK9dqAo0E9sMFmZrbKS2TmJtNMz8IaFZSKpgy3vFza2H2MT OgpHd7wnPXPd6JnfaGtu1BtNmJeTs9ulWHyioba5RXcA53EMkYgNVQazhIjo1eKklLc8Pt/FD2w+ cmhxnlgWpq/XC7yUpLnIjesDZpAQE1sdrMzSwM7YrMveS0x8ef369eauBM8gE+t1ejBJs6n9YSAm ddgLZibtsC5ff2vs8nUnzv3lgt0RZDYbBTxU1Qq4IN7MNYj2mpPCbHhOoZB1JV46o2+pSeb/1zpL LeiFuAOELAhHhEXu9aocNmOMSskejAhbJU5JeaczkHE5fUBt8Yvb9UlCXYMBuJQAj1YwU2wGzo0u tUa+RMRkNbBCkXTIs0eOJWB7bb6c8T29y6HgAoDWFvC1+QIkJb6zcR3F91Y6/cY13+jq3shuAA1C HItBQHZMTtAgbRhdkDKeiQhqOpfkDvzRu5u0yuYYywyYsFTO11tkB4I9zbFH5kTLzsUj3w3DQEAJ 4dEPi1L2vusOTu7o4XGlRnN8yqIlT4LDe2J7nTKbx1O/npJlMo5nNouTiAhMIJKP3hwEBzErIjBs qdIGM0spyps3u4uJSCBmiAEHUUdT9dJt+mCmxFAl7T3TBsYa4uKuSy48/1K+jQhAmLNDRKKH1Ff8 26nZOtohYaFrepfeg0pn7+V2OaCUVmqq8f9LhOPg6kZvbETZIHZsvqGKQLY4InqlI2XPP90hDV2w YMkneVlvFTXUpjdSXDdMJ69B90SFlTaPVNgwLqWfo/MSTi+Rk/MZi4WVi0XxwfPib6jdmXSkq0Dl 48IYEwRjO2uM9SddhMH096VBEsvidmx7plQiUTPMScylMcjFJXqd0xXm780eoye7hf/5Ms1Wn5WK ei3RuMFLnE0iBQGp2KLImOWOlJT33Wdknzl99iunj72RK1Moh6iDlMQk8NOltgbBMGTerJFbs87H Wy2kefi48JhXEfTo1JKyxRMZ6zIiuuyd4qGDf5/OmJRns9xpNgPdXJVpSgTeEE1XQ9h1/V85RCQR sWEKteOByJgVolYIKHRe/JJ3Ll74IBeqhEhkY8U6XWFXG+uuZTlYq32iUCSBBgR9hatpvjULPGa5 4vqHHlu27LXU99/P9e3t3vF0UkH2qDqlH2MGE7d4SOJxifYTaB00H7sJM1z3IAkEAlIqHcsjIldY WiEgx8zpc94tuPjByVot1+cdCgU0BnO3rCDUGPXEHR/faSCvF3dlCzaATw1OiGyHQ/5RTs4d4Yz9 3ad3e8nDdVLLxFoDPHFgInbyBZAnzrV+rcLIA2jCc1J6thUJjnXHF6RR9OrWi4mIXElYDLGMDQcB LYoausKS3FKFi1y44JevnTn5yhktuZUF7yK5VEWsezyjf0o7+EghY4OZDRvIaUT7vOKAVw976mh5 waqTiYlvQoK2Y/n73Hu3vKC0K26xWesFpudy67cWInERFhiOVKVmgbCflDZLhVosk5Bl4XrFjn+I xFJRoMhxoVsmcBmD9GIiIqYuYsMVKusvImJWOJJbBlIDZs9a+OaFzH+caQABceJxee8II74Zxh3B IaSQNHbXjiW1XApJQPPkdetIT3gP7u4ShXr0H1JTZ4D17utILz31DuFh6kdbvVJlycVOQkcN59B1 AX5fTw5UvTwqpO/ZmEFhspAmE9AwJVOhR0S2ag59vb+npubVuL2XiMQSOBHU1iURQ1bYUloSUJ+7 41e9mZvzSmatBsQDFYpzP8RmukWJE3D71vnTsYUm+wSHBcY0twE62gR3dxX8wWmaql/ffIUREYDv Aw0gnNuEHhoxGTIbJ8rEJ1Nnz70PUrcOSWaMfq7U1juJCGlHQ+Vy28qoIStMrUggv/hZCX/Pynjl nNURIOjVFIOACsfdsx3fyr4u4qeZ2Qkl5HZ3UW5T17ZPnRH8YmY3GdlFKfv5IwsXXpO+bduPPnXR sw+LTHaIYW84GOI+IUF+bFJI8MdEQD0LdueM3vuICKHtYTK5bWn00CUgIOgIzVufObMeebeoYNM5 EzYvuZS5AUsEZIM25yGQ2Dk4471MX7168rbv9s0zm6BwUOOR6o4SMIKKXBvl7m75fy5mLR3D2BOd CG7Xd0X8y7Mg4gzHHxm5t40YnXE29WjXw9UNI/QSIiJ1BiqRVMaGyVWWpVHRy2zJe1oQUOic+Ef/ WXrx76drECAmL1ijJUor6PSKdXQf+4jsj8+eWFQotoUwyu9qjLV1VJcE/EhIJalq0BnYOYd10aa1 a17YuGFjhY9g9dTjdXK7DQmBmL8nQpJJWU1NdcU9YdG7zzY5htNTgHfGuL2DiMjSRNrRCBkR0LBl luTkFgSkmz5tzpZz6S9fsJLdQ2AT6+4MFPjeBwxp/6m7dtyn05NDoaOE02RcSrXhDAFGN9Sdi2Jp n18fOnZXDGMtMjJ8h7Zz3pgC50Ha6ZPTIf+DJRZmo3w4GzE+id3+Tm52mEWuCGJGOtHhAR92GxPL Zao/pB9dIrezGolNLL5Ed1hbHh/nB1yYRCGWDmL2jLIdSRmuWUxZuFB+ylw3XWthgTKGzpzPC9+7 3m/vNz1HY9Azwt8mGf1tZ32lSkmkWKGZM2LMj3Du1EPddD3ULhJ7BxHBCzdCrrYujh62GAS0zR1i eOGW7yjNf++CBXMivInk+E3ExFHdObvEh16ePfL9vecNpkEMmdid4gTkfgWyuCkmxpgWRwbO1VYv +SAxcSsW0qkv+gBgFzwaotFM+qrw4jcX9FomBqw8TRnHUCguJxZns2o6BeAM/bQ7PILhOqk48P2s c++LrGYeiuDubM4TqVchNshTp5COtnxQxGlsaCRzCC2gf/9Je49mfn2qWoNx4RFtllIlvO/qp7Xf 1IfrGdffdq6GO5gUpoHMaGHPZ2ZqVFJRrnzU0O/jx4w/8ftxE3a0tw49S0QEOwJtIxRK6+LwyARb cvJ/3BdAMjsu4V/lBe+l19Q6PXCURIkFg0vZldzYBXumzS4pR2zO7i8fqyFixibyyHmpJ5K05LlC UkPrDRIItqAIm1OEPu1mcnfLp71yOi0Oz3/ZnfNrcyyZVVZrd7DyBsTDaB42bHaaP3fsUMa2l0IZ r9msdhwDocCsENMT8oqbqhX0OTEVCdMhdN402iqVyaQawFEBJwyTOjWSy0VQs0x7AFOvCcGZuskK uWpy9oUMtjM7a+1NcXFvBu/du6m1oXqIiATKZxIZJJDcnBAetci2Z+92dwDhhVvz9sULL1ygSDg5 EJwJDBST6amUkncy0ian19dOdGCjC0zQgySEzRSgkrGBan92oaqK5/+11HiE4JKQrElqnYgVWkzs x4qqJ0b2FiKySB1i7sJ22j0cVpdDjmD2VrsWnhVw4FzQFmq5SyWkLyTNVCqpxeKQ8sxuGrCz9Hnn fmwKDwjdZNWzUoxRKpOPy6sofHPctROmPx4z4skTO3YUN92rPUNENHmZAzaQwvJQ5NAEQ0rKJ+4E JJp56+KPKovfuGCAns2R5eQ6jci/XPbTsff3lVSsKSMtgh+Q8cIuA0GMU6rr7oweceq52rpYI3Fe 7slrZfwmc3MggHusqnL6ggUJI9J3bKFTpr2jNUqNTrAFOR2100+bay0wGqF1Ehxt9cPPfVlYmdbI 6v3Z/ZrzZ0b9MmHh/UVbtp1zLUj3ExFnLpBAMqX1wcGDf9EaAcniZ656J/vChjx+KhIgciIihtT9 9k/TnZuwZk3Arbt3/cxEZi9ngp4XUOmvZpEq9Xu/GTHhjQ8yT+dcMDeQHuqZIEBrRVKpdGtB1n04 G/285xeuPtG1GJCxhrpadiowYOK7p05u/yExMdYV5+p+IoINNEqhMC2Oin7Qkrznv+4Tl82KW7Ul /+JbeaQ6cO2BjFchUbGzhHdHkf1i2rE1GqUslOlhEJMQ8sIzF45nJikDtm/YsD5/yrSpp7Iriq91 mD2fvKY5U1Lr6erKJTumTHlp/dGjXnmKOjq3q+95wADFIqF9WOFY+VHuN2Fpyu434PhZDkLq6CHg DqIcQIxSKk1LI4c8aGqNgOJnrv6wMP/NLD1UOBiPwklMMuCt5DsR1KceauRQuOY//35Q25ja4rRf msFDEsaVnYywiUzComSqI7+fPv3E+tRUNrJf6N9Da2s2l5uENCHBKKcO3I/j82PR/Ph4pSJg6ONK 5T19GWvhdOlOVFjhBubYJ1ARD+I+MNJoXSdPvRCuzeBtTEQl5wx11LQDl9Mbn7lVShKc0fQOOSRo f3QAC05T7NKbpFk44448dcyVgd6kbzLBSIsEyRgRYD9sNiz+IDv7IzyR0g2SiCCmQKqCjZT7mZZH Rv/CkJzSQgLhZOfvNhde3JBVV8eJhy+T03gV8NQRbHUAwW288vLJIw9UKSVjWQ2drqUTm60/KHhL 6QSpmAUr5CzGP/BdcCsuen43YUJSysXzJeUSaZgY8S5+8rNNXVw4pl1nt4lOa8qf3p+YuB399BgS pAYmtUsQWuBuOMAtHBgSiIhXNHKB5iEDl6vmTgbE/yZG4oZM3reQZAfdF+damjWJjY5OcNrzlXKd QzfFIo/PkZkgwbIKxGknE6LVDHRXgrGY5RgN7KPTxx+a1i1ExJ0ICjZKpjKgKs8DIKDP3bdf/bSp 927NSt9wHj56IZGUMn07lA7deVTj1tP+0qKlxahFIeJHrEnaEKLdWZqT3Il74gjHIJuk5OlJk77Y cuAA723D+vUV0bE3vH/Sav2jQavDJ1BVOU93n6uLE8vgzUcxEz/1xI/zc+fhhc+6bIIeOrZKVVUD bUzfEODvJ4GWwNMVafMBF2LgodhgYA0UN/PCbJXCRR6FGhkieC65qk7r7U5HwItMgdJ8Ol1aU9Ag JzT9bRZjTICfknDnKxkJ5ItQgpOeTHAa6ACChmJTVAgJ6yZoQe03K1zseRLJ7S8mJAR3vSRCwGyY TNGwNDoGKlxLAsKR7uW7KyveQ/DSuSkxCV60jesNnubSLd8PXjBvWt7ZM9OYEdKDx9ed6gevkNQU BJeEwgaQi9lIv4DdWzY2T915aOSEz07+sP+PGSA0vpgktaiLZv0IXJ5LKcRKCqH+vXn40O0ze5CI 9m78S+bM2CkTpQHB/ladhaEkHLMCPNpAo8OjI9alHf74qMPg79HZAgIKtNq0qwZHLxAbLeU0TxlU qGZWIseFFIHVAJZ7IC2vKYZRUPLM7KlTJ8weGqG2aLW+rz8525pkOVgNOlWJXHpjurZ2QYbUfnM1 0q5EYovTfGinewitKoXC/9PKymldR0S0M2ATjJbLG1ZGDX1Q2woBSeJnPb61IPfV8/XElXlBMmwq KonQXkkn3/F2uW8kFxUszkfFYiJsKsjYKC1bU0OcaievRjR23Pb04yeaDT9j0KATQ1Xy1CyTebrd LET8W+UVYPXIqIGskqJUnI6Vq1T3jF+Z8Fr6uz3n7jZ9dzTHVbWu6e87En+WjSyOOgRh/XkuYXuq NwKkBqO5zpCy92tP60LHLNWtPFR76FCnHtQbwNjhfyQmvv6rQ6mvflRw8dcaC9Xq8gAdtkED1L8K bd0dnUxETUaWydgoucywJCrmARDQLneQAuJn/e4fF7OfzzGZmsBAdlDvkD4ueKeuTAj75MChhUYq wMGPWlAjCdSKIkGfkaCSidlwiSJ3flT0D1RyqGkju2b6nNnbjxtzppea6wRVzmkiNH8SaTU0BC+X ylipWN43KePCikjGfu9p8/XA9/5Q6pyGiofdR8f3xQ7xLoVCfZfJ1OXlk73FBa1LKGNPTpg46rrv mTHWTuvtoVmhReTqGvw7l4gE9wXfRKPlKv2iwZEL4YVrkbaCQOqvNpcVbshpgARy1UO7VNXQE+zd +v0Hp7Jm5zlwbsnm9Nq0NzpPYRGxIKmSDVYHvIiFIRHboj056foPt+Xk/L5UIo902CllpnXN/pIL Xcx0CDqnix33vZKY+Dxqd3dAj+litBED8cS9G0Hw1ZLpYtibdB8W5L8hyGSJ1TRaTW2PTeo2SiR3 tosbWIQXbrRCrVsZFbVQm5SS5A6CdVbsrzbnXHipmDYl6abcSHe5ObsPWd6MRMeer9m2ZZnelXLk 4SVurGJKUSKRZnlk5I4Wk3e+T8Q16cYbt2dJNL/V6Wq923yoRXDRrIx+LjV1ZjBjLbyb3szn6jOe MfD4dTflp+/7lmmo5EB7hf9prfF9pUXfLI/c8wienpDL2DiZQr80Ysj92qTk3U0fx4aU/+b7b9d8 Xlb2ajF5PyjewtUfp4u0s/KgqB/8mGx00vLy2ubzGb+oVStvdlRpuHT1xGlJcijhBh4THPxJ0pYt oI62293Dhr27L+3gSp1IFiRko3vmzjVQMTLrNb9NTkxMAiF6KKp9eXO/kt6mGN7mjIzhVql0Vr5O Nyq7ptxUC2eMHZucNoGnjUB1H/h5ABSLOX/kxOgauK+9aSSJ9DhN0AnqHIlxcrEIToQHI6MX6JOT v3IH4uUvP7smX+R4VYFM5YlKf6dzkk6jksoPH72nHerNrIg7UAlcPzU5SJE5WOnlW60/9umFcwsL CaFwRVE5W8/ZOg42CIbzfTEjv53/8xv9jUZV3w0bNuS7MRO4H40DGVNeuCEvuyCnrBilh72gIWwI G4KvGQbJTW+ez5iIN/43joVexgqtWbMm4g+n0+ZN++yT5cVG4wSjUik2QquxcKLgBqUXrEkICfGy AvjDUqljViNlmHsiPdeaiTqBiEQwwGRKNkam0i2NjLrXkLynBQERnnJLKs9MHTt23MrISAdDTKEr myoggGkNGt2JrI47cQYviB/+4dlzN9lRWFFwJ7jHhFqbgYhVYgF+c+y7v//ygPEFlUwZUDUotLzp /USvb35HFqBUh9Tq9VWBAcoYEa/djfoKngSRE4QKnL1KysxYcsNPnIgcs2feN+fQN3/JNJnCa4zg QlB3mYX2lReb39Pm84aAGvsQXyYROU+kjpMpdVDhIIFSUtqCL7ysrEFfVnb2SmGfH5/LWlIscQS5 IuOcEDwYzuSu1lHwjkn7MIW6D1dZA/2QsdOkQZWtsYHxBCv60Q0SYpiluMnGYxMuR0DKCc7z5Ckc D2xcu+bPWzZc/iVcHgfuhQ/kThm7al9+9luFJiwIjoxQaTXBkQlm1Ak05OuUvVi+drqE6jJWrtaj uPw9+pQUj35/X4Hrqedxc2BU8uc7VhuRtUsL5JT0nmhIyK0iNzi5ue1mpJEgOGuh+gnNV5YkjwgB SwcCqZdyw9oXRZx++ekLaKkSacjfjqat7sfY//UUjnpqXBFqDe7Py9lUSNktYCw8g4QDgzu1+G+v XYSdNoWOEREPpEpxTkauXTwo7G4cZ/jGHaJ+C+bMTdPWBUuhDsHgaxR5QioyNk8X5STThJSBSmau qyse9N3hFnB5g7lnD6belc3sfXguIoXmXcaQJ5WLK37EFYWFpeIpQvZS8xepLA6XbBRf5hk+HjsW 8ru480XENEgFOlRVfddxuLt/Sg6Ga1cmhD9z8PDGApMVxZ0EHPK4Iseh8waKts5qebPwHXzGRyJy qjQIpI5TKOpXRQy7pyY5ucVGVcyeue6fBfmJRUiylEKlaRpAFfhER7KevJkhSQ26hU7JJKVlBx9i zGcigqdHcdvOHUuq6DCg6yiTF0cemkHH9zo5Ilx2lBt35J87A7MtUofamSfvF//DUYoShWjC6tR9 tw1iLNkbzPwvPPPO8bMPZ4pE/SjJ7dIVMQIDEv4tsC6hXoVzxm7m7CXLtgnj4h9SNorgtvZVmvlI RNDL5aTCqeqXR8a0SkCOmbf+/l9lhYmZ1ShrxVPKKUmxu0SsQETMCCIyWeo7snHWHfv2plyHZTIz O6upeiEk3Me5FCR1zbvtTrw5kyTsEoEwudACWitQWSdbU7NqU2LiN64s8Y7M90p5Z8HatX0+T/ps jQF2pMCEm5TpdKGX9hpP/iZvKuQ9Z2QkpsjzJpCPEElpbT1I7abvhFQsX+p3eE9ENDruBkIcqH7x wMHztcnJ+9wXoD4u9rGt2Vnry4hoxJTBzo0DZ65ZdyyXk8MDYVS5pSPtcFn1imIew+rI2930DuZn gwOjVCSauzXjNLLx2f5uGrnHhtly+HBsodUc4pIYnCTcHKZi2vzg89y5QLFIuRyXS6uhUIDoiL9y qe8KVVxi7PyKVRuO30A9NCEBVWciZ4X3U/WOiGg8BFLHy+S1iwYPuQc2UAsCst4a++SXNRWvlpHu TqksXKw6gfcenh59cvyChOEfpR+83+rpcuCegLKR2zoHh9pxAalnO4sK5o3/CRDRgcriQWY5Stzj CALdiWvn9+E213CEUAKpyQ42ICSAxUikR0f49z04CHFD7uxpU3UmVQ6BWbyqiJBP+WfuuZsLdcjY 8pIRt0NEBBAZbRgAFziPU6pqfxk57J6KpKQWBNQQd+vaHVXFL+fUkgZFk6N0HitgcFUm7S517vJ2 9ycF5+8ukqEMKwVYvUCgIPbBKChziaQv3+gdEWHUgUtyNjnp2VZXXPV3ILsbl4PV1S9+YuXKZ/e+ +67m8mbfu99ukIojtRQaILuFJIeTJpqim38K8aRWytnMoJB3/n3r7Wug6nrOJG0y9YVr1lwPxnS0 0EFE5B1O2iEi6gHjK9VsgkxZ9/DQYXdX7ExqoTbI42e98GF+ztM59ciJdN3PwzmC6zjDlUFAa9eu DZma9OkaPS4i9raqqVCECKcvUYxEOPtDK+wd4ps/Bf3dAgcMijYyujSYjNv20qCaSKUcmyX487xz K3CQ59WOjHylvDO6z4D4tJJCp5eSoG5pJriYWjC+ul4d8r6vBES9plWWSsw+rmHbRESLCIqeIFfV LIocOr9qZ9J37givnHrjI3tK8p7O0UICNYpXL8m3l63eC5mn5heJJeF0+7e3x45FSHUapVaUORp0 X6AGhLMYno8rADzYRGLrQD/VwH7BwaMPaGqGVfFyvF5o2sLxcXaipnrNN4mJSO7+382nM5uNdHOb oOjQr8b6FJc2kmAjCRqBMiSkY7e8SXEM0sc8zjZWSjDKJsj9alZFDplfldSSgCw/n/HsrpKiZwqI gLgEIvONXI/095VHSAcKCh6uIinEg6vewR+iVLH7Bse8JE5Oeb0zeALc6xE3f7H9cJXFHMYzJTw0 7qGC3XlCpxuw7tgP0wD1Xk/vXKnfB6n85cyG+v5OHtU6qxJUYiOShY+VZE97NzHxAJ0T8mXO/VVK PU8I9m4L8K5bEhH3wsnZRIVC83BkxN2tEZB1dtz//Ss35/8KqTY2FZfHOyJEJq9UAhq5bMk9W348 eoMDuVciyiLgto7TJmxrBSB4Qi2Wsjl9R7yfxNrMdvJl/RgWvHD8rdO2n7JYn9DDS+RJN+QwQhJp xTLF8aqa31z/P0xExYaGPXKZbLSZcuR4gRI31xzHNO1DpFUhNWp3acm6lQf3T1PH3rhRJvMzycX2 tv1t2MZWbGOx2W4+UlJ9jQ7Z3L40aPQET5O6AZBA18jltQlhQ+ZWJaV8796Z7ee3PYuyVs8UUu00 qkftqjfQK2oikCinuVCBdFexD8/oeP/E8bkXqbYzbBGnf6elNOWRcKFv0scVKL4SKVX/O2nLxg7F o9qC6s7wgZu/LS1+7JzICraKKgz4xV22rhLDzV7E9/BEWQ1mli2qv23VyoRRJ97dkuV5xlfeE3X1 miNKEI9FKPjnZHKXVstJQ41B2BKLXba5MP+OfmLJHXIxtKT2JIuzP+raVoY64VTvw4ckVCkvEEEZ kFTyGAQ0UeFXsywsYm5tSsoBd1Q7br/t+f9Ulv4xv74Og5D6RsU8BWnZsmJNTy0U7T3KivZOiset Xj3sv9/vvd9KsQGnDG8rACp0SVJKxgbYHZapkdHbWPrZTp3onTFjMv6afnZXjt0xj1ztjfzTbb8I g1KAUGBkRcyq/G/G+dXRjD3eqQD1ks6WR4/IT8w5w+q5uYCsFO4RddO8G72jArLsCJhX8PwyX45e 4V0fS3GhSjmpBGSJqVGp06/6oUERc6tSUg66464ydupvPz2f+XQpBbHEVH8MZ4FaFB3seYxTIREH 3PIqqFvetC1ZZ5bl2Jjco1etMdER7AJB51CpKFWUlNS8Cok3A3p4BiqdbVJc7NazZaXzhCKPznQU vnncGIPAlPmm0qHoSVpl5V2bExP/hD563/Hxy8TN8smTf9xeXnCh2Fg7nPaekK3dsYB6+6D4YAw5 O5LG+AexXNwtc41SXYPjDPGwgY64D2KMi/1Dcm3Vn0uJ2LiaRAPRBPh5wMtET+e+zrcZgr3DcWGT p56Rre0/94sdS3WkynnTuBqOoow47zclOBQVSRtrmnvzttfPvHrzjN3ffvZxXrlEFC3CFSauhNbW OiBVn3NkXL1Z7C+PXv3tV/cin26z14NdIQ+CMeivjZv2YrqxYXOJjqSLd5pGd0xPKjYZP78mOOBn y/qE3VHbCgGZ4IX7uLzkmTwNVDgegKQf4pD0uxXu2B1Qu8YQzBPBxORXHRJrdrAghR+udx9wlmXn tQvNaz98PyfLDE8Yr9rnieYE+4OqgPY1mcqXR0d/kuQsytjZU8aGaRg/7fqd5+3iJ7Q6EirOgK47 4+UVVJ1ngiGxqqGS5jdYn0I+3ZZ2YyStqoadPYu2+6NVSvv2W9tdN93k06Av3HzbR2lJn92nsctu N+hrnQtPdnBTJ5CLuHyXKD4BQ8NwNQApZuNDVM+EMOmLtXv3tpBAOD3416352U/kk6eIV7t0Aehp w/kETocfdlWv5RFs7tvHpsIRjaEWR33C2NGv7z3UwqxrHIvO5d+RvOvRanh7KI3EZdu1B4wdYygR O4uSSrejhgK4Ste1peOv+/DQd/se0ooczoKIwvzcm5Bg6WzwKp1pqBv+8ukfbsEnzd3d5BfhlWU9 5QW2Po6nmQpbozWPWQuI4ZSRyd94/vmQsqSkMk/9Nv2e4mAJCQkrS04e+TJDrZxo15MzyGkY8aGJ oIRt6uIT3qyrLzA0PsuTgQn3OKkQmHriVGsOPfOsuBc/Kit8Il8PAnKde2nM+GsLWU0/d/3d3m8X SE25R+P0myyKex/OBQPSeA6VM92D4p0T+vRhC0IHrEUaTH57yEFhi7EZ9bVT7TgZSQ4Sj34I4vpQ 5frZbdY5Y4Z/WHu68RrRDq2Bp5dSN206GT5mRGqOwi/ebtI7A4ztc1eyUctwGDC1uGzRjW5EJDAZ YErI929zeKqxTf91yNqgUIenGBuKOyrhko8MCQkCBflERAT0xS1bihLip87+vKQ+KVPuN6lWB+co zhZx04JnjAiZMgKmBGryrtKCpxVp/r3TdUEeakpya96Cg4NlWaOH/fW/xQWPllPZIFxIzJEucalw TTmOOzF1LxHxbYH/SRQS1gflaYdL1YV3hg563pKU/E57KIEUEs1N2rmmgPCLG9G8cpAQB0dV0+EK 1anHRkxOW8/aKojl22K09/R1/Qa9ebqyJL6axqaLC7zQUCwGK8uw6+6dEhf3jHjv3kZGYrcjRxmn bLkTiR81b6NhQ/LzknQhqveNSBOFwxEr9FTHGlup3mQwnS8trfG+++ZPmpIOlSatTbzrufTDLyfl 1N1eqlD10VJsh7JNiFlQqAL3wboC1l1iPZEDC8PJJQp1CyJSDhoUYDOZY8Yp/H+YKFfyO0BQsBKz sAL/9Ls1SeGaZDcTEZAlR75NoFJSEhnsv/+lsTdsX79hAw4ytd/ScnMDjBbT/WP69mWSIJzxwtUt QmH1thrmBS6nwCnXoQ7F675GwT3B09b3G2ZM35v68eYz4RFR4xxW54Vn7XXGGS+u1Q70Vyuk9l9i jRurpQ6QSR3Xhg/AeT5I3vYkEfofgEwM3FrRauHJNoY3BklE9RPDBvezm9uLz0EmICMkwNjQf0RM TP+je/d2uBzTxg3ri4IZ+8U/EhaEf5xXMDfPaJpbVK8fZhbZ/fQoFtMnMATTQM1Nut+qowvQLq4x F7mIDTQbh7YgorLMzJpwxu7AzxXX1ielegVzgNVqeOSGactCAgIC7XoKrGHhPcRmxX5+zK436A+8 vanF7eZeDdqBh8gGWDdv3tyAmGG3Ymh+StibpiBYLYby/V/tb3w84fqbng5SqXZq9e0XG6R3DVpt qfXUKa9rZgDO2kcWJMwbHBk6xYD+22sS9G/SG3SH397UKfrwoS07iqMYe5N+oGH4fZOWKzuY9g27 ecrNsaqgoP4C3rzBmu/PKFBVSqOvy/Qiy9H3znv7G9u2baMYc4t7Ynsj3Ed37swFXPRzWe3opk1n 0AH9dEnL3LElPZMx99LjXTJWW52SG5y+I8lz6L33dnXX4D9JIuou5P6UxlEoFOF2u/0e/HDtSS5X MvgOyktKSlqV3KNHjxZnZ2cvEovttqee+tPWdevWcdMFNrlcr9cvw585ffv2PYzffSIjI0uOXsZ1 m+izv1KplJaVlZV2xZpcJaKuwOpPsE+NRhNvNpteb2hoYFI6FQKSyMvjdv7YgQMHtijtlZmZac/J yf4bjmzrQUBbXCg7e/as2mAwvBUUFJSam5t73GKxrTpw4MDkYcOGdegGdXIiPfXUU4fNZnPACy+8 MBkVaXEoqXPbVSLqXHz+ZHszI08NEoRVVJR9rNHUvDV06PApRqPxlcDA4CdDQ0PTCgoKAkBMu0Eg CqPRMAuIOq7TafNlMtmA6urKh0NDB1onTx6TOnv2M3kLFtxdBclhkcvlOQ6H8QBKkNfExcWF7Nmz Z3Z5ebFIpVLLxWIZkqMtU/Hbz2DQa/38ggrVajU3itHnbXV1mqEYS/Tcc88ViMVi+jwYfdaNHz9+ 0u7dX16H7yTDh49E8SBRanV1dZyfn98QwC+CRLWAgA/ZbLbzkJZBJ0+m3UkEiD5w77H0s4CAgIFa rfYGfObA5e4w8dQnrhLRT3bbd+7EyatMgdz+/UOlK1c+pDh8+HBdRkaWXa1WqTSaqrUNDbqbsIl/ DokVDOLZLJFIXsIPLptTTMSGfLugII8VFeUXvfTS8w+eOnUGXmqHWaerH4PvZoDAordu/fCvVqtt Gt5hWlzVCXXxifp6zVNQH5WQdoqGBqMqIiJiNYjZkJ+f94ECx3koHqrV1p/BOyE41CfbtWvXLBDQ WxaLpQ/GZfn5F9nIkaMfqKqqWNjQ4DdXhsx8kqTl5WXZEyaMvevrr796C5OKBTOoB1E5oF6OxrOL TCaT2m63NSAKIAoPH7z9KhF17l76SfeGjYaSHI57v/pqz73YeAxcm+l0+rfBsXXY7JTjg4saxDb6 TqVSWfGsn81mL5kxY8ajR44cnl1TU/NwcXHZfQgII9cJ1xDjZg+r1WrRaKqn4t1pAQFBu2NjY9+D HeUoLa08CMITVVSUXwsiCkeft2HzL0P/4QbU1Ro3buyvoqNjakNCQuq/+GLndnwuycrKeAaE3gfS 6CmjUf9ZenrG8YKC/D8rFMri+vp6x+zZ8Q9kZWUuz84+d2t5edVyjB0LIkLxH3NSYKCfNSxsUP9z 584F49/fWyzm/JEjR5kmTx732lUi+klv+86dPIiF1dTUfhUS0mdPbW15VVBQiGX+/PmfJifvfhGb GI6GEOx1raKykqpAIdlKIpaBq1ecO3dhp16v0+CZh2tra+Tw5DfefIbn7HhJClWNpMTX2MT/JajL y8sXGI0Nr+EdDfxxtQaDEdJJEWgyG/tBDdRptfrN6emCs1CEk5akjoFQ/NVqPzZtWuyPKSkp50HI WqiWAXK5NESrtdlBUP+BKniDRCKdjmFD6F0Qkdjf338apJDj2muvf7KoqARqpiIWBBYNoo04cECH 65mvtqsY6AQM2O0WCUkiqF9H4A37C354r/CqMX//AEiMMnbo0Pf/EIkkUkgcFhYWJjEaTXp/f7/J 2Mj78fcI2DosKmpI9vHjR6cHBPhJ0ZeICAhqWg1JLxDcOpPJcA/ooVoqFVsg3cTQsr4DPR7DZ38u Li4+PXhwZE6D3hBfXl5yrH///rqgoOBTkGQ2vMuGDx/+GWyzJ956a9MKmUx6F9S8MIVC9V5FRWk/ 9DNu69atMthjARhXDuL5AeCvgNonnTBhfD0I0Z6efip6/Phx4VAR00Hc/U+ePBkmFofcepWIOmED Xe2Csb59Q8vDwyNAHPV+7vi45ZZb3t6/f/9AlUr5ANk0fZDfCBWqEtLFCq7uBykxQ6/vA++b45E7 75yzA8T4W3x+PCyMjk+L/BAT/85o1CVUV9f+BnbRzZAM4qAg6XxscFlgYNB8PD8fOa0gMoPp+utv +PW+fXtfgHNgCWww2ER6w+DBEdlms2Xwo4+ueTYjI6MIxPoqSUalUpU8d+7cX+/a9fm/KcspIiJS DEfI2WuvvU4EabZbLlffhb5f0Wjqx9pwsyPUz+n19drbaA5SVFaLjh6Sg26W/j+yRX2XR8nx7AAA AABJRU5ErkJggk== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image013.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCABVAKIDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2RHWR dyMGX1ByKWvB7a9ubJw9pcTQsO8bkV7H4XvJ7/w3ZXN0++aRMs2MZ5IrqxGGdFXvc5qGIVV2sedy eMda07VbpI7syxJM4EcyhhjcePWux8LeM18QXDWk1sYblU35U5RgP1HWvM9T/wCQtef9d5P/AEI1 0Xw3/wCRmk/692/mK7K9Cn7LmtrY5KNaftOW+h6lQzBVLMQABkk9qWsnxVcNa+FtSlQ4YQMAfrx/ WvJPUPO/EXj7UL+9kj0ydrWzQlUMfDye5Pb6Cs9L3xW6hkm1gqeQR5nNSeA7GK+8V2yTKGSJWl2n oSBx+pr2amB594Uu9ej0XW5rs3r3McYa3FwrMd2G6A9e1aXgnV9d1K5u11qORERFMe6Dy+cnPbmt 7xDNJb+HtQlhdo5EgdlZTgqcdRXG/DvW727n1J9Svp54oYVf965IXrk/pQB6HRXkt34t8QeJNWMG jvNEjE+VDBgNtHdm/wAir+n6Z43TUbZrma7MAlUyA3Kkbc88Z9KLAel0V5L4l1rWV8XXlnZX90oM wSKJJMDJAwB+NV7278YaKqT3txfwoWwrO4ZSfQ9R+dFgPYqK5K08af8AFDnWLmNTcITCUHAeToPo D1/OuLg1nxb4huZHsZ7tyvLLb4RE9BRYD12YssEhT7wUkfXFcX4P1vxHqOsGHWIpFt/JZstbeWN2 RjnH1qDwtB4og1KZ9Za8+zC3fHmyhgG4x369ao/D3WtS1DxC0V7f3E8f2dm2SOSM5HNAHptFea6l pnjZ9UumtJrsW7TMYgLlQNueOM+lZN5qXi7w3cQvfXVyhflBK4kR8dR3osB7BRXJ23xC0yS1iebK SsgLqOinHIopAeWV7H4L/wCRR07/AK5n/wBCNeOV7H4L/wCRR07/AK5n/wBCNerj/gXqeZgvjfoe Tan/AMha8/67yf8AoRrovhv/AMjLJ/17t/MVzup/8ha8/wCu8n/oRrovhv8A8jLJ/wBe7fzFbVv4 D9DKl/GXqep1meI7Rr7w5qFugy7wNtHqQMj+VadFeIeweJeDtWi0fxJbXNwdsDAxyN/dDDr+BxXs a6nYuoZby2IPIIlX/GuF8RfDeae9kutGkiCSsWaCQ7dpPXafT2rC/wCFca9/z72//f4UwPSPENzD ceGNU8maOTFs+djA44PpXnfgtXfSvEax53Gy4x9Grf8ADnhLVNN0HW7W4iiWW8iCxBZAQThhye3W rHgTwvqOhXF62pRRBJo1VQrhs4Jzn86AOB8PW+qXd80WiTmK5MeTtl8ssvcA9/pXYaRovjKHWLOS +upmtUlUyg3QYFe/Heq+q/Da/t79p9EmQxFtyKzlHj9ge9Gn+FvFsOpWsk9zIYUlVpB9sJyoPPHe gDM1b/kpzf8AX9H/AOy12HxN/wCRVX/r5T+RrL1Dwdq1x43OpxxRG1+1JLkyAHaMZ4/Cui8baPd6 5oItbFVaUTK+GbaMDPf8aAPPnVj8MYyPujUju/75rrfhdLCfD88SlfOW4LOO+CBg/pU/h/wnIng6 40fWEVTLKzfIwbb0wQfXIrlpvh1r1nct9imikXoJElMZI9xQB6ldf8es3+438q8o+GriLxHK7dFt HJ/ArW94V8M69puqSy6k5aFrd0ANwX+Y4xxTfBXg/VNF1p7jUIohC0DRnbIGySR2/CgDAj1zxJ4p 1mSPTbqZC2XSKOTy1RB7/lVXxJp3iGxggbXZpJI2ciPfP5mGxz9OK17v4d61Zai76RKhiyTG4lMb qD2NQXHgfxVdqq3LCYKcgSXW7H50AchRXUf8K58Qf88IP+/wopgYFex+C/8AkUdO/wCuZ/8AQjXj lex+C/8AkUdO/wCuZ/8AQjXp4/4F6nmYL436Hk2p/wDIWvP+u8n/AKEa6L4b/wDIyyf9e7fzFc7q f/IWvP8ArvJ/6Ea6L4b/APIyyf8AXu38xW1b+A/Qypfxl6nqdFFFeIewY2qeK9J0a8+y39yY5tof b5bHg/Qe1U/+FgeHv+f4/wDfp/8ACuJ+Jf8AyNf/AG7p/Nqvaf8ADM3+m292NT2efEsm3yc4yM46 0wO30zxPpGsS+VZXsby/88zlWP0B61o3F1BaReZczRwx5xukYKM/U14frOj3fhvVvs8z4lTEkU0e RkdiPTpXe6pdWviT4fWdxqd6LJXkXzJfLL/OuQRgeuM0WA7K2uoLyPzLaaOZM43RsGGfTIqaub8C 2tnZ6C8en3wvYfPY+aIynOBxg1avPF+h2E7Q3GoxCReGVctj64BpAbVVrnUbOyZVurqCFmGQJJAp I/GsY+PfDoGf7RX/AL9v/hWJ47s9J1K7sZr7VxZZgJjBgZ96k5zx0oA7W4vre2sHvZJR9mRPMLr8 w29cjHWqekeI9N115U06cymIAv8AIVxnp1FYOt6rpum+CU043gd57DbbnYR5o24B9s+9cx8Ptc0/ RLm+bUbgQiVECZUnOCc9B707Aes0Vk3XifSrKytru4uwkF0MwvsY7h19Kp/8J54d/wCgiv8A37f/ AApAdFWLYeLdI1PUBZWlyXuDuwvlsOnXkitGw1G01O2FxY3Ec8R43Ic4PofSvKfAv/I+R/Wb+RoA 9fooooA8Ar2PwX/yKOnf9cz/AOhGvHK9j8F/8ijp3/XM/wDoRr1cf8C9TzMF8b9DybU/+Qtef9d5 P/QjXRfDf/kZZP8Ar3b+YrndT/5C15/13k/9CNdF8N/+Rlk/692/mK2rfwH6GVL+MvU9TopKWvEP YPJPiZ/yNX/bsn82r0nw7/yLmnf9e0f/AKCK82+Jf/I1f9u6fzatPTfiXb2GmW1qdOmcwxLGWEgA OBjNMBnxVC/2hpxGN/lPn6ZH/wBes9s/8KpXPT+0OP1rH8Qa5ceJNW+0yR7SQI4ol52jsPckmuu8 R6W2j/DKytJQBKsyNIPRjkkfrigCnpepS6Z8LbuSBikst20SsOo3bckfhmqfg3wbH4jinuLmeSKC JtiiPG5mxk8n8Ks6fYSX/wAK7sQqWeG7M20dSBjP6E1H4I8Y2vh+3ntb5JDDI/mI8Y3YOMEEfgKA MzxnoNv4d1NLW1klkR4fMJkIznJHb6Vp/EP72jf9eQ/pVDxxrlpr+qx3Nj5nlrAEO9dpzkn+taHx D+9o3/XkP6UAber+H7TUfBFpqMzSiez04GMKwCn5QeRiub8EeG7PxHPdpetMohVSvlsB1J68e1dz KjSfDPagJY6aOB/uVxHgTxFZeH7u7a/MipOihWRd2CCev50Adn4h0LQYdDsbfVryW3tbMbIW3jc3 GMdOenYVyNzp/gk20n2fVbxZtp2FlJGe2RtpfiNe/wBoXum3MDMbWW18yLIIySxzx69KZAngj7En myX/ANo8sbvvfex7cdaAJfhhdSxeIZrcMfKmgLMvbKkYP6mq3gX/AJHyP6zfyNP+Gn/I1/8Abu/8 xTPAv/I+R/Wb+RoA9fooopAfP+4eor1Hwj4i0m38OWVrNqFvHPGhDI77SDk+tdCNF0wdNOtP+/K/ 4UjaHpbjDadZn/tiv+FdtbFQrKzRx0sPOk7pnGz+A7LUbmae01yJmldn2gKwGTnsaqH4f65p0on0 +8haRfutG5jau1bwrojnJ0u1B9VTH8qVfDdjDzbG5tz/ANMrhx+mcVKxUlpf70hvDRetvxOes/FG t6NiLxHpkzRDj7TEmcfXHB/Sut0/UrTVLYT2U6TRHup6exHY1Aun3cIxDqUrD+7OiuPzGD+tVhoK Ncm4VEtLr/nvaHbu9mU8EfXNZTlCWtrPyNYqcdNxmr+D9L1y9+13qSmXYEyshUYHt+NUf+Fb6D/z zuP+/wAa6K3edf3d0qlu0iD5W/Dsas1ibGHpXg/RtHnE9raAzL92SRi5X6Z6Vd1jRrXXbH7JfK5i 3h8K205HvV+igDM07S7Hw1pUsdsHW2TdM+5ix6c/oK4m8n8A305mYyxM3J8lHQE/TGK9EuIEuraW CTOyVCjYODgjBrlh8M9CAxi7/wC/3/1qAPOddj0uTUlh8PiZoGUKPMySzk9s8+leq6h4Q0/WYbT+ 0VkaS3hEQ2SFfrSaV4J0bR7tbm3gd5l5RpXLbT6gdM10FMCC2tIrSyitI1zDEgjUNz8oGOfWuel+ HegSys4t5Y9xztSUgD6CrHizUZoLOO0sHk+2TuCUhGZPKB+dh6cd6j/tZ9Mwqqxhki89I52IaCNF +YuTk5JwAPerVNtXRDqJOxdufDGl3mkwadcW/mQW6hYiWO5Mejday/8AhW+gf887j/v8axvtVxLF dJLeXEEl0+ZdrjZGGG6TjGfkTaOvU1t/23PbaaLiCKRtmwmKYks6svyDOMBiSvr71UqLREayZc0j wfpWh332uySUS7SmWkLDB9vwpum+DdK0nUxf2qTC4G7BaQkfN14/GqqeJ8T3Usas6/NJiSTCJFGM FhgZ+ZsgeuM1PpN1JrGti8lQwrb24jWLdn942C+fp8o+ual05JXZSqJ6I6KiiiszQKKKKACiiigA pKKKACloooAKKKKACiiigAooooA5HxEsWneIIL2WMXMd5GLd4WJXG07gQf5jvW2mkWd1bRtcwRyE qe2AFY5K49On5UUVtNvkizGCXNJEn9iafu3fZIs5YnjruGD+dSf2ZaC1S28lfJjYMqnPBHQ0UVlz Pua8q7ELaDprIENnFtClcc9Cc4/Pn2q1bWVvZhxbxLGHYs23uTRRQ22CikT0UUUhn//Z ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image014.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAANsAAAA3CAIAAAAKZ6juAAAAAXNSR0IArs4c6QAAFvtJREFUeF7t XAdYU1cbPhACJIQRFEEURFTcIu6BCPqDA8RCESlIWWJVqNTR2vrXbala66BqKcaN1gGoCAbZG4SC DInICMiQoawQE0xM+M9NQkggwciw4J/z5LkP3HvON97znnO+M+6VaW9vB9IkRWDQICA7aCyRGiJF AEFAykgpDwYXAlJGDq76kFojZaSUA4MLASkjB1d9SK2R4c+161yG/ytwaF5986/olSodnAhI+8jB WS//v1ZJGfn/W/eD03MpI/+9esm5umvXrqs5A2gAs/5p4FGoBKZ9Z0Iyqtt6q2vgTeVbNmQZyaxP Cdhmt8x43pw5cxYutdt2hljSa7x7W099LFedHR8fn13NlVJ7023hPMvfc/soU7B4Y/gue8/TQSmZ uTAl3PI9ev9Vb6ULmdpbIZKVG5qMZJLOrLfyCcikaC902r7d2XzCu8zrex1t98Q2Sub1IMzFRCsP U8XjMP1nWtafp1Ko2o7XEhOiYEpIS77pod9/0gdM0lBkJDNx/9brFdjFB8MjA3/zcXLyOUR4GH7W Sqs+8tCRSMqAQTWwgnXW+YVFBX5j0H9aauubgdr8pVPQPJGKior9J3zgJKEOHDjAlf72/vGBU9OD ZJzNDx+nl3LvlwOxdUY7ruycrcAviRm9WLP0Znh8mZL1l0Y4OAg+Pn7A/4W6yai6W3/8fu1+ZGRy udLUGbpKKAFdbSXEc6f/CgqPjMyu1zCYPJL3EMZMJwJrRphp1/wttihPigRamK2Fkf5+HC3Jz1k6 Myeoy3WYUBwREF+pa7ZpFUJDjqiU9hmLx0PrkQRjQJ5+AfPIIQd+uZjGmLzEQLVDCsfcUpzxXJ0O 6vGExZDK37TR6kiZ8TmIWCqioGSExUwtWPLDPnaqR8BB59xI5JsqbJ2QVzwvJmjm/eV78T5HL88d iet4CPaR6ak5bDB9mYWKsJPoJYtmAFCU9YSJ3KcUJsfHX9610mrrheTa2vLs9IgAH6v1Z0ich0h9 k87Zmznsv5tZ29ZWWxDm59n5kBMzBR9azyuamfIowMd+t8jOVwItThYb9t5KKG8GzaWxN/Y6rPz6 Et8GIfs5opILeV18Y+yetVaefmEFfPPW7kuEz3TU6E/ig68RK/llE+8Q4uNfKehjBaXRqkm5uZUw /7v6FzCGJFXTeIh0RK0f8JETFXmeDkkvqG2uTfD/Zu3RDEHxjeE7Vlp5niMiXpUn3IJe+YRz4yWO Fw9/dXP0heFrdk5JL0asocfI2qpaNlDTn9CFkACgJxtoA1BZXsYH7526NSEuISwwMCg27oqzLqi4 fuAyty5zT26/TNawJ0QTA8+eDSSG7l+Mrbhx5HpnRdcCY17RhPC98zHUxCtBtWKauVgtzKzjUIsC jC4SgggnCPfiwvYuBqTzP54v+kCHwUw8cSjyzWjnK3Fc8+KuOGrVP/rlz1yAXma5BAPI0XxKZiVl 0IHBf1YjHV9n0ne/EhX1wzwAtNb5wxjyirvIAFKsj5WXD1yvUJi/JwzqJwQSkyN+ntc5GgFK0I8H Exlz9zyIRrwKir7orEtL+e1EYkdjB9CgbbeS0xJib3r1IggZeoyktFIBwOKUJRgGtJZazeDFTugp W73NYF3GRyHESrwd1gAMHTd3PFW3/MZai12UksJv03NdvuU/nGyAB4DaKq69i9WSFhzRIDvL+7Cl OtdW9Ii1uxz1waugK4k9Gx93P5oqu9Bja0cIiJ6y0d0Ez36eRQbAZL3VsE5KZkXENXcnpATQIFnE +UgOjSADtZXutiN4cYC6pYUhX2ZtUEg2W+ApRNZlLqBmJOV1ZNGy/m7D+F7HrEOPkXJyMBBjs95L CDs/G3qOEWyx9TVwtaXo6TM6wDQlHOIu1SHpUjZs4q/r+P2gnFxnVPYxmrpq0Zo6Q7Az1zFeoAXo 5SXi+luOqqLnJWygpT9BwAKVL052dHWGK5fxKZkbndgMDK3thHtISe0V5+PzogoAps6cLVpOVi7s 4lHP/+7E7qeIGgxoruf7JIvih8qSmiKQrzeMVFqxGf9TKFrfqBf6+l5EX08Hhu6lxfxBgi+y/CUE RUNTXPWoKMMgm9LQwMvPDbH4qY6Nx6sr9wVKrtwuWrr6K4eCiIvvbyWBx9BmtTa3lyyKT4Fdvfnq bgGMJGL6lIdSKYhdSasiHq/a615R2BKJGInS1IcUhD+50VNklYfhHI/IT1qEW3+wT071uvBsQ9jX 5aUmdaVkVmYeG2jPmCWufsjlMEzUGqPHY43Kqt+QdTrBJCbe+ihLu2ihUVuFinNajY7e2J5kckjd wyhgYGulj1AyLT7lleysVf1OSK0Raj20GmUluGY6ZUtwV/AOLf8onMRmloiRshgcpCD8yWJV2t8z 2t/BqRtob4Px3L+RtOxsZ8nS486eF5q0Nt46/6BZ1uALW4FgmtbU2EnbyuiECoCZhgzdWrMNh4Hm qODOYBxOvl+WvOze7Urin1gt5qb6XbQ0PniQyZadZWbWY0igZTxfG64GPRTYvyk6Yz1njuMl3sCo s+o/kJLBB4LJsjMtuq45SGJyz3lmLJyNAflRjzq3GzixOy/NnDVZFuSHBnXOAgFoLCnpt70JiRgp 6EA7vbX51FfU+8cphG/77nyvJKjYHUXmxtc9bLfBzVpyTX5iwL51tidyga7Tz85wSOen5rAfvQJg hpqa/JAd3xDIsroOribIU8MtO01w1MjdTvuJ+fApfPyDrYOD+754pKl9bBKrRcfN2wJq2edxjKMl n/jzxl+evNN1+m7tB4ZZAzdvE1xD8I6tHOPJGYE7vrvxCmfiyo8XdaxXGoCGhoYBISSc0Hs46MLl iA07AhH9EDuHk52tQ8Vul4suKPJ35VpXQ44/47bO0XErAQaf/ZEkYySbLahLTmsc/FdOdxr/JnrC PBhcYs09FQzNZeSFAgoZtAI37lTbflPJZrf85MX9YLa65Yk7Z5ynwb1D3632a9x2BETU4JftvXvb h79BwVGitcpe66GP/Zo1a9x8E5s0Vx8ldCxHqFgcu+NrN6aBuNcNPl3jdjRVztz370OmQqt6Ehoq XgvaxDfkrPPY6mCOFre9MVRDZz9CFyNFaYHmXd1rin0aAL1bY7/VL0Nhpe+dYwK9IWecALIL136I 3BL60CWbgRfh6GrNpsTTiH6Pk2VzNlrBhbWOZOB1k+CzgGfdGvtdt6r1NxKubNTtna6upSQ6sYvW naZ+OB4WbfrFilGUrn4wBq1n+Dbcj3rnEOQf/ocQyEi+YDiaUy7vaEsPgXfkp5mqeJxBqY8SVPsu N6rlrHs7g8692acTu8zW+jdUliJ+JL5LXA2HOcfrwPlmqI9BW1NNU5uILBztnIco3PARyr2ZW3+U FnEm9FCRHPeAKOsqA+xtCCMPppyx7I3dEnIHAYcpHhux4EsoXnQ2yfpI8SqwK7ZAOjJL/2k6/iUl wIueGiSjiGOWPYUl0GOm478P4tKxLeMBHOjf5UTCv1HDdYFsX/XyLEIrjxg5shsdhc2FTBCfhfOw d3T8WC1dG40E9cZxT4R1zKxrwWSM2VqLAaQjNA8BpwdsJAFfAie7ZOkrM+DsG0pklucxChLoKbcp f21+7T2RVYfsm2Ctd8JrO6Otcf+ylnMeb+8dbz7l2Br4E7y2t739eFOlJSACcON4l/cGS+97TboO HssGlpD/DuCSMVJGRpR1yM33L5GYF7vcHb/7noLRCvg3u5W34qc4xwr++zbiHOQrvzgt6gLr9cuB 91VlkrGpqfGkAV6p+zRaBNFCdqxf1KnM3eTHj4kHHsxPqqGvcSQ0VnnDr3BOw7Wa1VhNC/ejRV+U kceMuIAsEDSfcX6XTezBpz7FkZ8UK6myT4GARH2kjBLv7BObLrzey7EQDsSvfabCQfl9xTMYNSo7 H8NZ7+RPXFCqGp/CD6mOzwUB0YxUXGAjN2oS30f0FM4qHhyjKwu6OC6DQQZGdnMdnLg07DWlhp6E /8rPtoRXRmEKvCqaOAsWkVFU+lygk/oxIAiIYKTi7NWqWy7gf7yPWfKV/NSlOIdDsM+Dyt/lx3Y3 Qdnx8LBfUxVmrZJV4+wns1nw0k5rgVd6ZAC8wu1vte9ucCdActoG+D1h+J8eyGAkObozIA5LhQ5y BETEkbJKeLUdN9Hj5wqaDrdqGvaZserL4U3+euTb0N+Hn8yB+bs4SQnYSk+5A28qO/liLTZ1ecp4 kdZyegObw1qYhmgcmZJ44yRYFGzS4w51T5Vfdvz2M12LNQ5dwRvkhBlw88TObOBkRXHROjmdqWxq 43vy09Ybe1gNVVxzlF1Pyo0c/y49iBZ3TVZNU8l6p+JsS/gHZC2zPJced7XtyT2+4XDGrWj6tcL0 ZXA3nFmSSY+52Jb1SNCtj2Zk9jWZiBIhYFQX5nit6jzBN+CgIQoCb+5zBl+0O876oDZaefTqB6kJ b5Hzcyi0+gYLtwBDVXmQbeUbP9VlxzGh3YMPChtcGW7fOuDQuvSlp1k/7dcg3kk01x5QGHrFyPcn N9vY8s1CKY5UxcgPqJXdhEvKSFqamd/jGsOv0y301VCMsie3jGJqN3z1w9mxnwMjGfWFESx965H9 ib1Ec+1PW9eSaJPTUMeP4f866EirIZ16fNflcVJoDaNDSkNMRl5Wc+3Nx3f/S6IDWlVQRjGZURsa ++DLhzGcbKyqsie7Q+7uTiY94xcCgCvKKzYnuRmJjGFqqsojFL+uKkvyCkkTOJXTnJiVEVHPy8OR n5XYJOBCcWkSW+8HhI7wpvzY+Wt2a1Dv5JfycrDpTwtivEKIpwpqBQ55QJNyDj8UMolcnBFU1fLs KdElitQEOE61tiRnEF1CiBfKWjoNZ0GBSd3dETCI8UxkBohJMtHlYcytDmlC/jaRr2YUvujwErwp JkAYAahqodTzj9sxGmOhPbcfHC6o6sAMUdsdSf5N4Zri2ThEGSmCtblJf2pfDb3yhkF9k+t+9cT8 JO7r8i9PRYcuv3hhSxlcDqCApvzd0XfnEYLOv6aC109tL582Czw/N+p5CfNtROadmVfjuEypz76m ffXR3WZGbUXscv+zuyuRqqgoiPYMvTAzKP0JhSpwBFyB9OyRVXQulxOMwliHhKIGwXV53VEzQNWV ZD7h8D95Hqq3Ro6qwMq6GHLWNae2ll76y0N/43juzgLrn8dn9UISU2iMXFLozD+uBXIW3FIzw1xv n5sfW1xOo9ZwnSL85VXcSKUXf//3qRlRXGdfHST8tiCukKqEK0XKBt7uepaJGnjzxMwYUglTSDho zbb6w9+rqJFKI++5c2rG40rojpC/KrRHCbd25vIoGZ8avPn5GxgAQ6s8Mzn7HYgEP/ucOiqgEmMI moRobqMViST/JremrLKFjjUOUUZS4jMyCLxfXhbEnZb2XUrD/OXeuU5OwU7epOXaBSlE/476mG+y vWWzJ2GeJgcl5W323hHrnYLdNx/Xosa/nZy8yTV4vWuu3dzRr/MuQ67R0tZHVqyw2p4K87j6hE2i /57EIxxQNIzY8f0/rubI3hQvYdyn64OKZ3eQymLdKSQr6k23FHwFF2/yt7l+Vfp5/O9+S3m9cmfh 2Yu2cA0OmqL4tLwQ6VvLwqyzZPe5bIMWRmzyPo4v2Z/a8SUKTfOyndsS1s5Dli0AWGG+k1N2W9aC YS9yksLgrdrKl2rGEVs8z61YFbRpnQeq6FwO7zgLTyUl+49yhW023wQjwr/eq1oTWADfHqL7h4TG 69qVujsFr/cstJnW+DSO4w5cuuvwFzXNeaxcRCEXh/KgsrYlE2cKTslSE6IjhpmTECSdUjdam1PS j5PEIUm59rREzXA9Aq+Td8w8fObzPMGXPIYoI2m5ZcVE3u9l8TsA4OAI9Nzn8l4OHjF3him78nEx tyKwM7UFXxpW1ed9lhA3Ah4YUlbn9lfw8AcKsJiwJpBxVk2ZlsVhfNZLGRyrqe45Nw9+5BxBtnHu yRvO+hJFvgX7D9bzh9VylpMnC0dVqIlzHcnbvyPOHwOq09dd9h0emNIx/HUahleQB28p8IQhqaS8 BqvMJnPbG4migCU38OpLU2PUiE4yY/XwPFPGTTGYyKxOgu8Pac2/ZLdwdFkOpywZ9l3VrYIBBDw8 P94c33op/O7hgopquub+jbsjFsD+vOhxDVtfnnaN08KvNctosd/kc3UK+GtlNFWd2/DKckPo+h5z Bb++Ufeokjp+1HieeVjDwE1ep8eLQ1LFXHdYFemeayzpSQt98rItdU6LBF9EGaKM1PKBLYz34yyg sNgsJTyPWwiWqqOwbIRevUhQlByjhM/4Nryt3sielmhQkx30OP3Hi4JwMMF5WjfOIrRVX2a8NmHz f5vcTKfURH2dKkwUASOZcEG3/W12h/Z8OR3b0R9aH9JQH8OVwCrxOvfbwlhSsUBALAyA9hGPbSHT 5KOTbhicOTz8ctw/nK6dyZajNvNbeNuEcROMuh8UHWdkj0EaXmrBC8q4WfZCXkIJYIwa//ujKDVV vAZsl2KQNDTfUrzWSKkienXAMeypgF85QRE/9f1Vp17U+QAUUVXWaH2VTgNzuFDSap/TsJP53334 KIWKCkrvle3WOHkL14pYEgGUzayp6nefuaErwFhb5HSJQIoNP/VV6+JCh3lcWmFHLnEdGbupWux5 a7yCApDR3rHexlRym8urngIF5LBxbup59vS4Tdyyr4ozk3iDBF8Ug/qSKr8Atg3jtYBR5P5n4IbY KYXmiqro96Mn2AYvEvroULdvYul5TlJZXBpnUM+wXNplHMDrKIHbb2B0wT3BT8/Ky2/WnrdcNJKM 141vcbpLzrkuOQcYUfdPW4RFr92yghuKwDRE+8hu1TVuvptq5c/3M6tge2O1XLqfkIo32irQZ0pe v2DiHCelDlFwJv4kcHFE+QdeKUL6j5KbxXJORnxgeQqNJ+mhyNG2vJkNq7k04niV7BI9sW/W686e uaQtdzOxnBMDM9KIAZaZzaKMpzzI4+RhtQSkFTRqTLHHA9gzotreZCMTXbjMFP0XbwtCoHR1zEL/ gN3lnV0oFg27someE3FJaXcvcWbIjOZ0m8uPUmEg1C0Zzp6hX5rsx5y6pes4gHGaNKaKFMeVQCuP sn+UiXwEQzSSrw5eP7UgkusgJ8nJCwZVn0sfCbQPO31ZF/hA59hD6KO8yvS7Lit6uWaOGvfHV2sa 7xB1fovAyjDfK477/SudD328Rs9xHO5c6USXbm1AfpxNjp2iPTFAKZHzhjkKt9TI8fYC8Z9AU14c ZEuxCb+ilIfCtrPAMKP7xmqiGKk8piVc42gdjQ1QmLGnnUwQzbMsz5IueJ8/uBPIYjUMzFRBxjvh mc1Yq9BFl9fcPnIWYY6c1iizh0uQvtvU0u1i8PUt5w9/i5alsRVXL3GbowB4obOg7uFGdvhE/1FG pt0Mwi9YT3xz9Qv/gx7w/ReUmssqj53IGC4SSdRJW7NnIdeUfBFA5JV0fW1NBBfYh+AKuaj64d9j 0FteA9wojKhgrseC3R9CUTUszBicRMu/YUFHNilueGWlJ04JIo0hL/lKPo3a1IRSEeNIx+q6Fr2a CjSEdwckQAAZNwGOE+oJJha9uoWFV8f15mUjrhwxEkQiCR18DZS6w/u5jNodyMpjVPuFjkjzxahK QkeI7Mvi8F0lWGcjsXTkSfuYjSUsDv9hR1CYUd1kSoCAPNxf6EpHpP/GjOoLHcVLEIkkdFAkvJ8b Iz+yH+yH7A/DzugF5w9bsO7wp9uhRg/DKqn2wzDQD+73u4jPbdTud4CkAj8xAp2M/MSKpeqkCIhE QDpqS4kxuBCQMnJw1YfUGikjpRwYXAhIGTm46kNqjZSRUg4MLgSkjBxc9SG1RspIKQcGFwJSRg6u +pBa8z8X0UWf9ZzI9QAAAABJRU5ErkJggk== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image015.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAB4AWgDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD5Zz3a l3KK6T4M/Dq5+Lnxf8L/AArsrxbaXxJr1rpy3EgyIfNlCF8d8Ak/Wv3H8Ef8Eff2B/Bmhw6Hd/A6 z1eWCFY5dQ1W4klmnZc5dvmwCx5wBj8q/Xs0zrC5VKMZpty1SR+f4LLq2P5nTsku5+Cm5fWjcvrX 9Af/AA6q/wCCf3/RtWg/98v/APFUf8Oqv+Cf3/RtWg/98v8A/FV5X+uGC/59y/A7lw7i39tfez+f suudoPXpQCSM1+/Wsf8ABJf/AIJ9avZPYyfs56PCrrjzbWSWORf91lbIr8Zf24fgN4a/Zo/as8Z/ BDwbe3F1peh6kqafJeEGQRPEkoRiPvFQ+3PfGa9HLc9weaVJU4RaklfX5I48ZlWJwNPnqNNbaHj4 OetGQDz3ruv2fvhU3xu+OXhL4RC7+yp4i163sprhRlo43cb2X/aC7se+K/bjwp/wSI/YB8K6NDpE nwCsdQaKNUa71KeSWaUgfeYluCTknGBzRmWeYfK6kYVE3fVJE4LLa2PTdNpJdz8Dt6+tNLAHaXr+ gU/8Eqf+CfxXn9mrQf8Avl//AIqq9/8A8EmP+Cfl+Y/M/Z00mLYP+XeSVM/XD815q4wy+W8Zfgzu jw/jOk197PwCDL0308HsBX7VfHX/AIIQ/sffEPQpk+E8eo+CtXWFzZ3VrdNc25lI+XzIpScp/ulT 9elfkz+0h+zl8TP2V/i1qXwd+K2kxw6lYuHjngYtDdwtyk0ZPVWH5EEdq9XL87weZXjSumtWn1PP xeWYnBy5pK66tHndIcZyat7B/wA86+sP+CQX7F/w0/bJ+Pmuab8XIZLjQvCeiRX0+lwzNGbySaVo 0UsvIRdhYgYJO33rrxWKp4PDyrVL2j2OehRliKypx3Z8hnhtoP607OCR6dfav301T/gkV/wT61bR 30dv2erCDeuxbi1uZY5l9927qK/FX9q/4LWv7PX7SHjT4Mae0klr4e1ya2sJJm3O1vkNEWOB82wr n3rhy3O8JmdSVOkmpJX1sdmNyutgYKUmnfax5mOepoLAdQfSrkNq91MlsgQGSRUXcOMk4yfYZr9y Pgx/wRp/Yq+H/wAPtN0Txz8KLfxNrkdjGur6pqlzI5nuNo3lRkBU3ZwAOlaZnnGFyuMXUT97ovK1 /wAyMFl1THN+ysrdz8LN4zt7ilGa/ST/AILL/wDBNz4D/s5fCXR/j58BPDY0Nf7eXT9a0tbppIZV mRjHIgbOxgyYODgg+tfnLtH/ADzrfA5hSzDDKtTvbbXe5hisLVwdZ06lr+RVIOOB16Um5eoNeifs yfBtPj/+0H4N+DEt8bNfEviCCyuLqPG6OInLkf7WxWA96/a3w5/wSC/4J9+HdKj0f/hQNjfbECte ahcyyTPgY3Fi3U9fT0rizLPMNlkoxqJtvXS2x1YHLcRjk3BpJdz8DQ6noe2adX2b/wAFj/2GPhz+ x38VPDGq/B6way8OeL9NuGTTZrhpTbXVu6CUKWyfLKyxkAnrn0r462qOClehhcVSxmHjWp7M48RR qYes6c90V6Ceeas4X+4Pzowv/PMfnXTGSi9TEqF+KXcfSvsH/gmz8a/2Orjxjp/wO/bA/Z08HX9n qUy22j+NbizEc1vMzYWO6PR0YniQ4K98g5H6mN/wTG/YCkGB+yz4VxtPKWec8dOteDmHEEMur8la lLXZ3Vn6HrYXKZYynzwmvPR6etj+fLcByxx2pGZcYLV9Xf8ABXzwH8KfhX+2Bc/Cf4PfCvRfC+j6 Do9qrQ6Tb7TdTSoJWlf1wCqgdtue9eU/sVaL4Y8Qftb/AA78LeNPCGn61o+s+LLLTtR0vU4zJFLF PIIjkAjlQ24H1Ar06OMVbBrEJNJq9uu1zz6lB08R7G99bXPKOPf9aOPf9a/oQ/4difsDf9GreE// AADP+NH/AA7E/YG/6NW8J/8AgGf8a+e/1uwf/PuX4Hsf6vYj+aP4n89xIAz/AI0K2T2r9/fHH/BO P9gvwn4J1jxZB+yj4Qkk0rSbi8jjks22s0UTOAeemV5r8ELnVv8AhI7ubxC2k2tn9uma4W0s4wkN uHO7y0UdFXOAPQV6+V5xTzTn9nFpRtvbd+hw43L5YGK5mm32KRI6k0jEdK/Qb/ght8D/AIAftJ33 xC+Hvxx+B2geJG0OKx1HTdS1G13TRLM0kbQ5HVcxhhnoScda/Qk/8Ewv2BV4/wCGV/Cf/gGf8a48 dxJQy/FSozg21az06pM6MLk9bFYf2kZpfefz4bgFzmhPu8V/Qef+CX37A0u2P/hljwpyccWZ/wAa /Ef9spfCcP7VHjzSPAfgmw8P6LpfiK40/TdJ02Hy44IoWMY4ycs20sT3JNdGW55RzSrKnTg42V23 Yxx2W1MFBSlJO+nXoeUHoGPTOOtBIHBbvX1N/wAEjfA3wq+KH7Zen/C74wfDDS/E+j69ot3F9l1O EMLaaJPNSVfQ/Kyn1DV+st//AMEyv+Cf1tZzXl5+y94RiihiZ5JHtSqqoGSSc8DHU+lLMeIcNlmI 9i6bbaTvp1KwmUzxlH2kZJdOvT0P59Nyjjd+dOr3v9ub41/s9fFD4mXWgfsufA7w94U8H6TdNFY6 lZaeFvNVZflM7sSdsZOdqDtySc8eG7FHHlr+Feph60qlNScXG/R7nDWgqcuRO9uvcrUVZ2qekY/O jav/ADz/AFrZOz1MbMrE460Ukp/eYx0oq/MD1H9h8Z/bL+Fg/wCp707/ANHrX9HUoxK/+8a/nG/Y d/5PM+Ff/Y96f/6OWv6OZwTK2D/Ea/PuMv8AeaX+F/mfVcO/wp+q/I8x/aL/AGufgB+ynBpN18dv HkWhx67JMmltJbySee0QQyD5FOMCROvrXndn/wAFa/2Ar2Lzk/aD09RuxiS3lQ/kyg18t/8ABx8E Phv4OnPzDUtbxgf9MrPmvyzO3ceWDdTtwfwNGU8P4XMsBGvUlJN30VugZhm1bC4p04pfM/fK5/4K w/sBQwSXMn7RGl7Y0LFVhkZmwCeAF5PtX40/t1fHHwt+0h+1r42+NHgiCePSNa1RW0/7QuHkijiS IOR/Du2bsdQDg15KB1UyZ5wR7ev0o452nj2r6XK8iweV1ZVKbk21bX1X+R4+KzStjaapzSXXQ9m/ 4J5c/tx/C3n/AJnG1H6mv6GM5OP89a/nn/4J5f8AJ8fws/7HK1/ma/oWOd5Oa+Z4w1xlL/D+p7HD tvYTv3X5HmP7RX7Y/wCzz+ylNpEHx18fLoba4sx0sPZyyecIinmfcU4x5idfWvP9F/4K2f8ABP8A 13UYdLtf2hdPiaZsLJeWs0MY+rMgAr5I/wCDj4f8TL4P57W+uf8AoVhxX5jTQiWNoiuQykbavLOH sLmGBhWnKSk77Wtp/wAMGOzithcVKmoqy3Z/Txp97aanZx6hY3Ec1vNGskM0MgZJEYZVgR1BHP0N fAH/AAcDfALS/FPwE8P/ALQllbomqeFtYWwupViG6WyueMMevySKpGem5gOpr6j/AOCffiO58Wfs S/C3xBdFvMm8G2SNuH9xPLH6JXA/8FkoUl/4J3ePWliVtosWTI6MLyHn9a8LLZVMLnFNJ7Tt6pux 6eMjGtl82/5b/hdH4S1+iX/Bud/yXL4pf9ijpv8A6VTV+dtfol/wbnf8ly+KX/Yo6b/6VTV+gZ// AMiir6L80fJZT/yMKfr+jP1qHSvwF/4KsJj/AIKEfE5s/wDMcQf+S8Vfv0OlfgN/wVZ/5SDfE7/s Or/6TxV8vwj/AMjCp/h/U97iD+BD1X5HgWmf8hK1/wCvqP8A9DWv6djy7V/MTpn/ACErX/r6j/8A Q1r+nViQzYrp4w+Kj/29/wC2GHDfw1PkfFH/AAXtGP2D9o7eNtN/9q1+LY6V+0f/AAXvJH7B/wD3 O2m/+1a/FoOdv3f5/wCFenwv/wAir/t5/ocXEEW8dp/Kj3X/AIJof8n8/Cf/ALG6H/0CSv6Ca/nz /wCCZ7N/w3z8KHJ4/wCEugH3T/cfvX9BleDxarY6C/u/qz1chVsNJ92fl7/wchIXf4PgHHy67/7Y V+YcvyNzX6ff8HHv+t+D/wDu67/7YV+YUo3S7ff+tfRcPO2UU/n/AOlHh5v/AMjCfyPsnwz/AMEM f21vFXhjT/Felah4J+zalYw3VuJNfkVtkiBlB/cHnB5rzX9rT/gmp+1F+xl4StfHnxZ0bSZ9Hurx bT7fouomdIZmGUWTKKV3YIBwQSK/dL4FqR8E/B7bs58M2I/8l0r5/wD+C0Wjafq3/BPDxpLewBms rrT7mFtmcOLuNcj3wx/OvBw/EmYTzCNOdmnKz07ux7NfJ8IsK5RvdRv80fhZKhZGT+8uPvY59fb/ AOtX9A//AATV+Mur/HX9iHwD4/8AEEskmof2P/Z99PL96aW2Ywl+vU7AT9a/n5VWJCkfhX7Yf8EJ 9XuNS/YFsbaRvks/FmpQxjdngur/AM2NerxdTjLL4y7S39UzhyCpKOJlFbNfqj8/f+C0+f8Ah4V4 uB/58dP/APSVK8l/Yd/5PQ+E/wD2UPSf/SpK9a/4LT/8pC/F/wD156f/AOkqV5L+w7/yeh8J/wDs oek/+lSV6eF/5Ekf+vf/ALacGI/5GT/x/qf0VUUUV+Un3pzXxo/5I14v/wCxW1D/ANJpK/me0X/k EWn/AF7J/wCgiv6YfjR/yRrxf/2K2of+k0lfzPaL/wAgi0/69k/9BFfdcHfDW9Y/qfL8Q/xKXzP0 o/4Nxv8Akq3xZ/7F3Sf/AEfc1+rkvWvyj/4Nxv8Akq3xZ/7F3Sf/AEfc1+rkvWvD4m/5G1T0j/6S j0sn/wCRbD1f5kkP+uT/AHx/Ov5w/wBrf/k6z4lf9jxqX/pQ9f0eQ/65P98fzr+cP9rf/k6z4lf9 jxqX/pQ9enwj/vFb0X5nHxB/Bh6v8j2T/gi//wApDvB3/XnqH/pK9frF/wAFLfHOofD79hD4neId JneG6k8MzWcE0chVo2uCIdwI7jfX5O/8EXv+Uh/g7/rz1H/0lev1J/4KyaVeav8A8E9PiVDaQs5h 0mK4k29QkdxG7H8FBpZ7yy4goqW1ofjIrKW45TVa3XM/wR+BsSKIgiDCqMKPTFfUf7Cf/BKz4vft z+C7/wCJGg+PNJ8NaDZag1jFeX9s9xJcXCKGdVjQrhQGX5iec9OK+XSGx096/UL/AIIhftyfs8/C z4LXX7OPxV8eQeHdck8Tz3enzap+7tbqOZI8AS9FYFGyGx1GDX02eYjG4XBOphV719dL2R4mW0cP iMVy4ja3pqcLef8ABvF+0NDFKbP48eE5pFz5KNZzpvPucnb+tcnF/wAED/22BMzX+u+CYbWNj5tw utSuwQdWC+SM8dsiv2dtriKaNZ7d42jddytGcqwPQgjr/wDqqLVudJvM/wDPnIO/9w/4V8XHibOF pzL/AMBR9L/YeX7uP4s/mEv7f7JqU9q7bjDM8e4d9rEZ/SipNaH/ABP77/r8m/8AQzRX6bGXNFei PipfE7dz0r9h3/k8z4V/9j3p/wD6OWv6OZuZGGP4jX8437Dv/J5nwr/7HvT/AP0ctf0cz/61v941 +f8AGP8AvVL/AAv8z6nh3+FP1X5HBfGn9mf4HftFRafD8a/hrpniJNJaVtNXUYi3kGQIHK899ifl XMW3/BP79iWygjtU/Zb8Essa7VaTQYmOPqRz+NYP7df/AAUH+Gf7BFl4XvviR4L13WF8VT3kdn/Y axZi+zrEW3+Yy9RKMY9K8A/4iIP2VM/P8GPH2f8ArnZ//Hq8TC4POalFSoKTh0s9N7HrV8Tl9Os1 U5U/M+gfin/wTL/Yr+JHgTUPBsPwA8M6RPd2ckVjqWj6WltPazbG2SB4wCdpOcHg96/AW/sZNL1K 60qe486SyupbaSXGN7RuULfiRmv1g+In/Bw38DZPBGqRfDH4NeL18QvYyJpDap9mjt0nKkK8jJIz bQfmwFOcY4r8m57m4vLma+vpfMnnmeSeT++7MWY/iSa+x4Zw+ZUPaPFJq9rJvtufN51WwtaUPYWv re34Hsn/AATy/wCT4/hZ/wBjla/zNf0LP978a/np/wCCeX/J8fws/wCxytf5mv6Fmxu59a8jjC/1 ylb+X9Tu4eXNh5+q/I+If+Cwf7Bfx8/bY1H4fy/BIaMy+G4dUXUv7W1AwE+ebUpswjZ/1LZr4zg/ 4IKft23EywXEng22jZsPcSa+zCMf3sCLJx6d6/aosv3c07IPQ15uE4gzDBYWNGk1ZXtprq7noYrK cLi6rq1b3fmcV+zv8J4PgV8DfCfwdgvVuf8AhG9DtrCS5VcLM6IN7AdgW3EexFeFf8FpNcsNF/4J 3eMob2fa9/dafa2q/wB+Q3SNj8lP5V9S3dxb2VvJfXlwkMMMZkmmkcKqIBkkk8AAdzwBX46f8Fp/ 2/8Awp+0d4q0v4BfBnXhfeFvC91Jc6rqtrPug1O+KhVVMcNHEN3zdGZzjG3JzyTC1sZmkJLZSUm+ i1uVmFWnh8DOL6qyXysfCdfol/wbnf8AJcvil/2KOm/+lU1fnbX6Jf8ABud/yXL4pf8AYo6b/wCl U1feZ/8A8iir6L80fJ5T/wAjCn6/oz9ah0r8Bv8Agqz/AMpBvid/2HV/9J4q/fkdK/Ab/gqz/wAp Bvid/wBh1f8A0nir5fhH/kYVP8P6nvcQfwIeq/I8C0z/AJCVr/19R/8Aoa1/Tq3LsPev5itM/wCQ la/9fUf/AKGtf06scOT7108YfFR/7e/9tMOHPhqfIqatoei69Atvrek215HHIJFjuoRIoYdGw2Rk VTPgLwHI5km8EaOzep0yL/4mvM/23v2u9A/Yk+Ca/GjxD4RutetTrFvYGzs5ljkDShsNluMDbXyI P+Diz4Sf9G3+IP8Awaw/4V85hMszLGUvaUYNq7627dD2MRjMHh5clV2emnl/SP0JtvA/gi0uYb2z 8I6XDNbtugmi0+NWjb1Uhcg/StavhH9nr/guR8O/2g/jf4X+CeifAfWtPuvE2rx2MF7c6nG0cG4M dxAGTjBr7urnxWFxeFko4iNm1fe5rh8RQxEW6Tuk7H5f/wDBx7/rfg//ALuu/wDthX5gzMVl3Bc8 9Pxr9Pv+Dj3/AFvwf/3dd/8AbCvzClOJCa/QuHv+RRT+f/pR8bnH/Iwn8j99vg/+3v8AsVaL8KfC +i6t+1P4Jt7mz8P2cNzDJr0SskggQFSCeCCDkV89f8Fe/wBvj9mPx5+x1qvwq+Efxk0PxNrXiHUL SNbbRb0T+VDHMsjyMV4AG0DBOTnivyNCgfKB74HagfeyprDD8LYajio1nOTad1trr5I6ameVpUXC UUrq1/u8whAKKq/zr9wv+CIfhr/hHv8Agnt4cuZItr6prWo3n3NuQZygb3BCA5r8bvgL8BviJ+0t 8UNL+Efww0Sa61LU7hUaWOMslpCThp5T0VF5JJ64wK/od+B3wk8O/Aj4OeGfg94T/wCPHw3o1vYw ttx5uxQGkPuzbm/GuXi7FQjh4UPtOV2vJJm2Q4epKrKrbS1vyPxf/wCC1P8AykM8X8f8uen/APpK leS/sO/8nofCf/soek/+lSV61/wWn/5SF+L/APrz0/8A9JUryX9h3/k9D4T/APZQ9J/9Kkr28J/y I4f9e/8A208yt/yMn/i/U/oqooor8pPvjnfjDBJdfCLxZaxH5pPDN+i59TbSYr+ZvQzu0e0b/p1j /wDQRX9Mnxe83/hUfivyAfM/4RnUPL29d32aTFfzN6Knl6Zbw4/1cCL78LivuOD5ctOt6x/U+Y4i XvU36/ofpR/wbjf8lW+LP/Yu6T/6Pua/VyXrX5O/8G4spX4wfFeLyv8AmWdKbd/283HFfrEwwcV4 nEnvZxUXlH/0lHpZMr5bH1f5kkP+uT/fH86/nD/a3/5Os+JX/Y8al/6UPX9HkRAmQk/xj+dfze/t VXlvqX7T/wARr60JaOTxtqhRmHJ/0lxn8wa9PhF3xNZeS/M4eIP4VP1f5Htf/BF7/lIf4O/689R/ 9JXr9sfi38OvD3xe+GHiD4VeK03ab4i0e40+8xnhJUKkjB6jOfwr8X/+CHWijWf+ChOhyhN39n+H dSut2emI1TP/AI/iv3EwM5xXNxTLlzKLT15Yv0d2dORxvgXfq392h/OD+0r+y78XP2SPiRefC34t aBcW8lvcOun6t5ZFtqcIPyzQtjBDLglc5ByMcV5+UUjBA29PqK/pQ+MPwQ+FXx98ITeAPi94Hsdc 0mbn7PfQhvKb+8jdUb/aUg/Wvzx/ar/4N/bWaS68W/sieO/s58rcvhTxAxYFgTkRXI6Z4wrqf97H Fe3l3FGHrxVPE+7Lv0f+R5uMyOtT1o6rt2Piz9mj/gox+1l+yc0dn8NPiXNdaOJQ0nh7XM3Vm3PI VWOYs5OShHqQcCv0/wD2Lf8AgsV8F/2sk/4Vz4/09fBnjS6t5I7XT5rjzLO/kKHAglbHzdcIwyex NfkX8dv2a/jn+zR4kHhj42/DjUtBmkJ+zTXMP7ifBP8Aq5RlH6Z4Ocdq4m1mmtJ0urSV4ZY3DRyR sVZGByCCOQQa7sZk+W5pT542Te0o9/PuceHzDGYGXJK+m6ZBrmf+EgvhjH+mzf8AoxqKhmZpLl5J GLMzZZm6k+tFe9HY8xu7ueofsO/8nmfCv/se9P8A/Ry1/RxOcSt/vGv5xv2Hjj9sv4WH/qe9O/8A R61/R1MSZWGP4jXwPGH+9Uv8L/M+p4dfLSm/NfkfmT/wcfc+G/g+Qv8AzE9c/wDRVnX5bjcRnbX9 Bn7Zf7BPwZ/bjtPDtn8YL/WLdfDM11Lp50e6WMlpxEH3blbOPKXFeMQf8EFP2HIYljaXxY7L96Rt aGW/AJWmT55gcDl8KFW/Mr7LTV3JzHK8VicU6kLan4sM23qPpSj5hX7VTf8ABBj9heWwmttnitZZ MCO6GuHdD7gbSp/EHpX5M/tZ/AJv2Xv2jfFXwI/t86pH4f1DyrfUGj2tNE6LJGWA4DbXAOOMg4r6 LL86wmZVHTo3vFX1Vu3+Z4+Ky7EYOmqlTZnQ/wDBPL/k+P4Wf9jla/zNf0LNy5Br+en/AIJ5HH7c fws/7HK0/ma/oWJySfrXy/GF1jKTX8v6ntcO64efqvyPkH/go3+3dr/7D3x6+D2qXrSTeDfEH9rR eMLGKFWkMSNZiO4Tvvi8xzgHkEj0x9WeE/FXh7xv4c0/xj4S1i21HSdTs47rT7+1k3JNE67lZSOo IIr8zP8Ag4/G7UvhAu3P+j64P/HrH/Csj/giH/wUOfwpq0P7G/xh1lf7KvnLeBdSupAv2WcklrEk /wALZzGOzZHcY45ZT7bI6eKoq8le67q+/qjpjmHs8ylh59bW8j70/b4/ZVu/2xP2c9V+E2jeKrzR 9Vz9q0e6t7ySKJrlVIWObYfmifJU5zjOe1fgD448CeL/AIYeMNR+H3j3QJtL1jSbp7a/0+ZcNFIp xj3HoRwRyK/pkLeYcAfXnrzX5/f8Fo/+CdKfGXwjc/tT/B3RZpPFuh2w/wCEg061i3HVbJFOZQv/ AD2jHf8AiTg9BWnDebLCVfq9V2hPZ9mTnOXSxFNVafxR380fkRkYzmv0S/4NzT/xfL4pf9ijpv8A 6VTV+dUciuMxncPUGv0U/wCDcvP/AAvL4pD/AKlHTT/5NTV9dn//ACKavovzR4GUxl/aNO5+tY6V +A3/AAVZ/wCUg3xO/wCw6v8A6TxV+/P3RzX4C/8ABVdw/wDwUG+JxX/oOJ/6TxV8vwj/AMjCp/h/ U9ziD+BD1X5Hgemf8hK1/wCvqP8A9DWv6dW++3FfzEac+3U7UY/5eo//AENa/p3zyzGurjD4qP8A 29/7YYcOfDU+R8T/APBfDn9hDp/zO2mf+1a/Fobu1ftN/wAF7+P2EcH/AKHbTf8A2rX4tjpXpcKy 5crv/ef6HFn3u47/ALdX6nuX/BNAH/hvn4TjP/M3Q/8AoD1/QVX8+3/BND/k/n4T/wDY3Q/+gSV/ QTXg8Wf79D/D+rPU4f8A92n/AIj8v/8Ag49/1vwf/wB3Xf8A2wr8wZgWkKjvxX6ef8HILrHJ8H2b +7r3/thX5iMSZche/SvouH/+RPT+f/pR4ecf8jCfyP2E+F//AAQs/Yt8WfDfQPFOsX/jL7Tqej21 1MItaRVEjxKzY/d8DJOBXR6Z/wAEFv2GLK4W4uj4wvArAiOfXgFb2IWMHH419V/Atgfgn4P/AOxb sv8A0nSurHSvia2cZp7SS9tLfv6n1VPL8F7ON6aenb0PPf2fv2WPgL+y74em8N/BH4b2Oix3Tbry 6jXfcXJ7eZK2WbHYE4Hau+fkc1IelN2s6hVHevLlUlUm5Td2+rO+MY04JR0SZ+GP/Baf/lIX4vx/ z56f/wCkqV5L+w7/AMnofCf/ALKHpP8A6VJXrf8AwWpQp/wUK8Wkn71jp5/8lUr5m8DeNPEXw38a 6R8Q/CN6LfVtC1KG/wBNuGjDCOeJw6NtPBwQODX6xgouplMIrrBL70fA4qXJmEm+kv1P6aM8dDSF sc1+Fh/4LQf8FCjn/i79oM/9QO3z/wCg1Rg/4LC/8FBbe8S6Hx0kk8s7vLk02AqfYjb0r43/AFTz H+aP3n0bz7CxWsWfuxrmlrr2h3uhO20X1nNb7iOm9Cuf1r+ZbX9Gm8PeJNS0G4HzWGqXNq3y4yY5 WQ/+g/rX74/8EzP2nPGn7WP7KGkfFj4iJb/22t7cWWoTWsYRZmhfAkx0UkdQOM1+Tf8AwVy+AOsf Aj9uDxVJNpDW+leMLpte0SXOElSYjzVHYFZdwI7ZHrXXws3hcfVw1XSVvxi9fwMc7jHEYSlXjqv0 Z6R/wQJ+KVn4H/bO1TwDfXHlR+NPCkltCzfxXFtIJo1/FGl/Kv2aJGFUD6V/Mr4R8W+JPAfiex8Z +DdcutN1XTblbiwv7OYpJBIpyrKR3z/UdDX2b4Y/4L6/tsaDo8enarofgzWJkA3Xl5pMscjfhFKq /pXTn2R4rHYz29Czukmr220OfK81o4bD+xq6auztffU/ZLxL4p0LwT4cvvGvifUo7PTdJs5Ly+u7 hwqRwxoXZiTwAADzX80vjrxJH4x8e6/4yiEgj1jXLy+j84fMFlneRc++GFfRP7T3/BW79rj9qTwZ d/DfxNqml6HoOoRmPUNN8P2jRfaYyf8AVu7sz7PVc4PevmAfIu0At/Wu7h/J6+WxnOtbmlbRa7HL m+Y08ZyxpLSN3fzfkfc//Bv34VuNX/bT1rxRFG3laH4FufNI6AzzxIM/98Gv2XLY6Cvz6/4IB/s3 3Hw9+B/iH9oTxBpbw33je+jt9JaRMH+zrfPzDuQ8rMeR0jGODX0h/wAFI/2iPGP7Lv7H/ib4u/Dy aGPXLdre10ua4h8xIpJpQm/b3wu4gHjOK+Vzr/bs6dOm77RXrt+Z72WJYXK1OXnJnupIB5H3unvS OAMBhj6ivwr07/gs/wD8FBrC5knX4u2siySbvLl0S3ZFHoo28A10EP8AwXU/bxihWN9a8NSMv/LR tAXJ/wDHq1lwlme3uv5/8AyWfYLfU+7/APgujpun6l+wFrF1e2scktn4g097WR1G6FjKQSO4yOo7 1+JEfIzivoL9p7/gpr+1T+1x8Pl+GHxY8Qab/You47maz0/TVi86WPOws3XAJzivn5V29D719bkO BxGX4H2Va1+ZvR37Hg5ti6eMxXPT2t+KKj/65qKH/wBc1Fe5E8w639n74h2nwl+O/g34o6hbPNb+ HfE1nqF1FH954o5lZwPfbnHqa/f7w5+3j+x14p0iHxFp/wC0n4OSG8jWWNbjXIo5FDDO10Ygowzy DyDX86kXEqkHH4f/AF677Q/2dPjN4g8E23xF0bwLNL4furpra11ZrmGOFphkmIs7jD4GSDg7ecV4 edZRhcynTlUnyNaet/U9TL8wrYRSVOCaf4H7+H9tH9kMnP8Aw0z4J/8ACig/+Ko/4bS/ZE7/ALTP gj/wooP/AIqvwM0/9lX9oXU/EOveFLL4ZX0mpeF4/M8QWTSRK9jFtVvMfLfdwy/MMryOaxvBfwa+ JnxB8P6t4p8HeFZb7T9DhaXV7qOeMC0QfxOCwIHYHoSQOpxXif6q4GUb+3btbs97W+89D+3MTHR0 vz6bn9BFx+2v+yHDGzyftM+CdoXLFfEcHGP+BV+Hn/BRD4teCvjh+2f48+J3w61P7douoapGtjfB NqzrHDHEXUf3SUJB7jBrmPDf7Jv7QfjTQdH8S+GfhdfXlj4iZxoMglixqG37yRAuC7DoVAJB7c4r lNE+H/jnxD4sbwHpHhe7k1pJpIptMeMpLA8ZPmCQNjy9uPmLbQvfFenlOT4PK606lOrfS2ttr6v7 0cuOzDEY6nGlOHKr3/4B0/7LPxQ0r4LftH+B/itr0PmWOg+JrW7vFU8iJXG8/gpJx3xX7z6X+3R+ x1rGmwavY/tM+CzBcxiSPzNehVtpGeVLZB9QeQeK/Ajxb8B/iz4H8Jp4817whJ/Ysl19kGrWs0dx bpcYz5LvExCPjs2CccVraR+yR+0Zr+laTrWi/Cq8vLfXrWSbQ3gmhLagiYLeSu/LkAjIAJBOCM08 2yvCZo4VKlTlcbrTr1tr1X5GeX4zEYFShGPNez/Q+qv+C7X7UXwl+PvxU8FeDvhJ4ts9cg8KaXeP qGqadOJLfzbp4dsasOCVWHJwcfN7V8K293eaffQ6np11JDPBKr280Mm1onU5Vg3Yg857V1/hr9nb 4xeMvC97428PeBbq40nT70WmpXhmjjjtZskeVIHZTGx2sACATtPXmsDxj4G8WfD7XW8MeNdHksb5 LeG4NvJtfMUih0cFWKsrKQRg9DXpZfQw+Ewqw9OXNZNffqzlxlatXrurJWufsV/wTk/4K3fCH4yf COz8I/tHfEbS/DfjbQ7eO3v7rWbkW8WroPlS5jdjguQBvTOQ2SODX0dcftsfsg21u01z+0x4H2xr lv8AioITn2xuz+Hev54/EPg/xJ4PtdLvPEei3FnFrGlrqOlyTJxc2rMyrMnqpKNj6VpeI/g98R/B /gvR/iL4j8G3lroGuM8ekarIoMF0yDLKGUn5gOqnB9q8DEcM5fWrKcajipOySs1fyPUo55i6UOWU E2vXb7i9+0LrPgLxH8evGniL4VW3k+GdQ8VX1zoMaxGMfZXmZkIU9BjkCvqP/gh7+0x8Jf2c/wBo fxVa/F7xRbaJZ+LPDcFpYapfSBLeOeCZpNkjH7u5WOCeMr718qa58Gfid4a+H+nfFfXfCM1v4e1i Qx6bqjTRmO4deSigNklcjIxkZGcd3fD74H/FT4taVqmufD3wdPqdnoqqdWuI5okS1VujSF2G1ScA E8Z4zmvexWGw+IwLoSlaNlG/a2n5nk0a1anjFVS1vf8AX8j+gG8/be/ZAtLaS6uP2lvBIjVSzf8A FQQnjGegbnivwm/ba+MWg/H39rXx78XfCtx52l61r0r6bcbSPOt0xGkmD03KAfxrjfGHwl+Ifw98 Xw+A/GnhO60zVbiOKS3srrahmST/AFbq2dpVuzAla6TxT+yZ+0Z4KN9D4m+Ft5aTaXprajqEM08W +G0VN7TFA5bZt5zjGOa8/K8rweVVHUjU5nJWW211f/I7cdmFfHRUXCyTu/u0PPIpmtrmG7Ee7y5F faDy2GBwK/oM+E3/AAUP/ZG+KHw+0jxsfj34U02bUrGOW60y+1qKOazmIG+Jlcggq2V5HOK/CrSP 2afjdrvhjSvG+m+A5pdG1pmXStQa7gWO6ZcbkUs4ywyuV4I3jI5pdH/Zq+OWuWmuXemfD26kj8M3 v2PxBI1xDH9gm3bdk25xt+fgEjBPQmtM1y/B5pGPtKnLyt6q3W1196SIwGKxWBvyxvzWdvx/I/RH /guT+2n8CfiV8BNE+Bfwo+IWl+JdRv8AxFFqV/LpF0s0dpBCj43MuRuZ2AC5zjJr8tVJPSuy039n n4zap47tfhbpPgK8uPEGo2q3djpcMkbPcxHkOhDYbIzjBJOOlVvHHwT+K3w20Gz8V+NfA91Y6Xf3 MlvZ6k22SCWZMbo98bEBx1Kkg10Zbh8Ll+FVCnK+t9bat/8ADGGMr1sdXdScbaW+43/2Qvi5onwJ /ag8B/F7xLGz6foPiS3ub7Z/BDkq7++1WLYHJxX7v6X+3L+x/q+nwanZftMeCTFcRq8fma9CjAEZ 5BbKnHY8ivwasf2Uf2hdR0nRvEFj8Nrx7HxGNuh3H2mBVvzkAeUS/wAzZOCoyQSBWNdfAj4uW3hP XPGsvga+GleF9QNl4huNqn+zZw+wrKoO5Bu43EAZ71xZpleBzSpGc6nK1ppbXXbXszswGNxOBTgo Xvr/AF6o+wv+C6H7WXws/aH+KngvwR8I/FFlrlj4R027lvNV02cSQvcXTw5iVxw21IFJxx8x9K+K PBWg6T4m8Yaf4e8Q+KrLQbG4ulS61bUPMMVrHnJciNWZuM4AHJ44rQ0D4MfEfxJ4D1H4l6H4VkuN B0hturams0fl24JxhgWDAk8Dj5jnGateE/gL8VPGGgW/irSPCvl6XdzNDZ6heXEVtDcOv3gjSsu/ B4JGQDwSDXfhaGHwOD+rxltp533v+pxYiVbFV3VlHfW3l0R+0/hT/gq5/wAE5/CPhvTfC+n/ALQc P2fTbGK1g36Td52ogUf8s/QCtFf+CwH/AATyx/ycJb/+Cm6/+N1+Kmmfsx/HvWPFms+BrD4aahJq 3h+0W71qxLRq1pbsoYTHcwBTaQ24EgArzyKxvHvwl+Ivwx07TdX8c+F5LC11oT/2TdNIkkd0YSok 2FGIO0uufrXhLhfLaj0qtt67rrfy9T1v7bxcY3VNdup+4h/4K/8A/BPEjH/DQlv/AOCm6/8AjdI3 /BX3/gnkVwP2g7f/AMFN3/8AG6/CHS9PvdZ1ODR9MtlkuLiVY4o3kCAsxwOTgDn1IFdzJ+yp+0LF 8RbL4RyfC6+HiXUbVrqx0VWi+0TRDB3Ku/uGBUdWHIBGTRLhbLqfxVZLS/TZb9AWfYx/YX4/I9o/ 4K2fET4EfHP9pF/jx8BfjDY+I7LWdNt4dQsxbzwz2k0KbM4dADGVCc5zndxXyuG3Jkj64roPBnwm +I/xI8aD4b+DPCdzea/5kkf9l5Ec3mIcPHhyvzg5+XrweK2PDn7Nvxv8X2usX3hbwBcXVv4dmMGu TR3UO2zfdjDkuMDPG7oTxmvo8N7HB0I0ua/Klv26HjV/aYmpKpy2v/TOHwucbaCBt4HP6V03j34N fFP4X2+m3/jrwReafa6yrHSbxwr293twGEcqEoxBPIzkZ5xW7efsl/tE6fcRWF78MrqOe40/7dbw /aYPMuLYIz+cieZl02qxyM8A1t7anGPM5Jr/AC/yMlh5Ql8P9P8AzP0f/wCCZP7cf7F/7Jn7KGl/ Cj4mftD6W2sNfXN7ew2mm3kiQea2RHu8rDFR1xxnitj9t79pz/glF+278Lf+EG8bftCw2OqWLNLo HiC30O5aexlIwR/q/mjbjcuQDgdwK/Ku0+CfxTvfhXN8c7XwfPL4RtpFjuddV0aGJ2YBUbDZBJ6A gH0yOQnjz4P/ABH+F1npeoePPDEmmw61ZpdaW0s0bG5gZQyyqEYnYVYYYgA9uhr52WRYWWOdaNaS qOTfTR9VsevHNMTHCRpSprlSW/Yg+JPhHRPA/jC48PeHPH+l+JrKP5rfWNHjmSGZSTgbZlV0bjlS DjPU1hHrwal0rS9Q1vVLfRtJjWS4upljt4mdV3MegyxA6+td34p/ZU/aF8GR6vL4n+GV7ZnQ7H7Z q1vJNCZbSDj966BywT5l5xjketfQucYJRqPXz620/M8r2cpSbgjz5s54I5r279jj4SfsreLvFdr4 q/ay/aC0/wAO+HbWcNceHbazuZb6/Az8hdIykSE4yckkZAArz7wl8Cvip440a28QeHvC7SWN9M8N hcXFxFCt3IpwVj8x1388cZGeM5pNG+BHxm174nT/AAV0v4fak3iq2mdJfD8kXl3Ksv3l2uV5xyMd RyMjmorSjUpumqnK+6tdd9woxlGSqON/U/avw1/wVX/4Jq+DfD9j4W8L/HCxsdP021S2sbK10W6W OGJFCqigR8ACvGv+Cj37dv7EP7V37JPiH4N/D79o7TY9bupbe6037Zp93HE8kMofYzeUcZGRnHXF flv43+CfxY+HXhyz8Y+NPA11Z6Tf3T29rqa7ZLeSZRlovMjLKHA5wSDjtVTwV8K/H3xHg1S58E6D 9qj0W3SbVJvtEcSwRvJsVizso5bjrmvAo8NYPD1FXjVejvfR6o9ieb4qpF0501qrWMBTj5Qe9K3P Fd/4h/Za+PfhKx1XU/Enw4uLGPR7VLrUkmuIRJbwyFdkjJv3YYuuDjB3Cs3x58Bvi98Lxow8e+Dp tObxBhtF864iYXakgK67WOVJ4DcLnPPFfRKvRlJJS32PH9nWjrayRyJBoBwOa7vW/wBmb47+HPH2 k/C/XPh5dW+v67Gr6PpcksXm3IIDKQN+MMCNuT82eM1B4x/Z4+NPgDT9S1Pxf4CurGLR7hYNXMkk TNZSs+wRyIrlkO75eR1pxrYdtWktUHsavLa2zOBk/wBc3FFDkmZqK6kYiwBfPG419U/DHwf8IfGH /BOjT9O+M3j268P6Ofj82+ez0U3pnDaTCrqQGXZ8hJ3c/Svle3y06817Bof7Tejaf+z3afs4ax8B 9C1LR7XXn1tr2TVLyO5lvjB5HmExyBQvlgDaBjvXn46nUq04Kn0ktdE0reZ04SUacm32e/qej/s4 TWer/Eb9oCLRfEFxrNjF8JddttF1G7kMktzYQT2yQtkgFgIUX8Frx74NRSH4ffFS5SJvJTwRbxXE gPG5tWsTGp9c7JCPoa1/Dn7WXirwV8abP4veEfA2h2MNjocWjN4XaOWSwuNOWDyHtZN7b2WRdxYk 53MTWZ4/+OemeJfCF14C+HXwl0fwbpGq6nHfaxHpdxPPNeyJkxRs8zMRDHvdkjXAy5JzxWPsavtG uX3Zcmt07ctrr10RrKVNxWuq5vx/4c+l/gt8IdL+MfwV/Zh0ST4hwaDf2vjDxJqNjbmFvtGpvBdW s/2e3k+6k77NibuCX/CuV07xvrvxe+Hn7V37RkHhOPR/EeralpsF9pbLmXS9OvL6f7XFkjliYoo5 GGM89mrx/Vf2qNZvPhL4J+Gmg+CdP0W48AanJqPhvxFY6hc/a4LqV0klk+Zyh3vGjYx8uOOM1sXv 7bfju9+M2rfGn/hANB+1eKtHOn+PNH8uT7D4jRwPNeePd+7dyoYmMja/zDmuN4PEe1k1FPV6X6Kf Nb/t5aeVjojiaMacYuTVra/9u2/Cxt/8E+77TtQt/i98NvFhLeGdZ+EerahqVoWVY0u7MRyWdxz0 dZG2huv73Fdr4Og8BaP8Iv2Xfip8Qvira+GdP8Jajr+py+XbyyX14qarbytHarGpUv8AIF+ZlH7z PODXgt98drXS/BGsfD/4VfD6y8M2viNEi169W7lury7t0ORaeZKfkg3gMyry5C7ydq4l+I/x8i+J Hwf8H/CGX4aabp8fgmO5TSdWtby4aaT7TIklx5iuxRi8iBunHQdTXTUwtStWcvhi5K+10uRxvr1d zKniIUqSs7tLS+z96LX5Hu2m+LPhz8e/gT+098SfEms3PhfQ/EvxP8P6nbyQ6V9tkgWS41OSOMxK V3E55IOBXinj74ceHPHf7TNr8Ivgn4rudZ0K8vrLSPDWq3zHP2bZGmWOMIqZbIxhApHal+G/7SFl 4C+DWvfBG9+Dej6xpfibULO81y6utRuop5pLUyG32mNwIwnnSZwPmzzmrGk/tTJofi3S/EWnfBvQ 47bQ/C82iaLpa3l15dms3nedcht+9pnEzZZicFVI6UsPh8RhpVFBOzulqv5Urvz0CdSnWjGM2vP1 u3ue8ft2fDjRfF37KmgfE3wx4w8N6w3w38ZXHhiNvDmsJeiDQLlA9gZ/L4jffFJx28wiuR/Zn+K3 w60n9nLQf2ffj4Y4/AHxA8W67Df6p5IabQtQit9L+yahE3O0RPM4de6O2eteT/Bj9oeD4QeBPG3w 9Pwq0jXtN8fW0Ftqg1K+uUNtDBIZIhF5bAB1c7hIQW4x0NZWvfF3Ste+C+hfB9vhnpdr/YN/dXlv r0NzObqaS48oT+YrMUbcIYQPl48vjvUrA1PZOg7uKldNWWj1bXpK/qXOvB1vaw35bW6XX+aO6/ao +C/j/wDZ4+H/AIU+D3xESN7jTNf1uWzu7WQtb31vL9lMd1Cc4McigMGHXkHpVn9jXR9J8QfDb46a LrfiK30m1uvh3axzahdW7SRQj+04PmcLzt9cV538Rvjz4/8Air8OPBnw58cXAurfwLY3Fnotw7Hz RbSOrCJieoTbhfY4PatD4QfH2H4P+BvF3gf/AIVVo+tf8JpYpYanfahe3KSQ2yP5ipGI2CqQ4Vic EnGOlbOjingeR6zvq/8At5O/62MI1KP1pTT0t+lv+Adx/wAFFodS8Jat4L/Z+v0gvLf4e/D2HT7H xFbcxa5FOWuPtcR5zD8+1BnICnPWvUf299D+C2n/ABc8R+K7z4taraeMm+GGjwaV4ftdKaOGdpbS 3ikje43HerQNJ8gUZ6ZFfPXij9o26+Ivwo8J/C34m+ANJ1oeDJGi0fWmuJIbz+zWOW06R0Yb4d2S rH5kJOCM12Xi79uaXxX8Ubf40XP7PvhePxRZabFZWWpLfXjpbCKDyIZhC8hRpETkM2RuAJFc/wBV xK9n7usea9muttde+/l0N/bU5OXvfFy/gtvxOi0Dwd8KfF/7D/wbs/iv8TD4W0//AIW94i8y4XR5 LnzI2XThI25GAiKrzuYHOe2Kj+CUPhLxn8P/ANpqbx58RL1NNuLfSDN4lNkb6aZV1g+XKUBUyswA JOe+a8l1j48Lrf7Ovh39nN/hnpcNn4Zvp77T9Yivrj7V9puFjW4kYM2w71hjG3GFxx1q58Jv2g7H 4W/DXxN8NJ/g/o+uQ+Lxbw67e32oXUc00EMolijTynCxhZAW3AZOQDwKv6nifYzjbVzulpoudSvc n29L2qaasotPfflseofs16Z8O7H/AIKK/CvRPhj4yvte8OWuqabFY6pqEJRt3kBpV2dIwsjv8gJ2 9MnqbHxa0uT4KfsCw+DdA1O38V6R8Sfibc6xJ4gsoCtvpU1mrQtYFGO5Lh8+YTgKUGBk5xwngj9s L/hXvxK8GfEPwv8ABfw/Db+A7eYeH9DlvbtrdbqWVpGu5D5nmSSHIUgkDEajtWVpn7U+taZ4E8af CGHwDpE3hPxpqH9of8I/cySyJo2oD7t5aSFvMSQbsYJIYcEHFTKhiqlSM0tFy6NrWzlrf7n5jjWp +ykm9XfVX00Xfc9wXwn8BPEP7J/7NbfHD4s6l4WtbfV/EBjbTtFM7SKdQTc3mhh5BBC/MQcDJ7Yr h/2Pv2gL74PRfFz4q+K9Ci8TWepJo9t4s03UhvGr2F1qE32lCx/jZTuV+u4A9K5XU/2rvD/iP4S+ Evg54q/Z28P6hpfgs3LaPJ/bF9HIGuWDz+YVcbwzruxgAdBVPXP2oj4j07x1Bq/we0EyeOp7d7ia C4uIRpsdvj7LDAqtgJEemQcjg9Kj6nV5JUqi0cr7rRObeltdv+AVLERjJTg9UvvaVnc9I+Ov7PWi fBX4XeNfEfw61me++GvjdtD1Pwbr0nzf6J9qk3QTNyBcW+4o6nnOCetY/wDwU9sYdB/aYj+GGkqP +EZ8KeE9JsfCNn5eIo7FrSOTeg6fvJHd2Ycsc5zivONP/aK+JFh+zrq/7Llxcx3XhfVNag1VLe4z utLiPcGMfoJMjcOny56mtfU/2mU8feD/AA94T+Nfwx03xVP4WsxZaTrjXs9tf/YVPyWk0kZ/fRLz tLDeoOA2K2pYfGU60Z1Fzct152fLZu/XS3zIlXo1abjB8t7P5rdfqd5+wvqr/ED4l+Pz8TfFF1Fa j4D6zZSao1r9okgtI0tIkwnBcKiAYzyPpXl/xksvhroGheFfC3wh+JeoeJNIt9Olurxr6xNuttqE 0zLKqREt5YaOC3PU7toNdV4R/bK1Dwx478ReOD8FvDt03iDwsfDcemtcXKW2n6S0KxG1jRHGeI0I diW3Z55rivGvxZ0rxH4Btfhv4W+F2l+G9Pi1b+0rr7DeXFxNeTCIxKZHmJO1FZ8Ad5Gq4UqyxLnK Nk+XS6tomu3mRKrTdFRTva+vXdHEXSq9rISoO5Tnvmvrn4wKsP8AwVM8AyQbo2+0+C8tG21v+PCy HBHPQkfjXylpVzYWWpW91qukrqFvHMrTafJM0azKP4CyYYA+3OK9f139su+8QftIaD+0xN8FfDo1 nQYbcR6f9sumtJ5LaNIraRlZyf3aIowDhiMnJrTEUZ1K3uq65Zr5uyRlhqkYx1dnzRfyTdz3fw14 ds/2rviR4Z/bP+G4gXxX4b1ow/F/QoMLJHIqSLDrMSAcxSAASEfdcZrw/wDZKgjf9ln497kVt3gj St27nP8AxMoT+Ncj8K/2jPG3wM+LV58UfhPYw6U2pWd1Z3uki4kkgmtbiMpJExY7iOdwJOVYAipP gb+0Fa/Bf4feKvh03wr0vXrXxfYx2Orz6lf3Eb/Z4pFkRE8pgAQ4DbuvbpXPLCV4Upx0avHl72Uv eV/Lp5HRHEUZ1IzTt8V/N20Z6N+zRfjX/wBg74/eDvG800uhaHHoWp+GUkG5LTVpbiaI+UT9xpIg NwXGQMmuv/aF0H4M2tp8N/GniL4u6lo3imx/Z7sZNB0uz0s7ZLhUuxCDdbiE3kspTbk9MjdkeA+K vj/r+s+B7f4T6LoNjoXg+31JdQuvDuls6rf3QXHnXEzEyTNtyq5OEB+UCu08Rftm6J4q8XeFfG3i D9mfwteXXgvTbHTtAgl1W/aBba0dpIVkj80CXDuxOeveo+q4j2zqJWTbdlbRNJJa+g/rNP2Ki3ey S1T7t/8ADGl/wTw1HQ73xl4i+DXxbJh+GPijRUg8cTNM8UWnOsqizuwygmOQXDJGDjJEhHY15v8A tN6B8RPCfx98TeEvilpMdjrGj6g2ntY26lbe1toflt4oB2hEWzYOm3nuTU+tftASa18HNX+EQ+H2 mQP4g1pdV1rxFHdTm8vp0MhVXUtsMaiRsJjGTu61a+P/AO0hJ+0PDot1rvww0fTdX0XSLXTW12xv Lh7i9t4I9iCfe5WR+n7zG7AA6VvTpVo411uXSW/k1bX1ez+RlUqU54Tk5ruOvyfQ8zkCGBtw7H+V fY3/AAUs0v4d+Gv2l/jF40sPjRc2PihvCsNvY+G7TSZIRdLLFbRS28lwW2yI0JZtgUZx/s18iaLe abpurW97rOjx6hbRzK1xYzStGJ0B5QspDKD6g5967n9p39oTUv2ovifcfFnxB4G0vRNUvoUTUV0m eZo5mVFRW2ys20hVHTr3rStRnWxkJ3aiou7VurT2ZnRqRp0HfWTe2u1jvv8Agph4etfDPx80fwPp OnRx6Bo/gDRIfDMMPKG0a0V/MHu8jOzMOSa9o8AXY8V/tP8A7H/xB1pB/wAJNrvgsL4gvJpvNkvE tpJoLa5lyc7mhBwTywXvtr5mvv2j4/GPg3w/4S+L/wALtP8AFcvhW1FjoerXGoT2t0lmrBls5WiI EkS8hSRuUMQDirPg/wDbC8Z+E/2i9J/aQ1HwZoupah4ft4oPD+jPHJBY6ZbxqUhhijiZT5caFlCk kEsWOSc1ySweI9hGHL70FJX/AJrqy/zd+x1RrUvaOS1UrfKzvf8AQ7j4qaf/AMKb/wCCeug+BPD+ sr4m0n4jfEKbWv7cs1eO00iWxh8k2PltyLmTzC7fw7EXGTXzhqPiHWrPwLrnhm11CSLT9UhD6hZ5 +WcxBmj3DvtJJHoa9N0P9pzW9E+G3i74Iw+CNLuPBviy9S9i8OXNxM6aPfJ9y7tZC29HxlTkkMOC OK800ttPiuYLjXNJj1C1Uj7VYvM8a3EfG6PepDKCO4INdOEo1KVOUakVdtv10X3W2+VzmxVbmqKp F6Ky283+Z7z/AMFAtd1fQv2rvEi6NqL2v9peFdGsr5YWx59u+m2paN/Vdyqcewrrvjd4L/Za1v4d /Bu9+LXxp8ReHdYX4N6Wken6T4VS9i8nzrkq/mGVfmLbvlxjgV4t+0N8fZP2ivHEPxB1f4d6Xomo izhttQbSbqZkvFhiSOPcJS21giBSV5PXrzT/AIufH/Tfi9beD4Lz4QaPpsPg/SrfSIFstQuj9rsI izLBJvdsHLv864PPWsqeEr8lCLVnBNO1v5VY3liKfNVd/itb7z279o218P23/BQv4U23h65mutOj 03wPHa3U0IjkmiS2tQjsvO0kHJHOOlZP7eeg/BfRfix8ZNV8I/FrVLzxdqXxQmh1jw+dJa1t4rTz biWUh8t9p2zJF83y7eDzuOOF8Vftet4t+OPhn48ah8FfD8d14XtbO3sNNi1C6+yyfY440tGf5937 sRjOCA/8War+P/2qLTx54j8aeNX+Bug6f4h8cG5/tbWoNQupJImuJVkmMUbuUjLbduQPusQKijg8 RSlSvFq0bO1t73LqYijKNRXWrv8AgeMyZ89uKKJT+/bmivdPK16kkOfOU46e/Wvo79h7w4njLwF8 YNKt/hNovirWNH8A/wBp+Gob3QUvLiK9N1BAWjyNxGyRjt5AODivnBHEbbz25r3H9lfxn8P/AAx8 Nfi9o/jD4h6fot54o8CjStCju/OzLci7hmyTGjbBsjYbj3IHfjgzCM5YZqKe629UdGFcVWV+z/Jn WfDP4Y+Kfh9+x78YNZ+KPwBs7TUtJk0X/hGdY8R+GR9phW6uJorny3dRkBY02/3CcjrXO+Ej4dl/ 4J6+MPEdx8PvDsutaf8AErS9Hs9em0dDex2dzaXE0qCXrnfEu1uoHFV/g1408D6P+yl8YPBviT4m 6dZ6x4rbRf7D0m6aZpJfsNzPLKSQhVd4kULk8kc4pf2dvFPwt8Yfs9+Pf2ZPiL42s/Ct3r2tab4g 8M+INU8z7GLy1SSFradkDGNHilYiTBAI6HpXDUjVjKpKSelSO1/hXLey3+46oSg3Hla1g7Xtv0Ma 813Sz+x5aWg8CaCmpDx0bKXxBHpMYvmthaGUQmXGcBxnPUjjOOK9I8e/B/wD45/4J+eF/ix4e8MW Fh418InzfEzaZZiH+0dGuLiW3hupcffeOa32s+OBICx5yfKvi7eeDPBfw10P4MeFPG1j4ju7PVr3 VfEGq6QXa0eaRI4oIImdVL7ESQs20DM2BnGT7L8K/jz8Efhf4g8E6F468eWniTwbqnwtuvDHxC03 S45t8ayzzXIVd8a/MJGhwy5+YHsBVV1XjGM6Sd1Jyt1aXT5+fdCpezlJwnbWKV7rR3MjXvhp4G+G /wDwTmu/EM/gTT5vGl9400mPUtc1C0SWa0sr6yuLmG1h3Z8kiKKKRmGCfOA7Vxv7DHhD4SeKv2gN P1b4/Bv+EJ0do28QdMSG5lW0t056ZlmDZ7LEx7Vv678YvB/xN/ZL8fw+JPHmlWPirxJ8VrPxPY+G cTM0VjBaTWwtkYR7AVDoqDIBRO3ArB8O/FHR/g1+zTDYfD7xL4cuvE3iTxIbnxRDdaWl3NbWcEOL SALcQmMDzJJpHKnIIj9TSpwxTw9SGvPKTSeq3S69kOSoqtB6cqS07+RxPxg+H+r/ALPfxu8QfDm+ SG5uvCfiC4tomubcSRXCxSkI5VuHRl2nkcg5r3r9rn4DeCtR8Fab+1R+zpo2kw/2Roukz/EzwRa2 I8jRru4tYp4ruKBshrOUPg9Qrgg8GuL/AG4vGvw6+Nfivwz8XvC3xD0e+1zXvCunW/jW1s7eaBbX VI4VjllOUAKMApO3OMYAOM1san+0f4V+Af7TFr458AeIdL8ceE9Q8G6foPirS41lWLVLFLKG3urZ w6LhiY2aMgHBCniiTxVSNKpFPnSd132un69GEY0abqRl8Lsk77dbr06mP4q1/wAPN+2v4dgg+GXh SLS11LRLKbQ7XQ41sZ450t/O3xchmbzn+Y5I4weAKj+Onjjwn8L/ANrP4qWukfCjwz9lsb/U9C8O 6T/YkL2NiY7oRxzGFwVZ1jRvmOSWbJ9Kq+N/GHwj8T/txr438D+KYrHwTH4u0+60/UtSV8w2NuIC N4VWYuEi2+7DtnNcz+1Tr3hTxd+0p428YeDfFlnqek694qvNRsdQhWRUENxO8i7w6hlZQw3DBx71 tRpKdaEZRduRXvfunZ+e5nUqSpxck18X6HsX7SHjDwJ8MtN8C2p+C/hGS18ZfBK1vtSez8O28NxH ql1byAXcUgUFCJAjYGBgHArHvNP8Jp/wTAsvHQ8BeHV8QTfFSbQpNfXR4/thsUs1mCeZjO7e33/v Y4zxWJ+2f4w+Hfi/T/hnH4F+IWn603h34baboOqR2ayq0d1bo28jei5T5uCDz7VLdeNvhpcf8E57 L4Ux/ETTf+Ept/iRNrz6Lsm8wWr2qQgbtmzfuGcbsY71zxoy9hTlyu/Prv0ct/K1japUi681daR0 262/U9C8A/Drxn46/Y/+F+s/A39nXwz4g8Wah8Q77RtUvpPCEN55tqiwmD7UxU7V3yENJwSucniu P/Z9+HXhD49ftJ+P9C8OeG9E07XJNM1S4+HvhW+Mf2B9TWXC2o3nYwVBKY1OQxRc8VMPHXghf2RP hr4L8HfH/RdJ8ZeFfiBe6/IsjXKG0WSOEQMHWIgurxZIGeveuLsfCPwX1Px54u0a3+OFtDeW+n29 34W8U3Dy29ve6oskT3I3BQYVcmcxuwGCi+uaahUcaiWl3KzSfWWl/Lb5XJlKnHk0TsldXWuln8zF /aAudTj8U2HhnxZ8JR4P8TaFpp0/xPYrpqWYubhJXZJ/JUAIxjZVJHDbQw4Ncz4G8G638RvGmleA PDkW6/1i+jtbX+6pdgu8nsqjLE9gpNepftlfHaL402Pw7ttf8Zx+JPFnh3wpJYeLPFESZ+2zG5ka BPNwDOY4SqmQggnoTyax/wBlzX/CHgPUfEfxT1fx7pul61ovhu7HhGzvoWka81KWPy0baI3XaiNK SGwCxQdM1105VKeCvy2kr6K71u/nbqc/JTeKtf3f+G/4Y6H9ub4Y/DXwh4u8K+OPgbpbweCvFXhW 3l0ZmYHzZ7bNrd7iON/mR7zj/nqrfxV2Xwv+CXw4/ad/ZD03wt4f0LTdN+LOn32oSeGZLSFYP+Em srVImmtJSPv3Kq4eNjy3I61j+M/jR4J+PP7EFn4U+IvxB0Gx8deC/F1ze+GdOttJ+zi70ueFFntg tvCIkfzUWRf73fGOeNi8aaP4D+B/w/8AFfw5+Ldrb+M/Dvii+1E2NosguLIN5HkSBmTYxzG25ckA eua54xxFTDRhdqcJWu03te132atc6KkqNOs5JJxkr27f8EPihrFoP2V/hzZD4f6Dp+q3Wua5Bq2t W+iRw31ytm9skMcj4zwZpM9CxA3dK7n9oL4i6B8OPD/wp1XR/gX8P549e+G8Oq67b3HhmJft1w93 cRFjImHiJSFfuFcHnmsT9s79of4Y/tD+Efhz4l8I6Na6P4g26ve/EDTLQFYRqs8tsHuY1xhVmEIk 2joS3rUvx4Hwl+KHhz4U6ZpXx/8ADtr/AMI/4Dh0XxFJJb3TtZyrdXEpZVEX70bZsAAjLLgkA5EU +aXs5VYNe9Jta+fb8BOUeacYtPSNn31X9Mx/2zPg98Pvhn4p8K+NfhNazWfhn4heDbXxLpOk3Fx5 z6Z5rOklr5nV1SRGCsecdea2P2OfgtH8Wvhv8Sr7wJoNj4g+I2i2dhceEfDl9bRzefamV/tssMMg InmVVQBMEqGyMkjHH/tTfHTQPjJ4q0LS/BNvdQ+F/BPhi18O+FxfYE81rBkm4kA4R5XZ5CuTt3Yy cZqD4OQ+HIPCF3428K/F+Pwf8RfD+uQ3OhXF1fvapc2JiYOUlUHZNHIAdp++kmB0539liP7NjF3U u7u+t0nbXayZPNS+uuS28v0+Z2nwd+Gfhb9on9qW8tvF/wAPm8M6H4d8O3Gu+NNB09PsbrHp1spu IkXH7nzpgq4AyvmnHSrH7LmtfD39pr412PwD+Jnw28M6Lo/jiR7HQbzRdLS3utDv3Um0ZJl+eVN2 EdZC28HOQRmulh/bR+HWl/txp8ZdblbV/DuveDY/DPxA1PT7XypNT+0WKQ3t7GjAfP5oDgkAt5ec DNcX8Fk+Dv7M3x0tfjjc/FXRPFmmeD5pNS8K2GmtKt1q93GCbSOSNlBtgH2NJvPAQhd2a55RxEqV S8WnyJxSu7PW/wA7236Gv7qNRWaa5nzbbaWf3X26ifBz4D6X4W+F3xK/aG+KfhqPVrP4f6tF4e0z SZWKwXutSSMu+YAhmhjRPMMeQXLoM43Vx138aNB8U/C/XvA/jT4b6ANSmuLa68N63ouhQWVxaSK5 82GQxqN0Lxt90gkMoxwa7T4EftBeGNb+FnxO/Z7+NviKPT7H4g30evafri27yR2WuQyM6mULl/Jl DlCQCUwDg8g8NqHw8+HPhLwDrWueJPi1o+qa47wweG9H8P3TXG8+bma5uH2hUjWNSoXO5jIDgbTn rhf2slXTveNrXt0ta3ne5jLljGPsrWs73tfd3/DY9L/a3t/DOn/s1/AvVNA+HPh3S9Q8UeG9QvvE GpaZosMM95PBdJDGWcDI+UnIGAxOSDUX7HnwA8IfFXwJ4yg8T6WJ/EHiDR7zTPhnbyMN0up20H22 Zkz3CpDFn1uao/tOeNvhr4v/AGefgv4V8I/EfTdQ1TwboN9Ya9p8KzKY5Li7WZGG5AGAUHcQeCOh rpfDH7UJ/Zp8a/CnQ/gt8R/DOq6T4bS3vdcvf7LDqL2e5Ml6hklh85E8vbHujwWVBwOlcv8AtH1H lpJ87c312Tvv5mkY0Vi7u3LZdV1PIf2Xk0u8/aJ8E6Treg6fqdjqXiays77T9Us1milhmnSN1ZG7 7WOD1B5HNWP2sI9Nsv2mPHWj6H4b03SbHTfFN9Y2On6TZrbwQwQTtEgCrxnaoyepJya7PWbj4D+F v2/4fGvw7+KWmzeBE8ex69a6tJBMgt7X7ULh4XQpu3r8ygAEHjms74/6Z8GvFfxI+KPxZj+M+lXy 6hr1ze+E9N02Kcy3rXN7vJk3xqsaJCXzk5LFQOma6Y1JSxMJyi1ePZ9WrdDH2fLRlBWdpd10Rz/7 IvhT4Y+PP2k/B/hD4xalb2vh7UNYWK6ku7jyoXcqfJjkccpG8oRWPGAx5FdB+074T+J/gW5s/gn8 YfgPpvhfxnY+ILmS3vtJ0eO0t9Qs5xEkcamJQJo0kVij5JAkIJzmvP8A4O6J8O/FnjyHw38T/Fi6 HpN9Z3UX9sSQtJHaXBhfyHdUG5k83YGHoa9Y+L3x8uJ/2SvDfwF8a/Eiz8XeJ/DPjdr/AMM6nZ3T XS6LpaW+024uGAMiyzbWCA/KsIzjIAKkKn16LSunZW1010knt6p9Aoyp/V3zffprto+vp0I/2kv+ EX/ZV+LUnwC+HnhDw/qVz4P8mDxRrWuaPFeyapqm1XnH70FUhRm8tFQDIXJJJ43/ANlLXfhX8V/2 y7oR/Bvw7/wj+veG7+eTw7qWkpcWtndQaa85MCk5RRPESBnlGwaxv2mdY+Ff7V3xNX9oTwb8SPD/ AId1DxRbW8vjLw/r0z272GpBAk80bBCs0D4Eg2neCxBXvU37NGsfAL4Q/tZ3ur23xdto/C2k+Hb+ yh13ULebGpXM+nyW5aONIyyoZZC2GxtQckmuOpFyy96P2nK773vpfyvfby2OiMuXGJXXKpK223Qz f2H9vxL8ceNrTUvhfoWv6hqHw51jVdM02bw7FOsGoQ2zSwG3j24TEh+4BgjAINYvx8uPFnhHQ/B1 h8RvgRo/hbxXa/atSaRdCitRqdm0oSJLq1VVUMkkMq4I+ZG5xVj9kDUPAvgDxD4yg8Y/FrR9Fhuf h7rGhadeN57JcXFzatDG6bIidgbksQCAc4Ncx420rwu3w50a3v8A4x2ms64upPp9jaWckrQaXpm3 f5kjPGCS08r4C5ICsT1wOqnGX1+UraaW0d9nddvUyc/9l0euva257V+1n8DPBmpeDbL9rX9nDQdJ t4dHt9Pi+JHg23sUa30TUJraKWO5SBtw+xTbujZCsMc54VPg14F/aI/bitvBeqeHtK8J+EtM8Iwa 7r1n4ZtUswtnFpsV7cBeD87u+3eckBuBwK5mD9ovQfgB+01/wm/g3xLpvjPwjrHh+x0rxho9s0v2 XV7AWsUFxaSLIi5YMrMjYyDtIwciugtP2rfgf8Jf+CgmofFzwNb3eqfDO901dBuIFA+0jSJtPjtZ NofrIgUHB6mOuJU8bCnyRTdoS5X11to/Na2Z082HlJOVleS5l+voeX6Z+0P4Quda1I3nwH8K2/hn UrG5t7PR4dGje605HhZYXS5f9600bFGMjMdxU8YwK779nzwf4g8W/sW+L9f+HvwQ0jxL4q0P4iaT ZWNz/wAIjDf3kdjcWtzLOrBkbcu+NCCRlegIFcLH8GfgdoXirUrm9/aH0PUvB9jHcy6VLaySLqWo oit9ng+z7N0UrnYrFvlHJyRW58Oda+Hr/sSeLPhjf/GDR9L8Sa34/wBK1ez0+4a4DfZ7W2uIX3Ok ZUMWmBVc8gckHArpxFOm6S9nF/FDo/x+W5z05SjJ88la0rWt+Bt+Cfh94K8Z/t6aP8L/AIy+CNC8 H7Z1sdX0WGRYNO/taO1Plo+3hIpbgR71BH32GR1rjv2mtN8deCbDS/hN8Z/gTZ+D/G2ianqEuoXm n6LFZRajZSiHydvlgLKqSLNskGcpIoJyKNS074PeO/i4unfET43teSaz4cmk1Txi3mNaprTRu0Jb KB2hBEcbkrnLMRxXQfH/AOPcHiv9mLwb8EPHXjaz8YeLPDHiC8e38RWt0bhdP0kxxpHZCcjMwaTc 45IVVA74BGM44qnOKbVkmrNW31Xl3T12KfJKjOMrXu2ne99tH/Vj58mYvOzHu1FLJgys3T5ulFey 9Ha55oEZGKa0Skc/rRRSlLljcqK5pWGlP/1Ypy5U5Rip9vrRRU1ZuF2ujt+QQ9/lv1VxGiVuW5PS lw2eWNFFOMryXz/Cw4xvJr0EaMHpn8KUg4wzfX3oop8zbS80hW2ABh0b3o8tQcpxjjFFFTGTlJJ+ f4DlFRd10/UTapPAoRfL5Q4ooqou8reSZFT3Y387CoqoMAcD/Oaasajhhu+veiip9pL2al3dvzKl HlqOPZDgSB06dOKNnHB/ziiis/aSDlAjPWgBkYlaKK0jJ8rkFtUwGQpUMR/ShRh8j+XSiiqVSUrp 9H+gSXLG/lf8QUAcD/vk0H5htJ/hxRRWUqkovTzCGsvkvxDGTz/+qhRs6nvmiit37tO6CMeZ2DBw Qx3HuaCuWz2zRRUyqSt8rhGPNfyArgk5PXPU0AfLtxRRQpfvLen4hb3b+Tf3CbR0xxjBHrRsAJYj ry3v/nNFFTCTk0vX8B8qvb0/EAu0bePbK9KAOeT70UU5TcbeaT+8Xs42b7Nr7kK6hmyw9sUEAj/6 1FFVGT9ood7Ex96lzBg42j69KNildpTjuPWiio9o3d/1uaKmtvQGAc5fn86ase3Hzn5elFFTGpJu 3cmUf3bl/W6HKAF29cUEFhhvm5/u+vWiitIyfKvRsJe67L0+8CSy8nouPu0YOMZoorP2spXfml+A OKUQ2nPJz0/Cm+X8uCW4JI9qKKIVJSkkyuRO440UUVpzPYz2ij//2T== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image016.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCAA0AJ0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwB/hnwZ N4js5bkXaW8cb+WMoWJOM/1ra/4VZJ/0FU/78n/GtP4Yf8i9cf8AX0f/AEFaybz/AITf+0Ln7L9t 8jzn8v7mNuTjGfautzm5tJ2OdRjyptHK63o0mi6vJp7yrKybcOowDuGRXVp8LJiil9UjDEcgQkgf rXI3s15NqzNqTSNdiQLJ5n3gQQMV6p42vrnTvDMlxZzNDMJIwHXqATzVVJTXKk9xRjF3bOQ1D4Z3 1ravNa3cVyyAny9hVmHt71yMEDXFxFCmA0jhBnsScV6l8PtWvtV026e/meZo5gqOw5xjOK4K4RYv Gjogwq6hgD0/eU4Tldxl0FKKsmi34k8FzeHLGK6e7SdXfyyAhXacE+vtTfDPg6XxJbzzpdJbpE+z lNxJxmux+Jv/ACLkX/X0v8mqD4Yf8ga9/wCvn/2UVPtJez5upXIuex5zfWj2F7cWspBeCRkYjoSD XR3vgS5svDh1VryJtsSytEEPAOO/rzUut+DNcvNav54LLdFLM7o3mKMgnjvXZ+IY2h8A3Ucgw6Wa qw9CAAacqvw2Yow3uePYrU0DSLfWr8Wct6bWV/8AVZj3Bz6Zzwa6T4c6XZakNQ+22kNxsKbfMTdt znpWVqdvFpvxB8qzQRxx3cRRF6LnacD86tzu3FEqNkmyj4j0P/hH9TFmbjzz5Ycts24znjr7V1Cf C1nRWGqrhgD/AKj/AOvWb8SP+Rrb/rgn9a9Tg/494v8AcX+VZTqSUYtPcuMIuTR4x4m0H/hHNQS1 Nx55aISFgm3GSRjr7V0kHwwaeCOVdUAEihgDB6jPrVL4m/8AIxp/16L/ADavS7D/AJBtr/1xT/0E UTqSUItMIwTk0eM3OjC38SnSTcFsTrCZdnc45xn3q54m8MReG2iia/8AtFxKNwjEW0BemSc1NqX/ ACUiT/r/AE/mKt/E2N18SRuQdr242n6E5rRSblFX6EWVmzj+PWkPWvVdEvfCutW8UCWlnHPtCmGa JVYkeh715/4ohjtvE+oQwIscSS4VFGABgdKqFTmdmhShZXud58MP+RduP+vo/wDoK1m3vxJvrW/u bdbC2ZYZWjBLtkgEipPh5renafo1xBeXkMEnnlwJGxkEDkflWs6+C5ZXkkbS2d2LMxcZJPU1zySU 3zK5sr8qszzS8vpNT1eS9mCrJPKHIXoORwK9rvLq3tIUe7ZVjd1jBYcbjwM/jXj/AIk/s6PxHMdJ 8v7GChHlcrnA3Y/Guy8ca9pl/wCF2gtL2GaWSSMhEbJwDk59KqoublsTB8tzpNd1M6Fo815DaNMY /wCBAAF/2j7DvXj9lM9xrttNK26SS6R2PqS4JrvfCfjK0utKNnrVxHHNEuzfMeJk6c+/Y1xuoR6f p/itf7PuFlsUnjkV1OQoyCRnviilHlvFrUKjvZpndfE3/kXIv+vpf5NUHww/5A17/wBfP/soqv8A EHW9O1DRIYbK8hnkM4fbG2cAA8n86i+Hes6fp2m3kN7dxW7mYOBI2MjaBx+VTZ+ysO69oJqvxE1D T9VvLWOztWSCVkUtuyQD35rpPEkxuPAt3MwAaS0DkDoCcGvK9bnju9av54G3RyzuyN6gng13+seI dLn8CSQRXsLzvapGIgfm3YAxinOmly2Qoyve7OJ0PTdZ1Dz/AOxjN8mPM8uby+ucZ5Ge9dL4c8D6 kNaiv9YwiQv5mDJveRh0z7ZqH4favp+kR37aheRQeayBA2cnGcnj612P/CY6B/0FIP8Ax7/CnUnN NpIIRjZNs4L4j/8AI0n/AK90/rXqkA/0eL/cX+VeS+Ob601LXxc2VxHPC0KruQ9CM5BrN/4SLWdo A1S7GOn708U3Tc4REpqMmb3xPRh4ghbs1qMfgzV6PpbrLpNk6HKtAhBHf5RXAeLLrS9d0iyli1S3 bUbaMB1YkeZkDcM465Fc1a+ItXsrVbe21C4ihUYVA3C/T0pezc4Jdh8yjJvuadzi5+JZC8g6io49 iP8ACvTtV0ey1q38m/gWVAcqejKfUHtXmPg3+zrfVl1LVb+GLySTHGxJZnP8R/WrXi3xTcSa2JNH 1WT7L5SgeS5A3c5yKJwcpJLoEZJJtkPi7wavh6BLu3uWlt3k2BHGHU4JHI69K5eaWSeZpJnZ5G6s xyTVy91nUdSiWO9vZp41O4K7ZAPrVE9a3gml725lJpvQv6Xbxzx3JkQMUVSvGeS2MYyO35VZhs4D d24aGPyZvJAOepx8/f1zmqNjFHKLnzQCEgZ1OM7SMYOO9XpLGDz5ligVhHLDkZPCFcsTz0z37Unu NbDzZWqzRFY43ieRRKQxwqFBlhzxzu69MYpY7WxYrH5WZPs/mlgpP8K9s8nOeKZa2FpNBbyso3ES bk3Eb+GKEew2nP0HrVdLGP8As+CXaGn81TIhPBRuF/UH8xS+YyRLCP7KHwrXCzqzRknBiLbf5j1z zSS21sLuzWBVaKWY5Un5lG4Ao30557jmnyWVqs4EKLJEyzsoY/MhVeFbHcH8xRbQW00unK9sm2cO Xwx5xuHr7CnfqKxK1hb5uikaMBHGY2GSCTkNgZ45HOemKatpatO8YjUlYFc4QnDHZ789W+n4VEln bm3sWeFj5ihpdikn+Lnrg9Bx7e9Qx2kI1Z4pin2eJi0hQnG3279xS+YF+HT7ZhYh40LOy+aA3QFT 155yR1Hp71ClpbMh3oscoLMhb5VkUIDtIzw3cc+opLfTYFeSG4VRNHOyqzHCyADJX645B/CoWtoP sAdogh+zLIsgJ+Z9+MY9x/Kj5jLCWcJvXjEKG2CMY5epf5CQcZ555x+FVLeBH1R4njGwb/l7DCkj v9Knt7G3lt7ZioDtu3KxwXbDFcHpg4A9QfrSG0h+zGVIw1wI0Y2/PBLEE469AvHbdTuImjtLRnti ETczwpLEzHIyMlhz0Pf0Iojsrd7RmaJRcBBuQZODuIHGeMjr6dah+xwE2bSRCOM+Y8+GJwqv0z9O KZcaf5NvcqIw8kVzsDj+5tJz9Oho+YCXtukdjbyJEiOcCYA5Ktjj8COfrkVPHa2ptbXcq+dJC7gH PzMC2ATnvgcUyzsbee2t2kwhaTa5Y43A5xtPTqMHuOtRpAGtpWltBG48vA57vg8Z/D8KALaWVs9p IxjQTeWPk3EYfYxwOeOgOD9KqWqRvaRs1vGxNwsRY5yQeSetTyWdr9ruImj8pMbY5cEBG3kDIJ+7 2J/Go720SGNmhgVzulV8MSItp4A59OcnrSAtpYWZfCruXbOSxQggqRtGN3P9aw5l2TyLjGGIx6Vs tp9r/aPleUFTbwSG2q3y43c5xzjI6Z9qxCMMR6elVEJCUUUVZIYooooAKKKKACiiikIKKKKYwo75 70UUAFFFFABRRRQAUUUUAFFFFID/2Y== ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image017.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAFOAbIDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAoprSqpxmnBgRuoAKKYJgWxT6ACiiigAooooAKKKKACiihmwM0AFFIWA70BhjOaAFoooo AKKKKACiiigAooprSBTigB1FG4Y3U1ZlY4oAdRRRQAUUUUAFFAIPSjNABRRQSAMk0AFFGR60bhnr QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHzP/AMFINK/4KV6r 4U8NRf8ABNrxb4P0fWF1Gc+JpfF9is8clt5Y8oRhlOG3kkn0r8v/APgpf/wUA/4ONP8Aglt8F9L+ Onx5+KXwpvdG1fxHHotuuj+GYHkW4eGWZSQyDjbC3P0r912UN1r8fP8Ag9JAH/BM3wPgf81msf8A 026jQByf/BuD/wAFyf26f+CnH7Yniv4MftOa5oF1omj+AJtXs00vQYbWT7Qt3bRAlkAJG2V+K/bC v5jf+DLDn/go78QB/wBUjuf/AE4WVf05UAFFFFABRRRQAUHkUVjr458IyeMpPh7F4o09tchsVvZN HW6Q3KW5YqJjHncELAgNjBIIoA1vudaw/H3jvQPh14Tv/Gfii9W3sdPtzLPK3oB0HvmtxsFd1fP/ APwUj8M+LvFP7K2u2XhBZGuIPKuJ44s5eJGDN+XU+wrzc2xVXA5bVr01eUYtpd2kehlOFpY7M6OH qS5Yykk32uzwPxZ/wWht7Dxt/ZPhz4dRzaes21pppzvK5xu44H619Sfs5/tcfCf9o7S1Xwnr0Ees R2wmvNCmlH2iJCcb9vdM8bhxnrX416de6dpsH9l6nYsb6VsFmXvXH6F+0Z4s+C//AAVX/Zm8PfCj UpJdc1LxSun69psLE+fpd6628kcijtt3yDPQxhq/L+AeJs8zjNakMVK8Ldtmfq3iBwrkGS5TTqYO PLO+uu68z+h4HIzRQp+Wiv2I/GQooooAKKKKACvm79ub4ef8FKPF19pup/sHftDeC/B8Nrp8i6pp fizwmL/7dcFwUZZSf3QC5GMHNfSNIyButAH80/7cv/Bwf/wXv/4J+ftB6p+zb+0Fqngmz1vTo454 prfwjbNDd2758uaJtvKnB+hBBr7q/wCDZb/gsH+2L/wVO8SfGLTP2qNZ0W7j8FWOhy6L/ZOjRWhV rp74S7tgG7/j3jxnpz618hf8Huvw40PTPjd8CfirZ2Sx6hq3hjWdMvph96WO2uLeSHPrg3M3/fVb H/Bjj/yOv7SX/YK8K/8Ao3VaAP6FKKKKACiiigCMPtO0UhkOPekmIEe8dhX55/Ef/gun4S+BP7Z3 i79n/wCK/g3zfC+i6ilpa67pZLTQyCNTJ5qHhgGJHy4Ixzntz18RTw6TqO13Y9jJ8hzTPqk4YGnz uEeZpb2Vvv8AQ/Q7e3cUM+RzXA/Ar9o/4NftG+EE8a/B/wAe6frdi/En2WYGSJj/AAunVG+oFdN4 w8a+FvAfh268U+MNftdN060jMl1eXk6xxxqOpJPFbKUJQ5kzz6mFxVGv7GdNqaduWzvftY1zLtGc UoIPNfm3+1d/wcFfCb4deKLXwZ+ztoI8UbdSiXVtcuty2qW+8eZ5SjDO23OCcKD2Nfof4O8T6X40 8K2Hi3RL2O4stSs47qzuIzlZI3UMrD2INY0cVQrylGErtb2PUzTh3OMlwtKvjaTgql+W++lr3XTc 2aKARjrRkDqa6DwwooznpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+Pv /B6V/wAozPA//ZZrH/02ajX7BV+Pv/B6V/yjM8D/APZZrH/02ajQB8H/APBlf/yke+IH/ZI7n/04 WVf05V/Mb/wZX/8AKR74gf8AZI7n/wBOFlX9OJYAZzQAuaM1m+JPFnhvwbotx4l8Wa7Z6ZptnGZL vUNQuUhhhXuWdyFUe5NfOviX/gsj/wAEvvCmqyaNrf7bngBbiJisixa2kihgcEZTI6+9AH05nvRm vKfgj+25+yR+0lP9i+BH7Rvg/wAVXO3d9j0jXoZJ9vr5e7dj8K9G8Q+JdC8K6LceIvE2sWun2FnC 013eXlwsUUKDkszsQFA7kkCgCTV9UstG0641bUrpIbe3heS4mkbCoijJYnsBX4z/APBGH9uK4/4K Af8ABfn9pn426XqTTeHLbwPBo3hKHdlE060vI4Ucdv3jCSY+8przX/g4f/4OQ/h1qfwy1n9iL9gP x2ur3WuRyWXjbx3psh8i3tTlZLW1cffZ8FWkHAUkAndkeI/8GVd/aWn7bPxYmvrqOPd8OIfmkkAz /pqZ696AP6W8ZXFVL6ytr+2ksryBZI5EKyIy53Ajpg9sU3/hINDPCaza/wDgQv8AjUcniLQlPOs2 v/gQv+NTKMXFpq6Y48ykmnqfDP7e3/BIHxp8c7hfFX7Inxpsfh3qzqy31rqGgpeWs2c/MnIaFvXB IPpmuJ/4JZ/8G/OifsW/HyT9sH9pP4zyfEv4mqsi6VefYTDaaZvTYzorMzNJtZlDZAAOAB1r9Ej8 QPA6/I/i7S1YcEfb4/8AGtBNV0918xLqFlP8QkGD3rhwWBy3B831WCjfV2sehjMdmWMjFYmcpW0V 7lxRgYoquur6U52rqMPXH+tHX06064v7W1ga5up1jjjUtI8jBVUDqST0r0DzibNGa8T8U/8ABRr9 g7wXrMmg+KP2vvh1Z3kLFJreXxda7kYHBBw5wc+telfDz4pfDj4s+HY/Fvww8d6P4i0uU4j1DRdS juoWPpujYjPtmgDoqKMj1qveanZafZyX99dRwwwozyzTSBVRR1JJ4AHc9qALGecUV8v/ABP/AOCz H/BMD4O6vNoPj39tTwPb3cLFJobXVRdFSO37kMAa779nT9vr9jn9rR/K/Z0/aN8KeK7hYy7WWm6s huAo6t5LYkx74oA/Fr/g+K41f9nYf9O3iT/0LT6pf8GOP/I6/tJf9grwr/6N1Wrn/B8O2/V/2diO 1t4k/wDQtPrI/wCDHm8lX4p/tEaaoGybQPDkrfVJtQA/9DNAH9D9Gaa7hOtcv8R/jV8Jfg9pa658 V/iboHhmzZsJc69q0Nor+wMjLk/SgDqs4oOe1eM+D/8AgoP+w38QPEEfhTwV+1p8PdR1KSQJDZ23 iy1Mkjn+FRv5PsK9iiuopoxLEwZT91lPBoAz/FGr2fh/w/e67qMqxwWdnJNM3ZVVck/lX8uvxp8f XXxZ+Mfir4mXsm6bxD4ivNRI5486d3/LB/TFf0rftOeF9d+JXwN8WfDLwV4istP1XXtFn06G8upP ltvOQxtIRnJ2hmIHGSMZHWvnn9kX/gj7+xp+zVptrqOv6NY+MPEcaqZ9Y14JIBKBgtHESVjGc44J 968fM8DWx0oQjotW2frHhvxhlHBdDE4vERc6s7KMV2V2229uh+Nv7MOn/tu+A/EkPjz9mXwj45hu ByLzRdLuWglGejELscd8HOa9M/a+8af8FU/2ibWH/hfnw98df2ZZxr/xL7LQZ0tcgAb2WJcZPXJ9 +nSv360nT/CulRpYaLFYwrwqw2+wD8hVy9tNONuWvEiWPoxkUbf1rOOTONPk9q9d+x6mI8YKVfMl jP7NpOS2b+L77bn8pt/YXul3L2GpWc1tNGcPDcRlHX2IPIr95f8Aght+0jb/ABl/Yh0Xwdq+tJJq 3gyZ9HuFkl+doUOYTzzgRsqj/cr2P9or9hb9kL9pvSJrP4m/DnQ5rpo8R6pbIkV1F1xtkXBH54r8 mv27f+CW/wAd/wBgy7uviz+zh491bVPBav5s11pt4yXmlgHgzCM/Og/vjp3A61zU8JicpqOpH3ov ex9HmHFWQeKmXQy2s1hsQpXi5axbtZpPzXQ/dVJo3XKyr+dODKf4v1r+bvwF/wAFPP26/hw0a6D+ 0d4inSP/AJY6ldm5X/yJnNfoN/wRw/4KPftkftjfH+9+HfxU1PTb7w9o/h6S+1C8TTVjl83eiRIG XHJLM3IPCGu7D5vQxVRU0mmz4biLwjz7h3L6mOnVhKnBXbTadvRn6hJ1p1Mj46+lPr1z8pCiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvx9/4PSv+UZngf/ss1j/6bNRr9gq/H3/g 9K/5RmeB/wDss1j/AOmzUaAPg/8A4Mr/APlI98QP+yR3P/pwsq/pX+IHjPw18N/BGreP/GWqR2Ok 6Lp8t7qV5N92CCNCzufooNfzUf8ABlf/AMpHviB/2SO5/wDThZV/QZ/wUN+CPir9pP8AYZ+LHwD8 C3bQa14u8A6npelyK+3E8tu6oM9stgZ7ZoA/nj+If/BRPxf/AMHB/wDwVU8K/sn/ABf+Os3w1+AN 54mmh0nQ4dQMAv4YFYwiRvuvdXJRVXcdqGTC5I+b97fgP/wSS/4J0fs/+B4fBHw8/ZF8ErbxxBJb nUNDhu7i5xwXklmVmZj7n9K/lO+AP/BH3/gpX4z/AGptD+Den/sq+OtF1S38RW8V5rF5oc9vaaeF lG64NyyiPaoBYFWJOBjk1/Zh4L0q70LwjpehX1611PY2ENvPcSfelZEClj7nrQB+Cv8Awc//APBI 74MfsifCLSP+CjP7E3hv/hX+qaT4qtbLxVY+F5GtLcCfIhvI0jIETrMqKduATIDjIqv/AMEaf2v9 P/4L3fCG+/4Jg/8ABSLxz4i1LVvCcK694e1vSdYezuNes4v3UkF2yH980W9GBIy2cnlc192f8HVd za2//BFX4k/aJVXzNY0FY93OWOp2+APyNfhj/wAGq+u3+lf8FuvhXptnIyx6ppfiK1ul3fejGiXs wHv88SH6jNAH0p/wcg/8EQf2I/8AgmZ+yN4R+MX7NWja5BrOtePI9KvJNU1h7hfs5tbiUgK3AO6N ea8B/wCDaT/gnD+zz/wUo/aW8efDL9oka02naD4Nj1Gx/sXVHtX843KxncyHlcE8etfqF/wen5/4 d4fDvj/mrEX/AKQXVfHf/Bk5/wAntfFj/sm8P/palAH6K3X/AAaa/wDBMi5n82PVPiLCv/POPxlN j9c15v8Atc/8G4n7DP7Kfwcvv2lvgx458baLrvgtodQs/wC0PEklxbXjeaqeQ6P/AH9+0EEHcV+h /YeQ7fmr82f+Dkj9pOX4W/AL4X/AnS78x3nxJ+J1lDdKrYLWVopuHH0MogBrgzKUo5fVa/ll+R6G UpSzKjGS0c4/mj86dB/tfWdcs9Livp2a5ukTiU92AJ6+5NfX37WX/BC/9meH9hH4gftWeE/iP8SL HxdY/DrUfEdmY/G1yLVbyOzacDyt20JuX7uMYr5n/Z+0RdW8fw3rx5jsYWkP+9jaP5k1+uX7TMqy /wDBIf4jvG3H/Ci9Y/8ATXLX5Z4d4upWznEU3JtRinrruz9X8SsNTo5Xh6iilzSa07JI/j/+AH7S XjfwF+0H4L+JfjP4i+ILjT9F8YabqWq/8TKWRpIIbqOSTgt8x2qeD1r9cPEnxl/4K1f8HOvxn1rw R+zlrdx8Lf2d9K1NrWa/lklhtpYVOP3zR/NeXJX5vJVhGpYAletfi98HPB1n8RPi54V+H+oXUkFv rviOx064mi+9Gk86RFh7gMa/uP8A2Vv2YvhH+x78CfDf7O3wP8MQaV4d8NaettaQwoA0rZy8znHz SOxZ2J6ljX7EfjB+JfxT/wCDKFI/hpNe/CL9uC8vPF8NsXhh8RaAsdjczY+4WjcyRAnjdhyOuDX5 c/B/9pT/AIKF/wDBCr9szU/Bthr2oeHfEfhnVI4vFHhS4uWk07VoeGCunSSORCCkgwwDZBBzX9n7 RLjpX8u3/B5d4T0bQv8AgqB4Z8QafaLHc618J9PmvnVceY6Xl5ErH1OxVGfQAdqAP6HP2JP21/hr +2V+xn4U/bG8OXcOn6Hr3h9r/UvtE4VdOliBFzG7HgCN0kBY9lya/nH/AOC8X/Bfb4xf8FBfjDqX 7Mv7LXinUNJ+EWn332C0j0uRo7jxTNv2+dMVOTGzHEcY4xgnLHjtP2Wv2r/H3wi/4NLvix4f0LXJ re41H4xzeFNPmSQq8FneRWU9xGpHQMDOP+2rV+aH7Bp08/tu/B9dXshc2rfE7QhcW5x+8U38OR+I oA/oB/4Jnf8ABpf+yZ4c+BOh+O/29dO1TxZ481qwjvNU0VdTkt7LSt43C2ATDO6ggMzEjcCAMCo/ 27v+DV3wh8PdIn/aQ/4JNfEjxH4B+JXhfF/ofh7+2X+z3ssZ3bIpz+8glIztO4oTgEDO4ftFCg2Y 27cdFHanPGHHIoA/jx/4K4/8FVviH/wUe+Cfwb8DftC+G7jTvir8J7rXtJ8aPJaiFbzzDaCKYr/B KTDKrpgAFMj72B91f8GPjFfjF+0Icf8AMs+H/wD0ova+Sv8Ag6n/AGefC3wA/wCCufie68H2MVra +OPDun+JZ7eEAKtzN5kUxwP7zwlvqxr6r/4Mmta03w18R/2kPEWsXSw2dh4P0O4upnYARxpNeszH PYAGgD7+/wCDgv8A4Lr6N/wS8+HVv8Hfgm9nqnxi8UWpl0+2nUPDodmePtk47sSMRoepBY8AZ+Ff +CPn/BFj4lf8Fh9L/wCHkP8AwVQ+NninxJpOv3kg8L+HX1SRZNShSTa00j5/dQBgUSOPbnGc4wK/ I/8A4KM/td+Jv25v20PH/wC0z4jv5ZE8ReIJ30mGRji2sFcrbRAdgsQX8cnvX9R3/BNL/gob/wAE 2PgP+wD8HfhJq37ZXw30280P4e6Xb31jN4ngWSG4+zI0quM8MHLZB70AHxR/4Nqv+CSPxA+Hkngv Qv2bYvC935BS18QeH9UuIr6Bv7+8uwcg/wB4EV+a+n/t4ftz/wDBtH+3FZ/sh/tR/EPVvin8BNZj W68NXl+xkvINLLmMzWzMfkmiI2vBu2HgjbuBr9nG/wCCtn/BMkjH/DdPwz6f9DVB/wDFV+Qv/B3b +0H+w/8AtV/su/C/x78Af2h/Bvi7xd4W8dSWUll4f1qK4nXTbmzlaV2CnOxZre3GfWSgD7q8Xf8A BF//AIJj/wDBTK2vP21PBnjzxdfL8TI21a217w/4yuY7cvKv3kiDbUKkYKYG0ggjNfzM/tz/AAb/ AGlv2Ef2qvGH7LfxP8f69/aHhfVpIbe7/tKZUvrQkmC5TLfdkj2sPTJHUV+wH/BmD+3b4k1W88ff 8E+PF17LcWdnp/8AwlXg9nkJ+yqJUhvIBnorNLA4x0O/1r3/AP4Orf8Agklb/tXfs7f8Nt/B3w40 nxC+G9m39tW9rDl9X0UHc6nAy0kJzIp/ul19MADv+Df79hP/AIJ0/tJfAf4a/wDBQT4VReKofHnh yUReItNufGV1Pb2GtQptlBiZsFGz5iqf4XUdRX6P/twfAb4DftH/ALM3iT4Z/tOahNZ+B/Lj1DXr yHVnsTBHaSLciQzIQyKrRhjzyMg8Gv5g/wDg2z/4Kral/wAE8/2z7T4b/EPxO0Hwv+JlxDpviWGa T9zYXhO21v8An7uwko57o5J+6Mfp1/wWZ/a7+Ln/AAU6/a+0H/ght+wn4l/4l97dJP8AG7xlprl4 7GzjdWe33qcBY15cZ+d2SPj5gQD5L/YK/wCCX3wu/wCCsn/BRLxX4x/ZpHjTwr+yp4DvDZHVbzxF dtdeJrpOAkLu5KeYTvPI2Rhf4mwP2b/Y6/4Ix/sZfsPeNta8e/B3SfEVxea9oEujalH4i8RT30L2 skkcjL5crFckxpzjoD6mvZf2Pf2TPg7+xL+z54b/AGbvgV4aTT/D/h6xWGP5QZLqbrJcSt1eV2JZ mPUn0Ar1FlycUS95WZUZyi1KN9NU9mfz/f8ABYT9gOH9iz47r4g8B6a0fgnxa0lxo6clLOfrJbZ9 OQVHXB/2efs7/g20+Di6N8FPGnxnvbbE2u65HY2sxXkw26ckexeQ/lX0d/wWA/Z/034/fsNeMNOb T1k1LQLP+2dJl2/NFNBl2x3+aPep9mr4F/4Iu/8ABVTwx+z9BZ/sqfHQQ2Hhu6upG0HxFGoVbW4k fJjn7BCSSH52nAORyPm/Y0MHmyc9FJXXr2P6E/trOuM/C2dCinOrSlFTtu4rVO3V2WvoftFH606q enajaanbR3thcrLDIm+ORGBDjsQe9WNx9a+kWp/PTTi7MkooByM0UCCiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAK/H3/g9K/5Rm+B/+yzWP/ps1Gv2Cr8e/wDg9KP/ABrP8Dgf9Fmsf/TZ qNAHw1/wZT6at1/wUK+Jl9vO61+EMpC+u7U7EV/TLKUEJMjAbeWz2r+aP/gybz/w358VsD/mjz/+ nWxr9IP+Dp3/AIKNeO/2Gv2DbX4d/B3WJtN8XfFjVZdEi1a2k2S6dpqwl7qWNhysjAxxqRyBIxBB UUAYP/BWH/g6I/Zr/YV8ZXPwF/Zs8IQ/Fb4hWreTqElnfhNK0mb/AJ5ySIGa4lzwY48bT1fPyn51 +HH7Un/B3b+3BpkPxA+D/wAIfD3w78N6pGJ9Om1TSbKwUwuMqwF4zzsMdG2V8f8A/Bpf+xt8Lf2s P+Ciur/Eb4z+H7fXLP4aeGG1zT9N1GPzIptSknSKGWRTw/l7pJADkb1U84r+qCKFY1AQAKOBgdKA P5qf+C2Pwl/4OD/h7/wT8vNd/wCClH7RPgnXPh3deK9Nt7rQdDkhkumvN0jwNmO1QbFZSSN3UDrX zP8A8GtH/Kcz4M/9e/iX/wBR3Uq/ZX/g8W8U6JpH/BJiy8P312qXesfFTSItPh3DMhjhu5WOPQKh z6ZHrX41f8GtH/Kcv4M5/wCffxJ/6jupUAfrL/weojH/AATx+HYA/wCasRf+kF1Xx1/wZOf8ntfF j/sm8P8A6WpX2J/weoPv/wCCeXw6wP8Amq8X/pBdV8c/8GT7bP22Piwx/wCibw/+lqUAf0rSfdY1 /Oz/AMHLv7UNv8T/APgs78H/ANm/Q9Q8y0+Guk2z6pGrZC6jfSGZhj1EC234sa/oe1C8g0+wnvrp 9scMTSSMeygZJ/AV/Gj8Zv2g7z9qf/gs74n+Pd1dNKviL4rXMlmzNnFtHIYYFHsIo0UewFcOZ/8A Itrf4Zfkz0so/wCRpQ/xx/NH6mfsxaC0ejah4ilj/wBdMIYWx1Cjn9T+lfqB+0Px/wAEe/iGP+qE 6v8A+mqavzz+FeipoPgLTdO2/N9nWV8d2Ylj+px+FfUn7b37dfwF+Ev7Ftr+xjq/iIXXxA+KXwS8 SDR9Gs5FaS0tbbw7f3kl3cDcCkRFs0anBLOwxwGI/EfCmt7bPsXPyX4Ox+1+LdH2OSYKP95/kj+V P9lj/k5v4c/9j5o//pbFX93yoo5Ar+EH9lj/AJOc+HP/AGPmj/8ApbFX94AOelfvh+BBX8xP/B6X /wApJvAf/ZH7T/0431f07Zr+Yn/g9LP/ABsm8B/9kftP/TjfUAeN+DL6C2/4NbvFVrM3zXH7Usax j1xplqa+Mf2Fv+T1/hD/ANlM0L/0vhr7T8AfDjxJ41/4NcfGHibQrF5rfwx+08l9qnlgny4G060h 3nHQb5UHPHIr4j/Yz1ix8O/tefCzX9Ul8u2sviJos9xJ/dRb6Ek/lQB/diAByKKjgmSaMMh+VhlS O4pxdR3oA/lf/wCDxUt/w9rtVLk7fhbo+1f7o867/rmnf8G4viHVvCn7IH7fWv6JLIl3b/s//uXi JDIWg1NdwPYjdke4rK/4O+dZj1T/AILAX1pDeJMtj8O9FhZUYHy2xM+0+h+bOPcV6r/waM/CWL49 eE/2wvgfM+1fGHwls9FL4+4bpdRgDfgXz+FAH4yDOclc1/WF4C/4NW/+CO+o+D9F1fUvgjr1xPca Zby3Dt4wvAHcxqScBx1JzX8p/i3wpr3gbxXqXgnxRp8lnqWk38tlqFrKPmimico6H6MpFf3c/ALx Pp/jb4GeDfF+lSq9tq3hXT7y3ZOhSS2Rx+hoA+Gx/wAGsP8AwRfK5/4Zp1If9zlqH/x6rlt/wbAf 8EYrW3EB/ZWlk28bpfFF+x/Pzq/QimSkFMA0AfK37HH/AARj/wCCeP7A/wAVpvjZ+y58DF8O+JJt Ll06TUP7YurjNtIys6bZJCvJRT07V9PahYWeqWcum6haRzwXETRXEE0YZZFYfMpB4IIyMGvmvwt/ wUy+H/jz/gpbrf8AwTX8EfD/AFbVNY8L+DV1/wATeLLa4jNhphYrttJFzu8xt8ZGM43exrY/4KW/ 8FB/hL/wTW/ZV1z9pD4nXEc81tGbbw3oKzBZtY1FgfKt0HXkjcSOiqx6gUAfy/f8HDn/AATq8G/8 E5P+Cguq+CfhRdWcfg/xjZ/8JD4b0i1nVn0mKSRw9oyjlFSQNsyOU2+lfbv/AAZxftpfs3+Bvix4 8/Zb+I2hWun/ABK8fSRahoPjC6bdLrEcKv5mnNI3KspYzKoOJN0hPKgH279hv/ghN4m/4Kc/C74j ft9/8FY/t0nxO+Nmlyf8IbpcgeP/AIQ+0fH2a5WEkbHAVQkZ4WIc/NIxH4Y/tBfAv9pP/gl5+2df /DTxVcXHh/x18OvES3Gl6vYOwWUxSB7e8gYgbopAAy5AyDggcigD+4uMx43LSk/PnNfGP/BEj/gq j4U/4KnfsfaZ8TbmS2tPHXh9Y9N+IGiwsB5N6F/4+EXORDMBuX0+Zf4c19mblcbloA5P446baar8 HvFWn3se6Gbw/eRyL6q0Lg1/LbdqFvJVX+FiFbHYH+lf0uft6fFCx+Dv7IPxB8d39wsa23he7SNt wBMkkZjjUe5Zxj3r8Jv2Af8Agnb8YP28viRHpvh2zk03wraTA6/4muIz5cK8Hyo/70pB4XGB1JAr 5vO6c69anTpq71/Q/onwXx2FyXJ8fmGMko0k4q76tJ3Xrqfa/wDwQO/bX/aR8Yayf2ZfE/hTVPEv hDTbVmtvEzMW/sMAZWCR3PzxtyEUHcvGAVzj9Yo95RcmvN/2Yv2WPhJ+yd8LbL4U/CDw3HY2Nqu6 4mPzTXcx+9LK/V3J7noOBgAAelJHtTGK9rB0amHw8YTd7H49xhm+W55n1XF4KiqcJPZdf73lfsSD pRQBgYorqPlwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKesa7pOg2/23WdUt7SHdt8 y5mVFz6ZPfg1+Qf/AAeTeJvB/iL/AIJbeFF0fX7C8uofjVpbKttdpIwQ6ZqgJwCePu1+ln7Yv7F3 wJ/bq+F0Pwa/aI0PUr/QYdUi1COHS9auLCTz41dVPm27o+MO2Vzg18q6t/wbGf8ABIzxDbCy8QfB jxRfQrJvWG8+ImqyqGAIBw0/BwT9KAPya/4Ms9e0Xw9+3t8VLnXdXtrKN/hCypJdTLGGb+1LE4BJ HOK+w/8Ag8J/Zq1z9on9krwT+0J8Iby311vhlrlx/wAJNYafdLLLDpt1GFN1tUklUljjVj2EgPQG vpzRv+DXn/gj14bna78OfAnxFYyyJtkks/H2qRMy5ztJWcHHHTpnFeo/s2f8ERf+Ce/7J3xCm+JX wn+GOsvf3WkXOl3Vv4g8WX2p2k9rcLsmjeC5keNwy8cqe/rQB/ND/wAEB/8Agp74e/4Jbft0W/xR +JltcSeBfFOkPoXjFrSEyS2kDujx3SqOWMciKSo5KM2OcCv6Wx/wXZ/4JKn4fzfEdP25fA7afFbe cYf7QIuiMZ2i32+aW7YC5r5N/ao/4M//APgn38bvGd943+C3jPxR8NpL+ZpptI05o7uwjYnnykkG 6Nf9ncQM4AA4HF/A3/gy/wD2OvB3iy31v42ftCeLvF1hbzCR9Js7aOwS4AP3Hcb2APfbgnsR1oA+ ff2/fFvxu/4ORdE+JXx4+DvhnWPC/wCz9+z14J1rU/B9xfW2258Ya8luXUBOighD3JReGwzkL8R/ 8GxfiHRfC3/Bbr4L6n4g1SGzhdtetlmunCr5suhX8UaZPdpHVR7kV/WR8Kv2dvgp8Efg7Z/AD4V/ DTSdE8HWOnmxt9AsbNUtzCVKurL/ABlgfmZsliSWJJJr8zPjJ/waFfsH+MfitcfFT4LfF/x78O5Z tQN5b6fo94ksdlNu3Zt3YCSMA8qNx29j0oAyP+DyKy8PeIf+CcnhWzXxBZjWLD4lW17aab52Z7m3 FpcpKyIOSqBlZj0AHNfmv/waM/tK+BPgP/wU2vPBXxD8TWulWvxA8E3Ok6bc3kwSOTUEmimhiJPA LKkoHq2B1YV+6v7JH/BDb9k79mtNY1r4keIPFnxk8Ra5oc2kXuvfFfWG1VorGVdssEEcuVhV14Yj LEEjOCRXyN8Uf+DNn9i3X/iVN45+D/7QHjjwbZyX32m10q38qf7C27O2KU7WAB+6Tkjjk4zQB+jn /BQL9o/4e/s4/sefEX4keN/iJpOg/Z/BupLpNxqN6kXn3jW0iwxpkgs7SFVCjJPav4z/ANiyWN/2 s/A098zMjeIoWnLckjdz9Sa/qe/Z6/4N3P2R/hl4p0zx5+0V8T/iF8dtU0UD+x7f4q+JJdQ06zIX aClo5KMR23lgCAQARmvFdY/4NG/2NbD9pRfj98LvjF4q8PWS6y2ow+F1ghmggYszeUjnDCMZwAck AdTXJj6UsRgatKO8oyS9WrI7sur08Pj6VWW0ZRb9E02eU6h8V/CunWEEWgzf2ldzKq2tnZjcxOB1 P8P4816B8LP+CRfgz4Q/sk/Hz/goz8d/E8njX4seMvhL4jm8O3F47yR+F9Ok0q4RLS33EnzBCfLL gAKuUXgkn6v8J/8ABGT4Q+BrVo9D8bah5j/6yeW3RpG/HsPYYrzX4if8G8Gg/E2/1h9U/wCCjn7Q 2n6XrnnLdeGtL8cyx6akEoKtbJb7tghKkrsxjbxyK/MfD/hPMuHcfXniIWjJaO6bbv8AgfpviFxd lfEmX0KeGm24vVWstvM/lg/ZaYL+038OSx/5nzR+v/X7FX93EN3FIdsc6t/usDX492v/AAZj/sCW V1He2X7QfxMhmhkDwzRzWqtGw5DA+Xwc857V9N/sff8ABDjRv2OvjloPxq0L9vP46+KI9BklYeFf FHjOW40u83wvHiWHdtYDfuGQcMqnsK/WT8kPuuS7hT5XlUE84LV/MT/wehXdvdf8FKfA8cEys0fw hsw6qwO3OoX2M1+4X7d3/BJ3wz+3l8WdN+KuvftcfGTwG2meH4tLj0X4e+NJdOsZgk8832hol4Mx M+0v1KxoP4a+W/iL/wAGkf7FHxh15PE/xa/ae+NPijUo4FgXUPEPiqO8nWMEkIHliZtoJJxnGSaA PJf+DU/4F/Dj9pz/AIIr/Fz9nz4uaOl94d8XfEfVtN1S2Y8mOXTLBd6ns6nDKezKD2r8Rf8AgpL/ AME+vjV/wTH/AGrtY+A/xI0+6+z2V4bnwr4jWIrDq1juJhuI26ZwMMucqwIPav6Lfh1/wbB/s9fA nw5ceD/gf+3r+0H4Jsbq4NxJZeHPHxsYJJiADI0UKorNtCjdjOAOa+g7z/gjR+yp49/Y2t/2Of2q dZ8RfFrTbO9uLqx8ZePNWa5120lmbduhvCTJHt6KoJXAAII4oAk/4JK/8FVv2dP+Cjn7MXh3xd4J +IGmxeLtP0m3tvGXhe6uVju7C9SMK58s8tG5G5XXKkHrkYruP26/+CmP7I//AAT1+FGofFD9oT4p 6faPb27tpvh6zuFl1DU5sfJDDCDkljxuOFXqxABr8rfiD/wZr6fofjCfxD+yH+3zrfhWB2Iji1Gx Z7iGMn7pltpIy31wM+ldp+z5/wAGfXwlsfiJY/EL9tn9rHxN8UVs5Vkk0mNZLeO6wf8AVySvI8uz pkKVOO460Afhz/wUi+I37Sf7Xnxl1b/gox8a/hvqWiaH8WPEV4vhO4vARDLDapEvkQ55dYo3iUsB tLE471+oX/BkFJHF8Yf2hDJIq58M+H8bjjP+kXtfqn/wUV/4Ibfsgf8ABSDwX8Pvhz8Q5tY8JaH8 NYbmDw3pPgsQWsMUUyxApsaNgFURKAAAOtfPnw7/AODTr9kj4LNfXfwU/a4+OXg+51GNUvLjw74t SzM4UkqJPJjXeF3NgEkZPagD83f+DpP/AII8eNf2ev2iNW/b4+CfhmS++Hfjy+Nx4m+wxlv7E1dj mQyKB8sU33w/3QxZTj5c/pn/AMGyf/BVP4XftbfsReG/2Z/GHjS0tviX8NNNj0i40e8n2zahp8Qx bXUQP+sATCNgkqyc8EE/U37Fn/BMTwB+yV8IPF/wT8ZfGHxp8X9D8aXSyapb/FbU/wC1lWIReWYF WXKiM9SMYJ5r4r+PX/BpF+ytqHxFk+L37F37QXjf4N659oaezi0m8aaGykPP7iQMk0SjsN7EfpQB +uJl2jLPXxt/wVo/4K+/BX/gm78GLuax1Wz8S/FDWF+yeB/AGnzedd3t4/CPJHHllhU8knGfujJI r5Yg/wCCGP8AwWKudL/4QXWf+C8vjlvDr/JKsNnOL8x/9fPnebn/AIHXv3/BPz/g3+/Y/wD2IvG/ /C9vGGoa18V/icw3f8Jt8QLj7ZJav/ft433BHz/y0Ys47MOQQDj/APgjp+zDd/8ABOn9kTx9+3n/ AMFBfF8Gn/E74pTSeL/iprWsMok0y3AeWK0PJKlA7MY1/jYKBlVA+ff2Nfh/4x/4OCv29pP+Cj/7 RWi3Vn+zv8J9Vksvgv4J1RSI9bu0kyb6aMnBxsjd85y2xBkRtXoX/BVn/gln+x1/wshfih+1f+0r 8eI/BnxO8VzR65Z2Xj4nR9GupB5kC/ZHiZVtyVcDrswvua6H4Tf8G5f7F978ONP074M/t2ftAx+F VhV9NtPD/wAVClkiHkFI4owgGeeBWfNBz5b7HXUwOMp4WOIlB8krpSto2tGvU/TuCKGGLEAXZj5Q Ow7Gvyh/4Oj/APgkrov7Z/7Ms37WXwm0RV+Jnwy06SeaG2UCTWtIHzzQMP4pIhukQ9fvr/EMfqD8 KPh9ZfCb4aaD8MdO13UtUg8P6Tb6fFqWs3Rnu7pYowgkmkPLyNjLN3JzXzN+33/wR6+CX/BQ74ja f8Rfij8dfip4dm0/Sf7PTS/Bfi42NnKm8sXePy2Bc7iCc8jitDkP5a/+CRP/AAUt+Iv/AAS3/bD0 f46+Gri5uPDt1jTvHGgxyHZqOmuwLjb0MiEB0bGQRjgMc/2QfBn42/DH9oD4YaH8YvhJ4ys9a8Pe ItNjvtJ1Gzl3LPC4yDjqD1BBGQQQa/MG6/4M6P8Aglpbxm5m+IHxQVV5Zm8RWgAHr/x7V82ftTfs r/sG/wDBL7VNK8M/sZ/tafGnVPGug30d1Y6Lb/ELOjaayyB/9IijiVJAW/5Yj73JbA644jEU6EHO bPayPIcw4gx0cNg4OTfXol3b6WPpf/g4Y/bes9Rj0/8AYz8Bawr7Zk1Hxg8Mh428wW5x33fvCP8A ZX1r1T/g3H+Jdt4k/ZW8RfDqV4/tHhzxNIVUDDeVOgkUn8d/8u1fjP4o8ReKvH3ia+8XeKtUvNU1 PUrp7m9vbl2kkmkdssxJ5JJz9BX6Ef8ABub8QNf8IftN+KfhhqNhdRaf4k8M/aYnkhbb9ptpVwPQ ZjkkP/AK+ZwmMnXzRVWtHoj+jOKuD8DkfhfLBU5Jzg4zk01dyuuZ/dovQ/aZRu71IOBjNNQYXIPa nV9YfyyFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHXqKKKKACjr1FFFAB06Ci iigAowPSiigAwPSjA9KKKADAPUUh2ryaWquq6nZaVp82pX9ykFvbwtLNNIwVY0UZZiT0AHU0ATh4 zwaVWXtXx38F/wDgop8Zf2yrrxH4t/Yr/Z4t/EPgHQdYuNKtfGniTxAunwa3dQHbKLNNrM8YfKeY wC5BxXoP7Fn/AAUA+HH7XNz4q8AT6NeeFfiD8P8AVG0/x14G1hlF1pswGRIpBxLA4IKyr8rA9iCK APoPeh4DChmUjOa+Nvgn/wAFJPGv7anxa+I3gf8AYm8CeH9W0P4Y69/Ymt+IvEuum3+23wBLrbxR o7mMcjzWADEHGcZpP2O/+Cp837X2s/Fj4CaL8IW0j4zfCW6ktdW8F32qottdvvMaSRXOMGIsOSQC Ny8c0AfS+ofG3wDp3xu039n2bVc+JtT8PXGtwWarnbZwzRwtIx7AvIAPXDY6GuummjhhZ5Gwqrls 9uOv5V+Gn7EP7RX/AAUT8Uf8F9vjZdfEv4V6P4r8daB4HGjt4ZsfE0dtY6Pp6zQyxxwzSDDjMuWO MlpGPTiv0s/bX/4KM6D+w18DPB/iz4zeC408b+PdatdB8P8Ag2HVYikmpTsE2PcEiNYULAvKflUG gDyXwx+yX8ef2+P26pP2xfjv4+8R+GfhB4Ml/s/4Z/DnTdWuLM6/5MhL6nfLEy5ikk5RCSXRFyAD z9nfGP4K/D747eDW8A/E7Tb260tplleGx1u7sJCy9D5trLHJj23YPcGvk/8Aa1/4KXfGn/gnT4N8 LfGH9rn4F6P/AMIHresQaXqeq+DNaa6m0V5RmNnjaNPMQYPKE9OByK+zfDXiTR/GHh+x8U+Hb6O6 sdSs47qyuYm+WWJ1Do49iCPzoA/Jz/g3w8V+NZf+Cif7ZHwq1Hx14g1Lw/4R8SWdn4b0vWNcub1N PhW8v1CRmeR2HyqoJyScck1+uiMoTnrX4/8A/BviwH/BVb9uzn/mcrX/ANLtRr7Uf/gozc/F79rT xT+yB+yF8NovGOsfD61hm+IHiK+1MWum6RJKxCWok2s0s52vlVHGDzwaAPq7chGQBR5iHg18m/Dr /gpVHpf7akf7Av7U3w5/4Qbx5rGk/wBqeDbyHUFudN8RWwLAiCbAIlUowMbAH5TjPFc3/wAFJv8A gsb8OP2F/iZ4V/Zl+Hfw31b4m/GLxq4/sDwB4d/1yRkgLLO3IjB5255IVjjAzQB9rb4+m4UB4++K /Lf4g/8ABw142/Yu8bx+AP8Agpv+xB4m+F9zq2iz3vhbUdJvo9VtdSkjXIthJFwJCcIeuCw3YHNc j+zL/wAHMF+Pip8ZvAP7fv7Otx8LW+HGgx6vptjHM015OJJI0jsnQgZnfzoiuOMbuyk0Afrtujzi k3RlSBXyRr/7Zv7Zvhr9m5/2q9S/Y1h/sO30Ya1c+F4fEynWo9N8sSFvK2bPNWM7jGGyMEdeK9j/ AGOv2uPgz+2/8AdB/aL+BGv/AG7Q9ct9yh12y2so4eCVeqyIeCP5gg0AeBf8Fv7LQvFv7Il98NL2 ANqOpLNqGjtjlZrGI3TgfWNJK/GX9nD9uL9p/wDZU1Fbr4MfFTUNPtQ2ZNImbzrSXuQYnyM+67T6 Gv1A/wCC4Px103wF+0n8A/Cup3Cmw/tK+m8QQt0+xzmG0bI9DHJcf981+b3iv9iPU/hj4n1o/Gn4 haP4R0HTdUubWxuLy48671GKKQqJLe2jzI6suCGwFIPUV8pmkqn1y9N2cdHb0TP6k8L8LldPhOND MoKUKt5pNc13zOLSXol959Y/D3/g5F+OmlWaWnxE+Cmi6pKgAa40+8kg3/8AAWDY/A1veKP+Dk/4 gi3MXh/9m+zt7jblft2rMRn1wEFfENt8YfgB8HxInwX+FX/CRauvEXibxookSNu7RWinZn0MjPj0 p8f7RngX4x2K6F+1D4NjnuQ22z8aeHbSO3vrdf7kkKBY54xxjhXAGAa5v7Rxdre1/D9T6Cp4e8K1 K3t1lvudfeafqonc/tK/8Ff/ANtb9pS0m0HU/H6+G9Gm4k0vw0pg3r6NLkyH8CAe9ezf8EJ/2D/C v7S/j/xH8dfjZ4Vt9a8N6JH9is7HVIfMjvL6QhnkIPDbF9e8gPavkzxl+yX4ztLS18V/CTUIfHHh vUp1is9V0VS8kbsfljuIfvwSZxkMBz0Jr9XP+CK/xC8O+D/F/jX9jXQL+3uIvAem2HnXUIGLzUGa U38gPdVmZY1P92MVpgYzxGOU8Q27bdr2OHjitl+Q8HVaWQQVNtLmcVaUY3Sld731SPsHw9+xv+yz 4SRV8Pfs/eEbbb91otBg/wDia7bQvAXg7ws4k8OeEtNsGC4VrSySMj/vkDitc8LmlG6vrI06cdop H8qVsfjsQv3tWUr95N3+9jlDA4p1FFaHIFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8pf8FuviF4v+Fv/AASi+OvjLwFNJFqkPgWe2hnhbDxR zulvK6nsVjlds9sV9W1xvx++DHhP9of4J+LPgT49tfN0fxh4du9I1JcciKeJo2I9xnI9CBQB8u/8 G9eh6bpH/BG34F2+nwqqzeHby4kZe8supXUjsfU72PPWt6P/AIJzeG/BH/BT3Wv+ClukfFSTS4tf 8CjQ/E/hIW4WC9aKPb9qeTd1VETjH8Gc815p/wAE17H9o7/gmT+zxb/sPfHH9nzxh4q0rwRql/H4 I8aeCNFfUodT0ye5kuo1mSPLQyo0zoQwAwq4r1628GftGfthWPizXPih4Svfh14fvPCOqaJ4N0K6 uP8AiYma9tngfULpVOIyqttSPORlicHFAHxV/wAE29f+Gvgv44/GW/8A+CMf7LOpeMtF1bxZt8af EPxt4tS20t71WZ/stgPK3tGpkLdGPzA7sYrzT/gh14m8feJ/+C/v7UmqfErSrTTtcuLC6/tex0+5 86COZbyIbVfA3AY4OAa6f/gk14B/4K2f8Ep/Afib9iNv2DJvGljdeLLnUPDfje11aOLT1aaOOMtO 5/5Z/uw/94AkYrY/Yd/YK/bq/wCCf3/BVv4m/tF+L/g9f/ETTPih4b8xfEWhzRR28OqXDxzzxyh2 BiiSUOgJ5KgHvQA3/gnegP8AwdCftUZ/6FlR+ljXt3/BwHYfsC694Q+F3hr9rjwn4n8WeMJPGCt8 LPA/gy+EV/rd8zRoYCCjDyGJjVj8p5GCDXnfhD9lb9tD9jr/AILn/EL9trTv2d9U8c+BPit4XSGS 68MzRs+m3Xlwbo5BIy4AeAjd0KuD64pf8Fe/2Jv+Cg3xa/ac/Z5/4KZ/AH4Qw6/4m+FMkba18NY9 QEjBI75rlDGejO8bmNyudpVcZxQB5F/wcZ/FX9uHxB/wTMsdL+Pn7NnhvwP4buvF2mLbR2nigXt7 AyxuY4nRV2ggDnDHGO9frF+wC7zfsP8AwhmlkZ3f4c6OzMxyWzaR1+c//BUD9nL/AIKbf8Fi/wBj W90S7/Zkk+GS+FZ4dU0Xwbq+qRyah4h1AMFZTj5YY442kK7uXbHavtD9jD4l/Hn4Yfsf+FdG+Jv7 LHizTJPBvg/SdIk0mOFLjUL28ijEUrxwxsT5ShQ248nJwOKAPhf/AIINX9zpf/BTD9vzUrNd01v4 kjlhX1dbvUiP1FSf8Gi2sX/jn4f/ALRnxN8VXrXPiHWvihDNq0s3MpZoZZMsT6s7n2wa1v8Agkf8 I/2qv2Uf28/2mPjZ8Yf2PfiHb+H/AIweJrefwzcR6GXKxfart2aYA/IAs6/rXXfsvfsoftGf8EZP 2y/iz4h+GXwE8R/Er4I/FzUY9Xs4fBdp9p1Hw7fLJKxja3B3PGRMV3LnhV96APL/APg6T1vVPhX+ 07+x78bfAdybfxRo/j65SwkhH7x1W509wmRyVLZGOnzH1rzP/gnVqFz8Zv8Ag7I+OHir4oq02oeG dJ1aPw/Hd8+QIhb28Wzd0AiZ8Y9TX1j8Vv2Pfjv/AMFWP+CkPwp/aU+NPwa1rwH8HfgnD9v0XRvF 1qLfUdd1ZrhZmLW5O5IgYYPvYzsPrXy5+33pnjH4A/8ABfex/a1/4JgfCvxF8V/HOm6fHF8c/Avh nSpJreyjmiEQ3zr8qSSxDcVP3WjBPBoA9y/4PDfBPhXWP+CXml+MNRtoxqmgfEfT20e6OPMRpY5Y 3VT15Xr/ALo64FfFP/BWy7i8VfsffsF/EfxJ4OsbPXvibZ6bdfEHxMtgFu9Wa1isYoPtEgG6UBJp GG7P3q+tv21P2e/+Cg3/AAXw8aeBfgV8Uf2X/EHwI+CXhXW11jxdeeLHRNS1a4CFBFBEM/KqM+GP G58n7oz9Of8ABXz/AIJMab+23+w/4b+CnwIW10LxP8K5re9+G3mHESfZ4RGLVj2V0VBu7Mqk0Afb GqaXp9x4duNLktY/s72jRNFt+XYVII+mK/Hn/g0T8Ta1Z+D/ANoz4PW9zJJ4c8N/EaCXQwTlIzKt xG4XtgrbwnA9z3r60tv27v229Q/ZyuPh3df8E9fiVb/F5fDv9npJ/ZOdDfUvJ2faRe52eRv+fk5x x1qx/wAEaP8AgnPF/wAEp/2Lb7wr8SdetrrxXr15L4g8dapG37tZxEB5Yb+JY1Xr6sx6GgqnGVSS jHqfnn/wXz+KA8eft53Hh2yvN8XhXQbWyG1vuSNmZvx+cflXxfq+r6vr98+p65qdxeXEn+suLmYy O/4k54xiuy/ab+Ls/wAev2hvGXxfuC23xB4guLq3RmyY4S+Ik/BNo/CuG9xX57jKzq4ick92f35w nlUMr4dwuHcdYQV+97a/ixMfJXR+OfAzeGfC/hPxIqbY/EGjyXAPbclxLGf/AECubzhcZr6Q/aZ+ HBsf2Df2e/ijZ27bL1fEFheS9gy3geNc+4Mn5VnSpe0hJ9tfyO7MswWDxWGpv/l5Jx+6Lf6Hh3w6 +KXxE+E2uL4k+G/jG+0e8XrLZzFdwHQMOjDPYg19J/8ABGH9oR/gt+39oN9r2qFbPxdDNo2pSSSZ 3POQ0bHPfzY05PqfWvk3YMZLcVPo2s6j4c1q18QaLeyW95Y3CXFrcRnDRyKQQw9wf5VeHrzo1Yzv 8L2/Mxz7IcJm2VYjDOKTqxcW7a36fif1aQusqb1Py9amKHOQK+f/APgnH+11on7Y37MGg/E2G6iG rQ26WfiKzVhmC8jUB+P7rH5h7H2r34ls5LcV9/TqRqwU47M/gXMMDXy3HVMLXVpQbTT8iSik+bPt S1ocYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAYHpRRRQAYHpSY/2aWigBCqngrS4HpRRQAYHpRgDoKKKACjA9KKKAGuAFziv53vjl/wU 3/bG/wCCBH/BSH9oLQPEH7N1p4y8P/GTxsPE3h/UNRuJYDMmxlXyplRt6hSEKfwlM96/ohk+4a/G n/gjbp/hf/gpX+3/APtN/HT9uNovFXiz4c/EH+wvA/gTxBiS28PacJblPNjtn+Us3lIhfHWIn+IU AeEaV/weffHjStbt7/4h/sDWlpokhUTSW2s3AkA7lTJEFJ+pFftV+wj+2f8ACf8Ab/8A2Z/Dv7T/ AMHLiT+x9fhYtbXGPOtJ0bbJDIB/EpBH5Gsf9qf9l79hTW/gH4kt/wBo34SeC7bwbb6NO2tXl1pc EH2W3VCWkWQKCjAcgjnPT0r5Q/4NWvhB4k+FH/BK+xuNXhuorDxJ431bVvDa3kZV2055Fjhfaem7 yy3vnNAH6UsMGvkz/gs1+0RH8Af2GPFD2WoeRqXidV0TS9rYYtODvI+kYc19ZTSDZuU9K/D/AP4O B/2oj8Vf2l9P+A+gaoJNJ8C2rG7iR/lfUJeXJHqkewexLetefmWI+r4Rvq9F8z7zw3yCXEHFlCk1 eEGpy9I/5ux8ARg5z6frT6AwPSjNfBn90cvL7qG43dRiv0e+OPwsg1//AIICfDPxdMPm8O+IheNI EJKxz3VzCf1lSvzizkfLX7S6d8L38Zf8G+1r4aitPNkPw9XUY12/xJL9oB/TNetldP2kaq/uv9D8 r8SsweX18sqXt+/jf0s0/wALn4w/YtLHJ1A/9+zUN3DaR7fs115meo2EUCzu+htZf+/Zrc+H3wt+ IfxZ8ZWPw/8Ah14TvNV1jUJClnY2sJaSUgZOPwFeUoylKyP0qpXoYel7apNKKV220kl5nv8A/wAE s/8AgoBrn7DfxwSfWbqSbwX4gkWDxHZdRFjOy4QdmTJz6gn2r+gfwN448N/EPwvY+M/COs29/pmo 2yT2d5byBklRhkEEe1fzuD/glR/wUDYZ/wCGZPEX/gOP8a+2P+CWV9/wUv8A2ONYh+FXxU/Zr8Va p8P7ub5U+z7pdKZjzInPKeqe+RX0uU4jE0LUqsXy9HZ6H85+KmQ8O55fM8uxVP2y+KKnH3ku2u9v vP1nVlI4NOqvZyNLGsuxl3KDtbqParFfTH84hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAI4JUgV8Jf tV/8EMvhj8X/ANoO+/a8/Zr+O3iz4K/EzVFxreteD2U2+q+88LYUn1b6193UdeDQB+fOjf8ABDzx d8U7yK1/bp/b7+Inxc8OwyB28G3Hl2Gn3RByPPEXzSrnqp4Nfd3hLwf4c8A+G7HwZ4O0K303StLt UttPsbOMJHbwoMKigdAB2rYAA6UxxzQB5X+2L+0Z4b/ZY/Z48SfGbxHIm3SdPZrOFmx59ww2xRj6 uR9BX81Hj3xv4i+JfjfVfiF4xv2utU1q+lvL+4f+OV2LN+GT+AFftN/wVv8A2Xf2zf25/GOi/BD4 RaPa6f4H0f8A0vUtTvrzYt7dtwBtHJWNc49Sx9BXj/wd/wCDbAuYr742fHNscGSx0O0GD6gu/wDM V85mdDGY6uoQi+Vfmf0J4ZZ5wnwXk08Vjqy9vV+yrtqK2Xz3Z+Ue4k4WnMzrw6Y4z8wr+gL4Tf8A BFD9hL4VpFPJ8Mm1u6jwftGs3BlyfXHSvB/+C0H/AAS38Fa18E4fjl+zt4GtdM1XwfbH+1NL0u2C reWA5J2r1dDz7qW9q8+pkmJp0XUb26H3WX+NHDuY5vTwUKcoxm7c8rJX6aeex+Om/au0Cv6Nv2YP htFrH/BNLwb8M7iLauo/Ce0tZI+hHnWK5/H56/nO0vTrjWNRt9KtF3TXVwkUa+rMcD9a/qY+G/hu 08K/DHRPClpHth0/R4bSNduMKkYUD9MV1cP0+aVR+VvvPnfHbHezhgIQe0nL7rf5n8t+sf23oes3 ei3tzcLNZ3UkMyeaeGVsEfhX7P8A/BDH/gn9N8G/hqv7TPxZ0mRfFPiaEHR4LxT5mn2Lcg4P3Xk4 J77cD1rwH9nD/gl1efGT/gqZ8StR8Z6Ft8A+DPHV1eTLJH8l5JLJ58FsB3AV1ZvYY71+xOnWNrY2 cVnbwqkcagRqowABxXTleXuFaVWoutl/meH4n+IUcZldDLMFL44RlUa7NJqP+ZOsQPApTbA8mlEY QZNLsFfQWPwDmYIgTpTqKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBGbZCc7Fp4RR 0WloPSgBrZK5qlqWmWmpWc2nX1ss0M8ZjkjdQQykcgj0q2d2zgUNFnmiyloxxbi00fiX+1x/wTIv vgR/wUq+H9l4G0CT/hBfHXjS0m04xxkx2jiUSz2x9MKrMv8As59K/a6FQtvHEq8BFA/Ks/XvBXh7 xPcWFzr+iwXUmm3gu7F5owTBMFKh1PY4Zh+J9a1lRl4A6Vx4fCwwspuP2mj6jiDirHcR4XC08TrK jHlv31Wr87JIz9K8P6Po891dadpUMEl9ceddPHGAZpNoXc2OpwoH0ArRwOgpccZxQeD0rs22Pl3K UndjscYooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image018.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCABdAL0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2aiii gAooooAKKpanfzWEKPBYXN6zNgpBtyvudxHFZPhTxtY+Lpb6Oyt7mF7JlSUTqo5OemCf7poA6Oii igAopKo6prVnpCI13IV3nCqoyTSlJRV2OMXJ2RfoqC0vIL63E1tKskZ7qeh9D71PT3FsFFFV765l tbVpYbWW6cf8soioY/TcQP1oAsUVynhb4had4r1e6020tbyC4tULyC4RVxhgpHBPOTXV0AFFJRmg BaKTNLQAUUUUAFFFFABRRRQAUUUUAFeT/Bb/AJDHiv8A6+l/9Ckr1ivJ/gt/yGPFf/X0v/oUlAHr FJXnHhHxDN4+17WRc3d/Zw2MgSC2t38pdmSNzsOS2R06CoIdT1P/AIT++8EXOr3ptZo/NtrtCouI xt3FN2ORjIzjPA5oA67TPEyap4y1XSbdkaHToY97Dk+axbIz7AAfXNSeJfD7a1Cj28ipdRAhC+dr Z7HFeX/CzRpT4q8UWlpql5aC2lEfmR7GaQB3ALblPPHb1rq/El7qnh6+t7W3127uZJk3ss0cfyjO ARtUdefyrKtycj51oa0OdzXI7M6Lwf4fuPD+nTpe3CTXNzOZpPLBCJwAFXPPQDnvXQV5H4v8U+JP DPi3RbOwv5r9LyNJDbSRxgyMWI2bgvAPFbOs6F4yTRbjVv8AhKXj1CGMzm0hhUW4CjJQZ5PTqeta K1tDN3vqeh0V5HdfGC4i+HFpqKxR/wBs3Mr2w4+RSmN0mPoy8ep9q6W08Ka8mlQ3kfirUX1cxiQi Vla2ZsZ2GPHC9sg570xHN/D4BfjN4tAGB+9/9GivW68N+HGuqnj3xVrWpR/ZglrLPPGDnYRIpYD1 54rsvCNxqvj2yl1u81S70+yeVo7W0siqbVU43M5BLH9OKAO8nlWCB5XOFRSx+gGa838M6v4wZ3mj sJLyykYuq3B2YBOflY84/Ori6zqFt4rPg/VtUmWSdBPYahHHGHlXBzHICCpPB5AGce9ZvgzxFrY8 eXnh7xTqk32qAk2yiONI7gAH0XPIwwwexqWrs2pVVCLTinfuTT694m0/xLaXuuwS22nrJtZEGYlU 8ZJGckdea7y013TL3AtdQtZSegWQZP4VzdiNQ8UavfXFrq11HoKkwxjy4mFw4OHK5U/ux93vk55r FuvCtponxD0xgUjsLiQyxhzwrr/B+eMVOsToTpYjRrlaXTrY9NpaSlrQ4QooooAKKKKACiiigAry P4QXEVndeMbqdtkUM4d29FBkJNepX4vjAP7Oa2WbdybhWK4/Ag5rhvD/AMPdV0JdYi+26fcwau3+ kK8Tgqp3ZC4PoxoAh8M3+s+PTealpl4mg6SJzGi21ujTzsACWdmGB1Hb+VYGk28tp+0KLea+mvpI 4iDNNt3H9xnB2gDjPpW34f8AA3jDwe9xZaFq+mvps0hcG6iYvH2yFHGcAd8cVZPw61DS/GFj4h0e 8t7m5SJluvtpZTPIwYM+VBx97p0GAKAMr4Tf8j34y/6+D/6Mkqrq2o/2x8TdYAOYrFI4F/4CDn/x 4n8q39F8Ea/4Z8Vajqem3Wm3EOpZaaOcOmxyd3y4zkAk456GqmnfDPWLDXtVvX1G0lW+k8zeEZWy SSeOQOT6msMTGUqTUdzowsowqqUtjH8Z3MNx8VfB6wypIYfIjk2nO1hJkg++CK9X17/kXtS/69Zf /QDXn9/8NtXn1/SNRshpNqumEMkIeQ+aQ5csx29STz1rtNUg1290c20Saas08Lxzl5JNqkjAK/Lk 8Hvito7Iwluz5qvg3/CF6Qdp2farn5u2cRcV9U2JB0+3IOQYl/kK8usfhjKvhmTwvqd5prqsrXqz xO3nQEgKDsIwVO3ByR37itrSYfGsmjRaZbX+iPbxr5A1SJ2eQKOOExjeBxyetMR5NbLLNP478jJP kuxx3UXKE/pXo3wx8G6Hq3gSwvLu2kkncyBytzIoyHYdFYDoBT/D/wAMNS8L61qVxZy2F7ZXsLW5 hu3cMY2IJ3ELyeP1rV0Lw1r/AIJ8+z0X7HqOkySGWKG5laKWAnqNwUhhQBof8Id4U0a/s75rJI7o TLHbSyTSO3mHO0DLH3rkfivoz+IdSVtAgkfVtKgMt1NE23ZGeVTI6ueSB6Z9RXSanZ66kZ13UJtP S4tEb7Pbje0NqGGGlJAy7446AAZx1rQ8FWctlo7LJPZXJkbzWubeRnaeRuWdyR1J7dhx2oHZ2uVP hp4ns/EnhO3FtHHBPZosE1ugwEIHBA9COR+I7VR+KMT3VvpdrbxtLcyTt5aIMseP/wBVYg8J6l4N 8U3XiSDU9IsYJyxksyZNjg9QBjOc8jHQ+1S2ura1rPjfTtTk065S3iYRBVjbaqEYY5I75zUTatY7 MHCSl7XornfeG7TULLRLeDVbgT3Kjlh2HZSe5HrWrSUtWtDklLmbbCiiigkKKKKACiiigAooooAK KKKACs3UNW+yahZ2EMYkurveyBm2qqoAWYnn1A/GtKszUNJNzqljqUDqlzaCRAHGVdHA3A+nKgg+ 1AGfJ4rZUQCyeN8TiUztsjjeIgFd2OS2cg9xzVXTPEt3q/iSz8iJF0+40oXioWO8FmA54wSOgHua s6j4avNQ1KG8e/iJ+zyW8kbwblUOQd0YzwwAxk5qHS/B9xpjWZS/U+Rpx05iIyCV3ZVwc8N+lADt G8QW1xrUMJsfs91qULznLZlTyyBskHUHBGB061R8L6qLNDYRRh7q91S+KAnCqqSEsxP4gfjVnSPB 1zpl7pd017BI+nwPbALBt81Wx8zHOd+V5PTk06y8I3NlcQXaXcJure6uJ0yh2Ms5y6HnPBxg+1AC r4zN1dw6fYWPm6o8k0csDy7Uh8ogMS2DkElcYHOe1V9E8dXGt6mtmukm3aXzPKaSYEDyztlDYHBD YA9dwNYurR23hHxPY3UupW1neSrc3E11dRsYp/MZcxgL024UjnoO+a1/Duh2Mlpp2qeH9ThvJYGn 8ycjKTmVg0mQPukMAR6UATa14khu/BN5d7GiYTG0mjJyUcPtcZ78Z/CvLopYrByIJ55Wzj905jU/ j1P6V1njmBNC0a10hJvNmurmW+uXxjczEnp2GTx9K4q2GbuAesij9RXPVfvWPoMtpWocz6l23ktW v4ru5neSOJwzwzsSxwegPcflXvKMHRWU5UjIx6V4Bq1o1nq97bEf6qd1/DJr1T4f+Ik1fRUtJn/0 y0UIwPVk/hb+lOk9WjLM6TlTjUjt/mdbS0lLW54gUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFAHN63pd5L4ht9RSyh1K2jtzELWVwvlOWz5i7gQSRwe/H1qz4d0j+x4r6aSKC2a8uDcPDD/q 4vlC4zxk4XJOByTW3UN1bR3ltJbzAmORSrAEjIPUZFAI8P8AFOsf274iubpCWiz5cI/2BwPz5P41 R06Mvq9pEQQxuEXBHP3hXutloemaaoFnY28OO6oM/n1rnNc8I+d4v0zV7RBt89TdKPbkP+mD+FYO m9z3KWY0+X2aVklocd4r0aa8+IVxZWqFpbp1dfQAqMk+wwa7DTfhxbaXdxXdrqd5HcR/xLtwfUYx 0PpXTLpdsurvqezNy8Qh3HsoJPH5/pVyrUFe7OGpjqkoRhF2SVvUBwOaWiitDhCiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACkpaKAEpaKKACiiigAooooA//Z ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





=

=  

=  

=

                 Sistemas de Gestión                Página 129 | 179

------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image019.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAlgCWAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAbaBNkDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDuf+Eu 8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJrnqK/pT2NH/n1S/8ABVL/AOVn/Pr/AGpm n/Q0zP8A8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9jR/59 Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8Ag61L /wCSa56ij2NH/n1S/wDBVL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd 4r/6GfxD/wCDrUv/AJJrnqKPY0f+fVL/AMFUv/lYf2pmn/Q0zP8A8OWY/wDzwOh/4S7xX/0M/iH/ AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9jR/59Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/APPA 6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8Ag61L/wCSa56ij2NH/n1S/wDBVL/5WH9qZp/0 NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJrnqKPY0f+fVL/ AMFUv/lYf2pmn/Q0zP8A8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8A kmueoo9jR/59Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/ +hn8Q/8Ag61L/wCSa56ij2NH/n1S/wDBVL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB 1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJrnqKPY0f+fVL/AMFUv/lYf2pmn/Q0zP8A8OWY/wDzwOh/ 4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9jR/59Uv8AwVS/+Vh/amaf9DTM /wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8Ag61L/wCSa56ij2NH/n1S/wDB VL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJr nqKPY0f+fVL/AMFUv/lYf2pmn/Q0zP8A8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ /EP/AIOtS/8Akmueoo9jR/59Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal /wDJNH/CXeK/+hn8Q/8Ag61L/wCSa56ij2NH/n1S/wDBVL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu 8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJrnqKPY0f+fVL/AMFUv/lYf2pmn/Q0zP8A 8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9jR/59Uv8AwVS/ +Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8Ag61L/wCSa56i j2NH/n1S/wDBVL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD /wCDrUv/AJJrnqKPY0f+fVL/AMFUv/lYf2pmn/Q0zP8A8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8A yTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9jR/59Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf /Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8Ag61L/wCSa56ij2NH/n1S/wDBVL/5WH9qZp/0NMz/APDl mP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJrnqKPY0f+fVL/AMFUv/lY f2pmn/Q0zP8A8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9j R/59Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8A g61L/wCSa56ij2NH/n1S/wDBVL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0 f8Jd4r/6GfxD/wCDrUv/AJJrnqKPY0f+fVL/AMFUv/lYf2pmn/Q0zP8A8OWY/wDzwOh/4S7xX/0M /iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9jR/59Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/ APPA6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8Ag61L/wCSa56ij2NH/n1S/wDBVL/5WH9q Zp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJrnqKPY0f+ fVL/AMFUv/lYf2pmn/Q0zP8A8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOt S/8Akmueoo9jR/59Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal/wDJNH/C XeK/+hn8Q/8Ag61L/wCSa56ij2NH/n1S/wDBVL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h /wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJrnqKPY0f+fVL/AMFUv/lYf2pmn/Q0zP8A8OWY/wDz wOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9jR/59Uv8AwVS/+Vh/amaf 9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8Ag61L/wCSa56ij2NH/n1S /wDBVL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/ AJJrnqKPY0f+fVL/AMFUv/lYf2pmn/Q0zP8A8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3i v/oZ/EP/AIOtS/8Akmueoo9jR/59Uv8AwVS/+Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8A wdal/wDJNH/CXeK/+hn8Q/8Ag61L/wCSa56ij2NH/n1S/wDBVL/5WH9qZp/0NMz/APDlmP8A88Do f+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJrnqKPY0f+fVL/AMFUv/lYf2pmn/Q0 zP8A8OWY/wDzwOh/4S7xX/0M/iH/AMHWpf8AyTR/wl3iv/oZ/EP/AIOtS/8Akmueoo9jR/59Uv8A wVS/+Vh/amaf9DTM/wDw5Zj/APPA6H/hLvFf/Qz+If8Awdal/wDJNH/CXeK/+hn8Q/8Ag61L/wCS a56ij2NH/n1S/wDBVL/5WH9qZp/0NMz/APDlmP8A88Dof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6 GfxD/wCDrUv/AJJrnqx9f1uz8O6Pf6zfNi3sYGlKAgPNKSEgt488eZcTMkKZ4DOGYhQxB7Kj/wA+ qX/gql/8rH/amaf9DPM35LMsxu/Jf8KG72XmeUfG/wCIupWIi0ix1a+/t/UTHealqiXtx/aFvZx4 SCP7YJPtKz3bRgFhKHS0gMZBjuEr5uXxt4zyP+Ku8T9R/wAx/VfX/r7rL1rV7zXtVvtXv38y6v7h 55MZ2oD8scMYJJWKCJUhhUk7Y41XJxmsxeo+o/nXJNQnJN04NK0Ypwg7RT0SvDTvZWXkd+HxeOoQ ahjsdCVSTqVXDG42HPUlvKbhjIucraOcnKTs25O513/CbeM/+hu8T/8Ag/1X/wCS6P8AhNvGf/Q3 eJ//AAf6r/8AJdcxRVulSs/3VLZ/8u6fb/r2b/2lmX/QyzH/AMOGP/8Am46f/hNvGf8A0N3if/wf 6r/8l0f8Jt4z/wChu8T/APg/1X/5LrmKKw9nT/590/8AwXT/APkA/tLMv+hlmP8A4cMf/wDNx0// AAm3jP8A6G7xP/4P9V/+S6P+E28Z/wDQ3eJ//B/qv/yXXMUVuqVKy/dUtl/y7p9v+vYf2lmX/Qyz H/w4Y/8A+bjrh428Z4H/ABV3ifoP+Y/qvp/190f8Jr4y/wCht8Tf+D7Vf/kuuYXoPoP5UtYunTu/ 3dPd/wDLun3f9wP7SzL/AKGWY/8Ahwx//wA3HT/8Jt4z/wChu8T/APg/1X/5Lo/4Tbxn/wBDd4n/ APB/qv8A8l1zFFbKlSsv3VLZf8u6fZf9Ow/tLMv+hlmP/hwx/wD83HVJ428Z5P8AxV3ifp/0H9V9 R/091L/wm3jP/obvE/8A4P8AVf8A5Lrk06n6f1FS0/ZUv+fVL/wXT/8AlZlPM8z5v+RlmOy/5mOY f/N50/8Awm3jP/obvE//AIP9V/8Akuj/AITbxn/0N3if/wAH+q//ACXXMUUeypf8+qX/AILp/wDy sj+08z/6GWZf+HHMP/m86tPGvjIg58W+Jjz/ANB7Vfb/AKe6f/wmvjL/AKG3xN/4PtV/+S65ZOh+ v9BT6PZUv+fVL/wXT/8AlYf2nmf/AEMsy/8ADjmH/wA3nTf8Jr4y/wCht8Tf+D7Vf/kurH/Ca+Mv +ht8Tf8Ag+1X/wCS65GrFHsqX/Pql/4Lp/8AysP7TzP/AKGWZf8AhxzD/wCbzpv+E18Zf9Db4m/8 H2q//JdH/Ca+Mv8AobfE3/g+1X/5LrmaKPZUv+fVL/wXT/8AlYf2nmX/AEMsx/8ADjmH/wA3nUL4 08Y7h/xVnibv/wAx7VPQ/wDT1Uv/AAmfjD/obPEv/g91T/5KrlE+8Px/kamo9lS/59Uv/BdP/wCV h/aWZf8AQyzH/wAOGP8A/m46X/hM/GH/AENniX/we6p/8lUf8Jn4w/6GzxL/AOD3VP8A5KrmqKPZ U/8An3T/APBdP/5WH9pZl/0Msx/8OGP/APm46X/hM/GH/Q2eJf8Awe6p/wDJVL/wmnjH/obPE3/g +1T/AOSq5mij2VP/AJ90/wDwXT/+VkTzPMrL/hSzHf8A6GOYdn/1HHTf8Jr4y/6G3xN/4PtV/wDk uph408Y4H/FWeJeg/wCY7qn/AMlVydTr0H0H8qPZUv8An1T/APBdP/5WZf2nmf8A0Msy/wDDjmH/ AM3nTf8ACZ+MP+hs8S/+D3VP/kqj/hM/GH/Q2eJf/B7qn/yVXNUUezp/8+6f/gun/wDIB/aeZ/8A QyzL/wAOOYf/ADedL/wmfjD/AKGzxL/4PdU/+Sqlk8beL40LHxZ4l46D+3dU5J4A/wCPruf8a5Wo LmTc2wdF6+7f/W6fUmj2VL/n1T/8F0//AJWTLMszbX/CnmVtW/8AhRzDy/6j/kbw8a+Mi2T4s8TZ Zsn/AIn2qck4/wCnr0wB6AADgCpv+Ez8Yf8AQ2eJf/B7qn/yVXJr1H1H86nrOdKndfuqf/gun3/6 9l/2nmf/AEMsy/8ADjmH/wA3nS/8Jn4w/wChs8S/+D3VP/kqpE8Z+MCDnxX4kPP/AEHdU9v+nquW qVOh+v8AQVMKVJvWlTej3p03+dM1hmeZ2f8AwpZlv/0Mcw8v+o86f/hMvF//AENXiT/weap/8lU0 +MPGB6eLPEoP/Yd1TH/pVxXO0VcqdJJNUqS1/wCfVLs/+nZTzLMnvmWZf+HHMP8A5vNqXxt4vhR5 H8WeJQqKSf8Aie6pzjoB/peCScADuSBXJy+NfGU0jyP4s8Sh3Yk413VMD0GPtQ4UAAHgnGTk1V1O fe4t1PyphpMHq5GVXg/wqdxBHJZSMFayjDkZU+vB/Hofy4P4mspRpSfK6NLRX/hU7P76fQ5qmZZo n7uZ5nZdsyzBO/yx6vY128Y+MR18V+Jfr/buqEf+lVSDxj4uwP8AiqfEfQf8xzU//kqudII4Ix6g j+hpdpABxxgdOn/1qXsaP/Pql/4Kpf8Aysy/tXNf+hrmn/hzzL/54HRf8Jh4u/6GnxH/AODzU/8A 5Kpf+Ey8X/8AQ1eJP/B5qn/yVXN0UnQov/l1S9VSp/8AysP7VzX/AKGmaf8AhzzL/wCeB0n/AAmX i/8A6GrxJ/4PNU/+SqT/AITHxcevirxGf+45qf8A8lVzo5IHqRUqQs7qg6E8n+6o6kj26DnBJAyC RWbw9NbUqTX/AF7p/wDysP7WzVNf8KuaJ9P+FPMv/ngddZeLPF4zMfFPiMZGE/4nmp5xkhm/4+uM 4wOhxu7EVof8Jl4v/wChq8Sf+DzVP/kquaACgKBgAAAegAwB+VLWioUUreypf+CqX/ysbzbNXvmm af8AhzzL/wCeB0n/AAmXi/8A6GrxJ/4PNU/+SqP+Ex8YYJ/4SrxLjP8A0HdUOOn/AE9cVzdSp0P1 /oKpUqKd/Y0X/wBwqX/yoh5nmj/5mmaJ91meZf8Azw/yN/8A4TLxf/0NXiT/AMHmqf8AyVS/8Jn4 w/6GvxL/AOD3VP8A5KrnygPTj+X/ANb/ADxUZBHWtVSoPajR9PY0v/lRm80zZb5pmjXf+08ya/8A VidOvjLxgc58V+Je3/Md1T3/AOnqnjxh4uwP+Kq8Rn/uOan/APJVcxH3/D+tSVnOjR5n+6pf+CqX b/r2aQzXNeVf8KmZ/wDhzzLv/wBjA6P/AITHxd/0NPiP/wAHmp//ACVVj/hMfF3/AENPiP8A8Hmp /wDyVXKVYqfY0v8AnzS0/wCnVL/5WTPNs10/4Vc06/8AMzzLy/6mJ0f/AAmPi7/oafEf/g81P/5K o/4THxd/0NPiP/wean/8lVzlFHsaP/Pql/4Kpf8Aysj+1s2/6Gua/wDh0zP/AOeJ0B8XeLe3irxI D7a5qf8AS6yPw/KoW8X+MQePFfiX/wAHuqfoftVYtFNUqS/5dUvR0qVv/TQ1meau7WbZqn/2M8ya fqv7R/FGuvjPxhuAPivxL9Druqen/X1Uv/CZeL/+hq8Sf+DzVP8A5KrnzHkjb15wD9D0Pv78e9MI KnBBB9/88j36VXsaM9VSoprp7Kl96/dGNTNc4T1zXNVp0zTM7PzX/Cj+dmdH/wAJl4v6/wDCV+JP /B7qmP8A0qx+NYl34y8WXDhn8TeIXVMhC+tak+ASMnm5IG4gfUAA5xWbcybV2Dhn7+i9+exPQfie 1UK48RTpfw1SpJp3lalSWvRfw/m9ex7+S43NrSxVXM80ldOnRU8zzJq1/fmlLMWtWuSLtsptG0vi rxOeD4i13p1/tfUPb/p4p/8AwlHib/oYtd/8G+of/JFYIUA5H/1qWuJ0YLelTt39nTt/6bPpIZtm L3zHMX/3UMff/wBTtTfHijxOc48R672/5i+oD/24pD4p8T9D4j176HV9Q/8AkisWPv8Ah/WnkA9a Xsqf/Pqn/wCCqf8A8rOmOa5jb/kY5g1/2H4+/wA19eNpPE/iUg58Q64ef+gtf+3/AE8U/wD4SfxJ /wBDDrn/AINr/wD+SKwlGBj3zT0AJIPp/UUOlT60qev/AE7p6/8AlM0jmWYXUo5jmG+q+v463/qb dG1/wk/iX/oYdc/8G1//APJFKPFHiUf8zBrZ+urX/wD8kVjFCOnI9O/4H8/x7GmY/wD1d/8AOfx9 hS9lS29lS/8ABdP/AOVm8czzB/8AMwx6f/Yfjvz+u/mdPbeIPElzKkY8Qa4Axy5Gq3+VRT85z5zA H+FSRt3lQetdN/b+u/8AQa1b/wAGN5/8erl9MtxFAJWH7yUZ5x8qZJUAgn7ww7dP4QRlK0q9Ghha VOC5qNLml72tKnovsrWm+mr835HwudcR5picXKNHNMyhRw/NSg6WZZhBVJJ/vKjdPMIcyclywbbX JC6+K7+2KKKK9s+fCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+S/jZ4y/ tbVU8M2M27T9GlLXzIfkuNV2lGQ4zuWwjZoe2LmS5VgfLjavdviN4vTwf4cuLuJ1/tS93WWkxnBP 2mRDvuSvOY7OPMzEgo0vkwsR5ymvhd3eR3kkdnkkZnd3Ys7uxLM7MSSzMxJZiSSSSTms6j0a7p39 LP8AM6cNT5pc7WkX7vnLv/26n/4E12G0q9R9R/OkpV6j6j+dci3XqvzR3k9FFFbPZ+j/ACAKKKKw AKKKK3Wy9F+QE69B9B/KlpF6D6D+VLWL3fq/zYBRRRW62XovyQD06n6f1FS1EnU/T+oqWgxn8XyQ UUUUEkqdD9f6Cn0xOh+v9BT6ACrFV6sUAFFFFADk+8Px/kamqFPvD8f5GpqACiiigAooooInsvX9 GFTr0H0H8qgqdeg+g/lQZC0UUUAMkfYpPc8L06+uMjIHU+1Uqklfe3suQP6nHuRx7AHvUdJN3fbS 3nuAq9R9R/Op6gXqPqP51PTAKlTofr/QVGBk4qVAQCD6/wBBWbSjK9na34mkXaLb7jqhuJhBE0nV uiA8bnP3R0OB3Y4OFBODjFTVh3s/mylFPyRkqOeGb+JuD2PyjvwT0NE2mlZ9f0Kcklda30X9eRQZ SxLFizEkknqSeSeMDn6AUqjAAPv/ADNOorMxGsqsMEfQ9x9D2/r3phQgccgfn/8AX/zxUtFBE4Rl o9H0a0f/AAfmVCgPTj+X/wBb/PFIU9Pyq0VB6/n3qMqR7j1/x/zj3pq3XTt2+ZhKM4W15l3/AM1v +LKw4YZ9RWtbR7VLnq/T2QdP++jzwcEbe4qrDD50iqRlQdzn0UHpn/aPy468k9jWsUI6cj9f/r0N W7fIF71pW20/4IyinJ94fj/I1IVB9j6/4+tIohqVOh+v9BTCpHuPWnp0P1/oKAH0UU8JkAj8vz/z /Wmk3t6ibS39CMKBnHfFPKnAI5yM00jHBqdeg+g/lQ79dyZPlSta1/l3IKsU0qD7H1/x9adV0+vy /UiUlK3zuFFFFEklbTftp93QkKKKKh26O/5/MNhyfeH4/wAjT5NgRmcDaoJJ78c8HI5OAOoyeKYn 3h+P8jVHUJukCk54aT6dVXPfn5iPZfU1Mpcicu34vovn/mbUaUsRVhS/mdm7XtFayk15Rv6vlXUz JXZ5GccgnhTjIUZwMjqRnkjv2NMDA8dD6H/P/wBf2p1IVB6/nXE3zNuW7bbl1u+66r8j6uCjSjGn TVqcIxjGPZJW379X5tvqLRTVDA4zkYznuPr/AJP4U6pa9GaqSfk/62/4BJH3/D+tSVHH3/D+tSUr K1radjWNRrf7+v8AwQpQcHNJRSkkotdlodNOqrpt6dWv1RODkA+tWba3FxKAwyifM5weQDgJkdC5 zjJHyhyORVVfuj8f5mugtIPJiAI+d/mf1B7L9FHGMkbixHWrwtL2lS7XuQtKXZv7Mfm1d+S8zizb H/VsLKEHatX5qdNp6xg1+8qd01F8sXp7801rHTQT7o/H+Zp1NT7o/H+Zp1eufEH2xRRRXQdAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNd0jVndlREVnd3YKqIoJZmYkBVUAlmJAAB JOKdXh3xr8Zf2RpC+G7GXbqOtRk3jI2HttK3FJFOOQ1+6tbr1Bt0ugQC0bUm7K7HGLnJRjvJ2XZd 2/JK7fkvNHg/xI8Xv4v8R3FzC7HSrDfZaTHyFNuj/vLsqcYkvZQZiSqusPkQvkwgngKKKwbvdvz/ ACZ6sIqEVFbJW9e7fm3dvzfoFKvUfUfzpKVeo+o/nWC3XqvzRRPRRRWz2fo/yAKKKKwAKKKK3Wy9 F+QE69B9B/KlpF6D6D+VLWL3fq/zYBRRRW62XovyQD06n6f1FS1EnU/T+oqWgxn8XyQUUUUEkqdD 9f6Cn0xOh+v9BT6ACrFV6sUAFFFFADk+8Px/kamqFPvD8f5GpqACiiigAooooInsvX9GFTr0H0H8 qgqdeg+g/lQZC1FK+1cDq3A+nc/0Hv8ASpenWqUh3OT+A+g6fzJ/GgBlTkA9agqxQBHsIII5GR9e v+f8KkoooAcn3h+P8jU1Qp94fj/I1NQV9h/4kVbubyYjg4d/lT1H95v+Ajv03FRnmsGrFzN58rMD 8g+VP90d+p+8fm7cYB6VXrB2u7bESfKkFFFFITkkrrXX5hRRRQTNppWfX9Aooq1axeZJuI+ROT7t /CPw+8evQAjDUEayst+39dieCPy05GGf5m9fYH6DqORuLEdanqQp6flUZBHWmk2rrWwOLW6/yE25 IIHPP48frS05PvD8f5GpCoPX8+9Ihys7PaxDSAAdOKeVI9x602gaaezCpk+6Px/mahqZPuj8f5mr hu/T9UTPZev6MUgHqKUcAD0oook7SfXbR+gJJxSfn+YUUU4qR7j1pwcdel+j/R/0yHFrzQ2iiiip 0+f6EhRRRWYDWkWJTI3RQcDuxwdqj3Y4A+uTxmsNmZ2Z2OWYlj9Sc4HsOg9ABVq8l3OI1PypyxB4 L+nB/hHByPvEjqKp1zVpXaito7+bf+S/Fs9rAUfZw9q9J1F7vdQvp/4E1zPyUQooorGzte2nc9JT 7/f0Hp1P0/qKeVB9j60xOp+n9RUtI1jUivdltunutfy9fyIxlM5GQe4/z798U8EHpS0wr3Xg/p/n 9PamrPyffp8+3yNdVqnzL11+T2fz+8fRSDOORg9Pr0/xpyqXYKoyzEKAO5JwB+dK19N76WWt/Tvc qMkndtJRu5N6WSTbbvskk2+mhpafD5jh2HyxEN9XySo4/u43H/gIIINbtQwQiCJIxztHzHGNzHlj +J6ZyQABk4qavTo01Sgord+9L/E/0Wy9PM+Sx2Kli8RKo2+Re5ST+zTi3bTo5O85dbySexMn3R/n uadVcEjpTt7ev6D/AArU5D7eoooroOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvpTwp+x 3+1H430Sy8SeGPgV8RtS0PUoUudO1JtAuLC31C1lUNDd2P8AaRs3u7OdCHgu4Ektp0IeKV1IJ9E/ 4J3/AA68M/E/9r34TeG/GFhb6t4ftbrxB4mutJu4Uns9SufCvhjWNe0m2vIJQ0M9mNXsbCe7tpo5 YLy2hltJo2infH9hHTpXxXE3FVbJcTRweFw1KtVnRjXq1K8qnJGM5zhCEIU3Fyk+SUpSlJKK5YpN ttf159Hj6NWV+LvD2a8VcR8QZnlWW4bNquS5fgslo4F4vEYjC4bC4nGYvFYnH069OlQpvGUMPQoU cPKrVmq1arVp04U4VP41v+GDv2wv+jffiD/4L7X/AOTKP+GDv2wv+jffiD/4L7X/AOTK/spor5n/ AIiDmn/QFl/3Yr/5af0P/wASN+G//RWcb/8AgXDv/wA6z+Nb/hg79sL/AKN9+IP/AIL7X/5Mo/4Y O/bC/wCjffiD/wCC+1/+TK/spoo/4iDmn/QFl/3Yr/5aH/Ejfhv/ANFZxv8A+BcO/wDzrP41v+GD v2wv+jffiD/4L7X/AOTKP+GDv2wv+jffiD/4L7X/AOTK/spoo/4iDmn/AEBZf92K/wDlof8AEjfh v/0VnG//AIFw7/8AOs/jW/4YO/bC/wCjffiD/wCC+1/+TK8z+Jn7OHx3+DemWmt/E/4VeM/Bei31 2tha6zrGkTR6TJfyRyzRWLanB51lDezQwTywWk08dxPFBPJDG6Qysv8AZb8Wvi14D+CHgPXPiR8R 9cg0LwxoMG+aZ8SXmoXkgYWWj6PZbll1LWNSlXyLGxhO6R90srw2sNxcRfypftB/tB/Gv/goF8bN E8O+HdE1SfTZ9Ul0n4WfCzSpTPBpkE5Pm6tq0oMdpPrVxaRG88Q+Ibww2OmWMEkaS2ekWRNfRZBx FnGcVZ1a2EwGGy3DKUsXjJPEQUeWDlyUpTqckqiVpzcv3dKmnKo05QjL8I8b/Abwp8K8twmXZVxN xpn3iDn1ShQ4Z4WpRyPGVa7rYmnh1jMxw+Dy+OLo4Gc5SwuEjRtjcwxs4UcDSqQo4zEYf4UorpvG vhTUvAnjLxb4H1mS1l1fwb4m17wpqstjJJNZSal4d1W70i+ks5pYoJZbV7qzla3kkghkeEozxRsS g5mvt4yjOMZwalCcYzhJbSjOMZxkttJRlGS0WjWi2P45xGHrYTEYjCYmlOjicLiK+FxNGokp0cRh a9bDYijNJySnRxGHr0ppSklOlNKUklKRRRRVGJ1Xg/wL43+IerNoHgDwd4q8c66tpNftovg/w9q/ ibVlsLZ4o7i9bTdFs728FpBJPAk1yYRDE80Su6tIgb1H/hlT9qH/AKNu+Pf/AIZ74h//ADO1+1// AARl+CX9ieA/iB8etVtNl/431FfA/hOWVMOvhnw5Ml1r95bPt+a21fxG9vYSgsStx4TOFUHL/ttX 57nPG9XLsyxOCwuDw+Jp4aUaUqtWtXhKVZRTrRUaSceWnOSpp3u3Gd9kf3T4U/Q+y/jrgHh/i/iL izPchx3EFCtmNDLMvyrJsTRpZXUxFWnlledXMKsMQ62NwtGWMlHlVOFKvhlC/PJv+Jr/AIZU/ah/ 6Nu+Pf8A4Z74h/8AzO15Z4u8EeNPh/rDeHvHvhDxR4I19baC8bQ/F2gat4a1hbO53/ZrptM1m0sr 0W1x5b+ROYPKl2P5bttOP7uK/Db/AILPfBL+0/C3w5+P2k2e+78M3j/DzxhNEgLnQtYkudU8LXk5 wNltpmtjV9PZyzF7nxLZxhQFJDybjarmOZYbA4rB4fDU8S5U4VaVavOSrODlSi1VSjy1JRcL3upO Fr3sR4s/RAy/gPgHPuMOHeK89z/G5BSw+PxOWZhlWT4ajUyqOJpUszxFOrl1WpiPbYKhXp4tQcHT lRpYpza9nFr+eiiiiv0E/hkK9I8FfBv4vfEmxu9U+HXwq+JHj7TbC7+wX+o+CvA3ifxVY2V8YY7g WV3d6Fpd/b212beWKf7NNIk3kyxy7Njqx83r+kf/AIIq/wDJDfi1/wBlXT/1ENArxc/zSpk+W1Md So0684VqFNU6spwg1WqSg25U05XildJKze+h+t+CPhvgfFfxAwXBuY5rjcmwuKyvOswlj8vw2DxW JhPKsHQxNOlGjjpQw7hWlWcKkpS54RinBOTZ+Gf/AAyp+1D/ANG3fHv/AMM98Q//AJna5Dxp8Fvj H8N9NttZ+Inwm+JngLR7y+TTLTVvGngTxT4W0261KW3uLuPTra+1zSrG1nvpLWzu7lLSKVrh7e1u JljMcErL/cpX5A/8Fov+Tavh3/2XLQv/AFAfiLXymU8b4vMcywWBnl+FpQxVeNGVSFfEynBOFWXN GM4qLf7tK0tNX2R/TPiZ9D/hrgPgDizjLB8b8R5jiuHMnqZnQwOLyjh+hhsVUhisuw6pVq2FrSxF ODjjpycqMXO9OCStKVv5naKK+p/2N/2brz9qT45eH/ht9qudN8NW1rdeJ/HWsWiqbrTfCWkS20d6 LIyJJEmo6pe3mn6Jp8sscsVtd6lHeTQTwW0sL/fYnE0cHh62KxE+Sjh6U6tWVr2hBXdktXJvljGK 1lKUYre6/iPh7Ic04pz3KOHMkwzxmb53mGGy3L8OpKCqYnFVOSLqVJXjSo0oRq18RWn7lHD4evWk mqfLL5t0bQtb8RX0emeH9H1XXdSmBMWnaNp93qd9KAQCY7SyhnuHALKCVjIBIB5Ir1+3/Ze/aXvI lntP2d/jpdQuMrNb/CTx/PEw9Vki8PsjDkdCa/si+Fvwe+GfwV8M2vhH4X+DND8H6LaxRRvHpdnG l7qMkS7Rea1qkgk1LWtQfJMl/ql1d3Tk4Mu0Ko9Kr83r+IdX2klhcspOkm1GWJxFX2klfSUo0Ick G1Z8qlO17cztc/v/ACb6CWXvA0ZcReImYxzKVOMsRSyHIsulgKNRxi50qNfOMW8XiI05OUVXlRw3 tUlNUKaaiv4mv+GVP2of+jbvj3/4Z74h/wDzO1y/i/4GfGz4faQfEHj34PfFPwRoIuoLI634v+H3 i3w1pAvbkSG2tDqWs6RZWX2q4EUpgt/O82URyGNGCNj+42vy6/4K9f8AJocv/ZTfBX/onW63y3jn F47MMHg55fhKccViaVCVSFfFSlBVG05RjKPK2raKWnc8fj76G3DHB3BHFnFeF464lx2I4dyHMc4o YPE5Pw9Rw+Kq4GjCpChWq4evKvTp1HJqc6KdSKScU2fyyUUUV+kH8ABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZms6tZ6Fpd9q+oSeXaWFu9x MwxubaMJFGCQGmnkKQwpkb5XRAcmvgLX9dvPEusahrV82Z764aQRgkpbwKAlvbR5/wCWdvCqRLwC 20u2XZifZPjn40+3X0fhHT5c2unOtxq7o3yzagVzBakg4ZLKNy8q5INzKEZVktQa8ATofr/QVlN3 dui/P/gHoYajy03VkvenZQ8oX39ZNf8AgKXcfRRRUPZ+j/JnQFKvUfUfzpKVeo+o/nWC3XqvzQE9 FFFbPZ+j/IAooorAAooordbL0X5ATr0H0H8qWkXoPoP5UtYvd+r/ADYBRRRW62XovyQD06n6f1FS 1EnU/T+oqWgxn8XyQUUUUEkqdD9f6Cn0xOh+v9BT6ACrFV6sUAFFFFADk+8Px/kamqFPvD8f5Gpq ACiiigAooooInsvX9GFTr0H0H8qgqYEBQT0AH+fqe3vQZEcvI2DvyfpngfiRz14BBHNMIB60vPJP UnJ/wHsBgD2HrRUyly263uVJWUe+t/wIihHTkfr/APXqWiiqi+ZO2tt11+7/ACJCiiigByfeH4/y NV76by4/LU4eTg46hO5/4F90dO/pU24JlmOAoJJ9gD/kVkysZXZ3HLHgf3QOABycYA5weSSe9ZTd pb7q3+YO9nZ2fQq0U8oR05/n/wDX/wA8UyoMpN2s1Z3+TCiiiggKfsOAR3A4/wAKZU69B9B/KgCH ByBg5JAAxySeAAOuSeg71tQxCKNU4z1cjuxAyeg44wM87QM81VtotzeYeiZCjHViOT9FB49SexWr 9BrCNtX129P+D+QUhAPWlopptbMU201bt8t+qGBMEEHj369P8+lPooptp7q3mv8ALr+fmYzjzarR 226f8D8QpMD0FLRVRWvdWev+a6GTTW+hGU9PypyjAAPv/M06irUUndafkDk2rPX8wp+w4BHOQOKa ATnHaph0H0FZT+J/L8jWHwr5/mQVYpCAeo/HvS1JQ0qD7H/PWoipHX86nop36PVfivR/8OS4p+TK 9QzyiKMt/EeEHqx6evTkn2FWygPTgk/h/wDW/wA8Vh3UpklKg/LGSowcgn+JsgkEZGAfQZHBpuSh B2d29EnutPudt/uHRoupUjF/Cvek/wC6nt6y0Xzb6Ffkn1J/U9TSU5PvD8f5GpSAeo/HvXI0nv8A f1PcjNrTotF0slpp8uhBRTyh7cj9aZQlZW33NE09mAOORUgf1/P/ABH+H5U1ACSD6f1FKUI6c/z/ APr1L5b8rVv+D5/0hktFQAkdOP8APepA4PXj+X/1v881Lg1tqvx/r0Nqc+VWvb12f9fIsIMqQfX+ grV0u2VpGnYZVQVjB6FuAzA9flB2jryWB5WsqFHlkSNOrkD1AHUsfYAZOOcDjmurgRY1WNeirgep 6ZJ9ycknuSTW1Cne9R7RXu/4v+AtfVrscOZYpKMaEfjqa1GntT6R0/5+Nap/Zi+ktZTEdu5Tnrx3 49PX9PbJqLp1q8n3R+P8zQyK3Ufj3H4/j0PHtXUpvrr59TxHBdNPLoUaKsGLAx1x3HB6/j6+/rUf l+/6f/XrRNPZ3M2mt1Y+3KKKK6TcKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP0T/wCCVn/J 6/w1/wCwJ8Q//UD8QV/WbX8mX/BKz/k9f4a/9gT4h/8AqB+IK/rNr8d49/5HdP8A7F+G/wDTmIP9 W/oUf8mfx3/Zb5//AOoWRBRRRXxJ/XoUUUUAFecfFn4s+A/gj4D1z4j/ABH1yDQfDGgweZPPJiS7 v7uQMLPSNIswyy6lrGpSr5FjYwZeV90kjRW8U88S/Ff4r+BPgn4E134j/EfXLfQfC+gW/m3FxJiS 6vbqQEWek6TZhhNqOr6jMBb2FhADJNISzGOCOaaP+VL9or9on40ft/8Axo0Pw54b0PVptIm1aTSf hX8K9Kk+0LYpcFlk1jWJFaO0uNcubSNrvXddumi0/SNPilijmtNKtJppPocgyCrnFWVWrL6tluG9 7GYyVoxUYrnlSpSnaDquCblJtwoQftKmvs6c/wAL8bPGzLfCrLMPgMvw6z/j/P0sNwtwvh1UxFer XxFT6rQzHMaGF58TDL4YmpCnQoU4Rxeb4uKwOBSgsbjMGn7Q37Q3xp/4KAfGrRPDnhzQ9Vn0ufVZ dJ+Ffws0qXz4tOinJEur6vKDHaXGt3FpG15r+v3jQ2GlWEMscctnpNm8jf0CfsQfsQ+Ef2TvCH9o ah9h8SfGLxLYxL4w8XpFvg06BzHO3hTwq00azWuhWsyIbu7KQ3niC9hS+vkht4dN03TWfsPfsP8A hL9k/wAIjUtSFj4k+MfiWxiTxf4uSIyW+lwPsmbwr4VaaNJrbRLWZUN5eFIbzxBeQpe3qQ20Gm6d p33nXbn+f0q9KOT5PH6tk+GtD3E4yxkoO7nNu03Rc05pTbnXm/bVv+XdOHyXgl4J5llGZYjxV8Vc Q8/8VOIHLF2xbp4ijwnQxNPljhMJCPPhoZpDCzjhJzwkY4TJsJH+ycps1mGYYv8AiJ/aT/5OL+Pv /Zavin/6nOu14rXtX7Sf/Jxfx9/7LV8U/wD1OddrxWv2HBf7lg/+wPCf+omFP8p+LP8Akq+Kv+yp 4n/9aXiIK2PD2g6r4q1/Q/DGhWkl/rfiPWNM0HRrGIZlvdV1e9g0/T7SMd3uLu4hhT/acVj1+o3/ AASZ+CX/AAsz9pNfH2p2nn+G/gtpDeKJHkQvbyeLtX+0aV4QtX4wssDDV/ENq4YFLnw9FkMGxWWZ 42GXZfi8dO1sPQnOMXtOq1y0Yf8Ab9adONlrbmtsen4ecIYrj3jfhfg/Cc6nnucYTB4irTV5YbL4 z+s5pjNml9UyvDY+upSXKqioKV1K0v6Svgp8MdK+DHwm+H3ws0by2svBHhbS9De5iTy11DUYIBJr OrMmBtm1jWJb7VbgbVHn3khCqOB6hRXxr+358Y3+CX7K3xP8S2F69j4j8QaYvgHwnNDIYbpNc8Y+ Zpb3dlKCrRXmkaK2sa9byKdySaUGUbgK/n+jSr5hjadJNzxGNxMYcz1cquIre9OVuilUnUlbaMZW tZW/3DzXMMo4H4TzDM6tOGEyPhLh6viVh6XLCNHLsjyu1DCUOb3VKVLBYTBUFK/NVr0ebmcpuf2V Xkfx6+FOm/HD4N/Eb4U6p5SQ+NPDGoaXZ3My7o9P1tFW98PasV2uSdI16103U1AUlmtQoHNc3+yv 8XI/jn+z38Kvic06T6l4h8KWUXiIqynZ4r0VpNC8UqVGDGra9puoSwI4VjbSQPgq6sfoCpkq+CxU o3dLEYTENXW8K2Hrbr/DUpJro1bpLXoo1co4v4cpVoxp5hkPFGRQqKE0nTxmU59lak4TScre1wWZ TpzSblTqKaTU6ClH+DHWdI1Lw/q+q6DrNpLYavompX2karYXC7Z7LUtNupbO+tJl52y211DLDIuT h0YVm1+mn/BVr4Jf8Ks/ac1Dxhptp5Hhr4zaavja0aNNtvH4ngdNN8Z2attG+5l1FLXxHdnLYfxK gDD7i/mXX9B5bjYZjgMJjadksTQhUcVryVLctWH/AG5VjUhrrZRvuf4Y8fcJYvgTjXifhDGc8quQ ZxjMDSqzXLLE4JVHWy3GWSSaxmWYjAYm8Vy89Sso6QSRX9I//BFX/khvxa/7Kun/AKiGgV/NxX9I /wDwRV/5Ib8Wv+yrp/6iGgV8/wAb/wDJP1/+wrBf+npn7l9Dv/k+WUf9k3xf/wCqrBn7M1+QP/Ba L/k2r4d/9ly0L/1AfiLX6/V+QP8AwWi/5Nq+Hf8A2XLQv/UB+ItfmPDP/JQZR/2GQ/8ATWJP9Efp Ef8AJjvE/wD7JXEf+rLID+Z2v3l/4IjeHbaS+/aH8WSxqby0tPhx4dsZsAvHbahN4x1LVI843BZZ dM0dsAgMYcsCVXHy9/wTD/Zo+D37Sni/4raT8X/Dl34isfC/hvw7qOixWmv67oLW13qGqX9tdSPL oeoWElwJIYI1CXDSIhUsiqxJP9DfwG/Zg+DP7NNr4ms/g/4avPDlv4un0u515LvxBr2vG7m0aO/i 09kfXNQ1B7YQpqV2GW2aJZfMUyhjGhX7rjLP8LHDY7I1DELFyWFbnyQ9g4OdLEtc/tOe7gkv4dua 621P40+ih4JcS1eIODfGKrisjlwxSlxJGlg/rWL/ALajiqWGzHIadR4R5f8AVOSGLq1aqf1/mVFx qJe0Xsz6Brw79oz47+Gf2bfhH4m+LfiqxvtWsdB+wWtnoumPFFf61rGr30GnaZp0E9x+4tkknnE9 5dyLILSwgurhILqWKO2m9xryn4y/BX4d/H3wVN8Pfiho1xrvhW41LT9WlsLbVtU0aVr7THeSzlF7 o93ZXgWJpHJiE4jkziRWwMfl+FeHWJoPFqpLCqtTeIjRsqsqKknUjTbaSnKKsndWu3dNI/0Z4hhn lTIc5p8MVcDQ4jqZZjYZFXzOMpZdQzadCcMDWxsYQqynhqNeUatWCp1OdU4xcJRlOL/FmT/gt9fm R/J/ZssxFubyxJ8WZmkCZ+Xey/DlVLYxu2qBnpxXy/8Atb/8FLL39qr4SP8ACu4+Dtr4HjbxLovi P+3IfHcviFw2jpeoLT+zn8I6KpFx9sJM/wBtBi8sfupN3y/sZ/w6u/Yn/wCiY6x/4cT4gf8AzR1+ av8AwU1/Y6+AH7N3wu+Hvib4ReEb7w7rGv8Aj6TQtUubrxR4l11J9MXw9quoCBbfW9Vv4IW+1WsM nnQxpNhSm/YzKf0XKMVwdWzPBUsDleNpYyVeLw1WrOpyQqwjUnGU746omkoS3pyTbV422/g3xQ4e +ldlHh9xfmPGHiNwjmXC1HJcRHPsuy/C4BYzGZbiq2DwdfD4Zx4OwMozm8XRSccZh5xhGbjVUkuf 8WaK/Zf/AIJjfsg/AX9pPwD8Ttd+L3hO+8Ran4b8X6VpOkT2vibxJoK21jdaKLyaJ4dD1SwinZrj 5xJOkkij5VYLxX6c/wDDq79if/omOsf+HE+IH/zR19Bj+Msry7GYjA16ONlVw81CcqVKjKm24Qn7 rlXhJq1RbxWt9Or/AA3gn6KHiPx5wrknF+T5pwhQyzPsJLGYOjmGZZpRxtOlHE4vCtYilQyXE0oT 9pg6rShXqrkcHzXbjH+S+iv60P8Ah1d+xP8A9Ex1j/w4nxA/+aOj/h1d+xP/ANEx1j/w4nxA/wDm jrj/ANf8m/6B8x/8E0P/AJpPqf8AiSLxZ/6HXAf/AId85/8AoeP5L6K/q11j/gkz+xrqcDw2Xhbx n4dkYEC60fx7rk88Z/vIviB9ctiR1/eW7rnqpHFfCnx5/wCCM+vaHpl/r37Pnj+48YSWkUk6eBPH cWn6dr17HGC3k6V4r09bHQ7y/kHyxWup6RoFoSpLaorMsddeF42yLE1I05Va+ElJpRliqHJSu9Fz VaVStCCv1mlFbuUVdr5riX6IXjNw9gq2Pw+XZLxNSw9OdWth+G83+s5ioQTlJ0cuzDB5XicXJRjK Sp4SpVrSty06FWbjCX4a0Vq67oWteGNZ1Tw74i0q/wBD17RL650zV9H1S1msdR03ULOVobqzvbS4 SOa3uIJUZJIpEVlYcisqvrE1JKUWpRklKMotSjKLSacWm0000002mmmm00z+Y6tKrQq1aFelUo16 NSpRrUa1OdKtRq0pzp1aVWlUhTqUqtOpCdOpTqU4ThOE4ThGUZRRRRRTMwooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigArivH3i2Hwd4cu9TJRr6UfZNKgbB86/mVvLZl/iit1V7mYH AaOIxhg8iZ7UkAEkgADJJ4AA6knsBXw58VPGZ8XeI5FtZd2jaQZLLTQpzHOQ4+1X47E3UiKImGP9 Fit8qHL5mTsvN7G1Ck6tRR+yvem/7qe1+8n7q/7efQ83nnmup5rm4kea4uJZJ55pGLSSzSuXkkdj yzu7FmJ5JJNCdD9f6CoqlTofr/QVievNJRstErJJbJLRJeiH0UUUPZ+j/JmQUq9R9R/OkpV6j6j+ dYLdeq/NAT0UUVs9n6P8gCiiisACiiit1svRfkBOvQfQfypaReg+g/lS1i936v8ANgFFFFbrZei/ JAPTqfp/UVLUSdT9P6ipaDGfxfJBRRRQSSp0P1/oKfTE6H6/0FPoAKsVXqxQAUUUUAOT7w/H+Rqa oU+8Px/kamoAKKKKACiiigiey9f0YUrEnCjoAM+5wCB+A5+pHpTScDjr2+v+Hr7ZoAwMdff1J5J/ E9ug7cVMm0lbuZq6189PUWiiiobckrLbf5/8MOUua3kFFFFOn1+X6kijkgepFKVI9x/nrSL1H1H8 6kkcRozt0A/MngD8SQK1bvv9/wDmS03Zp2a+5mZdS/MsQ7/M/wCHKr+fzHkdB2JFVaQ73kLsdxYk kgY5OegyePTk4FPC5HXn0Pf/ADz61hNPmu/RPsgV9b9/0W34jaUx7hnv7df/AK/4/hSEEdamT7o/ H+ZqSmk99SmUI/z/ADHagKSAR+X4/wCfSrpAPUfj3pvljHv6/j6UGbh2+5/5lKrCKW2qvVsAfl1O OcAcnHQAmhk9R+I/x/oauWsWB5h7jag9gcMTx1OAB7AkcNTSu7ff6EKLbt9/oWkUIqqOgHX1PUn6 k5J9zTqKK1fLon8v+H6GzaVk9L7BRRRUODW2q/H/AIJnU3Xp+oUU5fvD8f5GnFPT8v8AD/69QQR0 oUkZH/16QgjrUqdD9f6Cmm07oTSe+pFRUxUHr+fegLxg89f61rGSl6kOHb7hsff8P61Ps4BHoOKi CgZx3/8Ar1ZXoPoP5UuW8pXWllZhdxjHpq7ogoqcgHrSFQfY+v8Aj/nPvUuD6O41NdVYhpxUj6ev +elBUj6ev+elTdOtQ01uEpWs1qnf9DNu5vJiOD87/Kvtnq34Dv6kVg1YupvPmZx9wfLGMY+Ud8er HLHp1x2qvWMnd+S0X6nbRVo9pOz89tF8vzbFBwcjtUgcHrx9f8f/ANVRUVJ0Kcl1v6likIB6j8e9 RqzdBzjt7e3+fwp4YH6+n+etBpGaezsxAu0+ox/UU+iik4p+vc2U+/3iFQev596iKke4/wA9amqx bQG4mWMfd+859EBGT9SSFHuwzxmnGL0itXey+8c5xhCVST92Kbfy6LbVuyS7tGrpFrtiad+snEfX ITgk4I/iI468DI+9WwqkE9xjqPqOv+ce9JGAFwAABwAOgAAAA9gKnTqfp/UV3KKUeVdt/Pq/mz56 pVlUqSqS1cne19EtlFeUVZL5u2rHp90fj/M06iis3Fr07lKSfr2CiiipKPtCiiivQAKKKKACiiig AooooAKKKKACiiigAooooAKKKKAP0T/4JWf8nr/DX/sCfEP/ANQPxBX9ZtfyZf8ABKz/AJPX+Gv/ AGBPiH/6gfiCv6za/HePf+R3T/7F+G/9OYg/1b+hR/yZ/Hf9lvn/AP6hZEFFFFfEn9ehXnfxV+Kv gX4K+Bdd+I3xG1230DwvoFuZrq5l+e5vLl8rZ6VpVmpE2o6vqMwFvYWFuGlnlbJ2RJLLGvxU+Kng X4LeBdd+I3xG1228P+FvD9sZru7mO+4urh8raaXpdop87UdW1Gbbbafp9srTXEzAALGskifypftI ftH/ABl/b8+Muh+GfDOh6vJocmrvpXwq+FelSeebc3G5H1rWnR0tLnX7m0R7nWdZuXj03Q9Njnhh nttMtru7uPocgyCrnFaVSpL6tluG97GYyVoxjGK55UqUp2g6rgm5Sb5KEL1Kj/hwn+F+NnjZlnhT ldDA4Ggs+49z9LD8LcL4dVMRXrV8RUWFoZjmNDCqpioZdTxVSFOhQpwWLzfFqOAwEbfXMZg2/tG/ tGfGb9v34z6H4a8NaHq8ujS6vJpXwq+FelSef9lFxuV9Z1l1ZLS5125tI2utb1u6ePTtF06KaKKa 10u1ubmb9/P2Hf2HvCf7KHhIapqgsfEfxl8SWESeLvFqR+Zb6TbybJm8KeFXmjSa30W2mVDe3pSG 78QXkKXl4kNrBp2naez9hz9hzwp+yh4TGrauLDxJ8ZvEljGnizxYkfmW2j20nlzN4U8KPMiy2+j2 8qob+/KQ3fiC8hS6u0htINO0+w++a7c/z6jWpRybJo/Vsnw3uPkvGWNlF3c5t2m6LmnNKbc68/31 bT2VKHyHgl4KZnlWZ4jxX8Vq7z/xUz9vFxji3TxFDhKhiKfLDCYWEXUw1PNYYWpHCSlhEsJkuEj/ AGTlXv8A9o5hiyiiivkT+oz+In9pP/k4v4+/9lq+Kf8A6nOu14rXtX7Sf/Jxfx9/7LV8U/8A1Odd rxWv6PwX+5YP/sDwn/qJhT/Abiz/AJKvir/sqeJ//Wl4iCv6xf8Aglz8Ev8AhUf7Lfh7XdSs/s/i j4vXT/ETVWkQrPHot9Clr4Nsy5Csbc+HoLfW4o2UeTc6/erlgdx/mp/Zu+EN78ePjl8NPhTaLN5H izxNZwa1PBuElj4YsA+q+KdQRhwsll4fsdSuINzIJLhIYt6tIpr+2awsLLSrCy0zTraGy0/TbS2s LCzt0EdvaWVnClva20Ea/LHDBBHHFEg4VEVRwK+C8QMx5KOEyunL3q0ni8Qk/wDl1Sbp0Iy8pVXU qWe6pp9Ef2x9B7gT61m3FHiNjKN6OVYdcL5HOcdHj8xhSxmdYik2rOWGy2lgcC5Rd4zx9WN020W6 /nj/AOC0fxg/tLxh8L/gdp10GtvDGlXXxB8TQxuWQ6zr7zaR4ct7hc4S603SLHVrtVxuNt4jhfOG Ar+hiaaK3ilnnljhggjeaaaV1jiiijUvJLJI5CJHGil3diFVQWYgAmv4nP2nvi1L8cvj98VPiiZp JbHxN4svzoHmlt0XhbSvL0XwrAynGx4vD2naasyqqqZ/NfaCxz4XAuA+s5vLFyjenl9GVRNrT6xX vRor1jF1qi6qyZ+zfTM40/1e8L6HDOHrcmP44zajgKkIytP+xMo9lmuayaTv7OviI5RgZO3LLnnB 3u0fs1/wRb+MH27wz8U/gZqN1uuNA1G0+I3hiCRtztpesrb6H4ohhBOY7bT9TtNBugigqbnXrmTh nbd+5tfxxfsFfF//AIUr+1R8K/E91dfZdA1vWR4F8Us7lLf+wvGe3RWubtgQRa6Rqk+l69J1wdJU 7WxtP9jtY8bYD6pnU68Y2pZhSjiY2Vl7WNqOIXa7nCFR/wDXxvqer9EHjT/WjwjwmT4it7TMeCMw xHD1ZSlzVHllXmzTI6ju3Lkjg8Xi8FFvRfUYwT91Jfmj/wAFVfgl/wALV/Zg1XxZptp5/ib4Nagv juyaNC9xJ4aMX9n+NLMNg7LaLSZIfEd0cAn/AIRqFdwBYN/KbX96GraVp2u6VqeiavaRX+k6zp97 pWp2NwpaC907ULaS0vbSZQQWiubaaWGRQQSjsMiv4kP2gPhPqPwN+NHxH+FGpeaz+DPE9/p2n3M6 7ZdQ0GcrqHhvVWG1QDqvh+803USAMKbkqCdua+k8P8x58Pi8rnL3qE/reHTf/Lqs1CvFeUK0YTst lVb6n8//AE4OBPqed8M+IuDo2oZ1hnw1nc4R91ZnldOpisor1WlZSxWU1cXhFJ6znlsI3birePV/ SP8A8EVf+SG/Fr/sq6f+ohoFfzcV/SP/AMEVf+SG/Fr/ALKun/qIaBXscb/8k/X/AOwrBf8Ap6Z+ XfQ7/wCT5ZR/2TfF/wD6qsGfszX5A/8ABaL/AJNq+Hf/AGXLQv8A1AfiLX6/V+QP/BaL/k2r4d/9 ly0L/wBQH4i1+Y8M/wDJQZR/2GQ/9NYk/wBEfpEf8mO8T/8AslcR/wCrLID4y/4I6eOfBPgfx38b Ljxr4x8LeD7e/wDCXhWGxn8UeIdJ8Pw3s0Os6lJNDaS6td2iXMsSOjyRws7ojKzABgT/AEP+FvHv gXxyl7J4J8aeE/GCaa0Cai/hbxHo/iBLB7oTNaretpN5di1a5FvOYFnMZmEExjDCN9v8Jdf0F/8A BEX/AJFz9on/ALDfw1/9IPGlfY8Z5BT5cbn31qfO3hKf1b2UOT7GGv7Xn59lz25N9NtT+Uvol+N2 NliOEvBX/V3BrBxp8UYz/WH+0cX9cbSxmf8As/7P+rfVLe0n9W5vrN/Zr2tud8p+6tYXiLxT4Z8H 6a2s+LfEWheF9IWaK2bVfEWr6fommrcTlhBA19qdxa2ommKsIojKHkKsEU4NbtfmN/wVx/5M91b/ ALKD4G/9Kr2vz3LsKsdj8Hg5TdNYrEUqDqRipOCqS5eZRbSk1vZtJ9z+6OOuI6nB/BnFPFdHCU8f V4dyHMs5p4KrVqUKWLngKCrRw9SvShUqUoVW+WVSEJyitVFvQ+3f+GgPgP8A9Fs+Ef8A4cjwb/8A LmvyK/4LB/Ev4c+N/g18LLHwX4/8E+L72z+Jst3d2fhfxVoWv3VranwrrUIubm30q/u5oLczSJEJ pUWPzHRN25gD/PhRX6plnBNHLcfhcdHMa1aWFq+0VKWGpQjN8lSFnKNWTiv3l7pPa3U/zY8Qvpf5 tx/wVxHwZX4EyrLKPEWX/wBn1MwoZ9meKrYWP1rA4r2tPD1svpUqsr4KMOWdSEbVJSveKT/f3/gj v8SPh34H+GXxhtPGnj3wX4Qur7x3otxZW3ijxTofh+4vLePw+IpJ7WHVr60kuIUk/dvLEror/IzB uK/Yf/hoD4D/APRbPhH/AOHI8G//AC5r+IjTtN1HWL+z0rSLC91TVNQuIrSw03TrWe+v767ncRwW tnZ20ctxc3EzkJFDDG8kjkKikkCvvbwL/wAEwf2x/HNhBqh+G9p4NsrpFktz468R6PoN+yMAf3+h xz32v2DrnDRalpVnMDnEZrkz7hnK6uOxGYY7PIYB4up7RUqsMOrcsKdNqHPVVWol7NNtUmk3ZvQ+ m8F/pEeI2A4PyLgXgzwdxPG0OF8E8DUzHL8VnsnJVMVjsbGeMeGy15dgqkvrsowpVMwjKcaSnGEu Ztf1A/8ADQHwH/6LZ8I//DkeDf8A5c0f8NAfAf8A6LZ8I/8Aw5Hg3/5c1/ON/wAOgP2uP7/ws/8A C0vf/mdo/wCHQH7XH/PT4Wf+Fpff/M7Xg/6v8M/9FXR/8E0v8j9p/wCI4/SG/wCkZs1/8OmY/wDy R/T/AKJr+heJtOh1fw3rWk+INJuCywapompWeq6dOyHDiG9sJri2kKHhgkrFTwcVrV+SX/BOH9kH 9or9lbxb8Q1+Jmo+Fm8CeL/DlibfS/DviW71fHi3S9TgFlfvYz6ZYw2+7RrrVbee7icyzbbSGVXW KIxfrbXy2Y4bD4TGVaGExlPH4eKg6eKpLljNTgpOLj0nTleEkrq6TTs7L+kuAuIM94o4Wy7OeJeF MfwVneIliqWP4dzGoq1fB1MNiZ0YVadZO9XC4yiqeKw0qijVUJzp1I81NSn+DP8AwWR/Z30qLTfC H7SfhzTorXVX1S18B/ERraNU/tOC4s7ifwlr92qBQ1zYGwuvD91eP5k9xb3egWpKw6emPwFr+wT/ AIKN6Db+IP2LvjlbXEau2n6HoevWzkfNDcaD4u8P6sskbdVYx2ksLkY3Qyyxn5XYV/H3X6xwNjKm JyV0aknJ4LEzw8G3dqjKEK1KN30hz1IRXSNktEkv8yfpk8K4Hh7xahmmX0KeGpcXcP4PPMXTpRjC Es2w+LxWU5jieSMYpTxn1XA4mvK16mIdWq/fqVJVCiiivsj+TgooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiqWpajaaTYXmp38ohs7G3lubiQ87Y4lLEKOru2AkaD5pJGVFBZgKAPJPjP 4z/4R/Qv7EsZdura9HJExRsSWul5KXU/HKvdHNpASASrXMkbCSAV8b10XivxHd+K9ev9bu8qbqUi 3gLbltbOP5LW2XGB+6iA3soAkmaSYjdI2edrn5+dt9E7L07/AD3+49jDUvZU0mvfl70/J9I/9urT /E5PswqVOh+v9BUVSp0P1/oKDWfw/ND6KKKHs/R/kzIKVeo+o/nSUq9R9R/OsFuvVfmgJ6KKK2ez 9H+QBRRRWABRRRW62XovyAnXoPoP5UtIvQfQfypaxe79X+bAKKKK3Wy9F+SAenU/T+oqWok6n6f1 FS0GM/i+SCiiigklTofr/QU+mJ0P1/oKfQAVYqvVigAooooAcn3h+P8AI1NUKfeH4/yNTUAFFFFA BRRTWOB7np/jQRPZev6MUcknsOB7nuf6D8exFLTVII47du9OqKmy9f0JlZRjbb/gBRRRSp9fl+pA U4qR7j1ptWK0svvAgXqPqP51SvJdziMH5U5OCeW9CP8AZH15J7gVcuHWJC/Rs4Xpyx55HfGCT7Cs cnJJPU8mlfWwX1t1HJ94fj/I1IVB9j61Gn3h+P8AI1NWc916fqyopSdmrqz3IzkcMNw9fTt+f+PW nrjAx096WnhAVGODz9Op/KoFKDjqnddnuvR9fn94yilII6j8e1JQTzLvbyejADcQPXr9O/8Ah35I zV5QAqgcAKAB6ADiq6KQu4gjdz+HbPpnr0B5x2qyvQfQfyqk3HW2j/rps/UhyaltovxFooopykna 3n+gpSTtbz/QKKKKqGz9f0IHJ94fj/I1NUKfeH4/yNTVM9/l/mAhAPBoAxx75paKUVd2fZgFFFLt OM9quMXF91YL2Hp3/D+tSdKjj7/h/WpKUpNSdn/Vga5lZ7LbuvmFFFKQRwaqMubyf9bGTg1tqvx/ r0ErN1KfZF5S/ek5bHZB1z/vHgewatB3VFZ2OFVSxPsBk/U+g7niudlkaV2kbqx4H90dlHJxgccd Tk9SaVRq1ur+9L+tCU7NO17PZlMDJA9TinFSPcetSbRkEcYIPHT8qdXPyLXX08v8zrhUU12a/rQh T7w/H+RqQqD7H1/x/wA596Nozkcfyp1Lk031/Cxuptb6r8SNVIPPp1/KnFQev596dRUNNOzK51fy 7/5jRuHB5HY9/wDP+c06iikaxm15r+uv+YV1GnW3kQ73AEs2GbjBVQPkT2IBJPA5Yg5wKxtPtvtE 4LDMUWGf0J/hT/gRGT/sgjuK6muijDeb9I/q/wBPvPOx1e8vZRbtpKeujdvdi+9vifm12EAA6cVI nU/T+oplPTqfp/UV0HDGTulumS0U8LkAjrzkf5/rTCCOtBqPCZAI6/8A16TY3p+o/wAakT7o/H+Z p1YPd+r/ADKU2vP1Psiiiiu82CiiigAooooAKKKKACiiigAooooAKKKKACiiigD9E/8AglZ/yev8 Nf8AsCfEP/1A/EFf1m1/Jl/wSs/5PX+Gv/YE+If/AKgfiCv6za/HePf+R3T/AOxfhv8A05iD/Vv6 FH/Jn8d/2W+f/wDqFkQV598Uvil4G+DHgbXfiL8RddtvD/hbw9bGe8vJzvnuZmytrpumWinz9R1b UZtttp+n2yvPczuqqoUO6r8UPih4H+DXgfXfiL8RNdtfD3hXw9am4vb24O6WeVvltdO061X9/qGq 6hOVtdP0+2V7i6uHWNFxuZf5Uv2lv2lvjD+3z8YtE8L+FtD1l/Dz6w+lfCr4V6W32iVZLjfGdc1w xOtpdeIbu1V7jVNUuJF03QNNWe3guINPgvr678nIMhrZzWlOcvq+XYb3sZi5WjGMYrnlSpSnaDqu Cbcm+SjC9So/ghU/SvGzxsyvwoyqhg8HQWfceZ8lh+FuFsOqlevXr16iwtDMMwoYVVMVTy6niqkK dGjTgsXm+LUcvy+LbxeLwXKftkftj+Of2tfHR1HUPtPh/wCG/h+5uE8B+BEuN8GnQPuibW9bMTeR qHijUYcfa7v54NPgb+zNNIt1nuL2h+y9+194m/ZQuNd1XwH8Nfhd4i8U6+q2tx4v8bad4n1LXrHS FEbHQ9Ik0rxVotlp2mz3EYur3yLP7ZqE4hF7dz29nYwW375fsqf8E0fgx8Ivh5DD8YfB3hD4tfEv Xltr7xLf+I9Itdd0LQJVjYx+H/ClrqUDxxWlkZXW81doI77WrrdPILeyjsbC0+oP+GNv2T/+jdPg 5/4QHh3/AOQK+tr8V8O0cPLKKWVV8TltFqlFQqU6VGuoSTdRxlOnWqKdROblVles7VJxs4Qh/MeT /Rq8eM3zzDeKOaeJOS8P8fZpGWYV5Y3L8fmeaZLUxdKVOGDhVpYXHZTgqmDwVSGFpYfLKCp5VTc8 FhcQp08VicT+Gn/D6P8AaS/6Jz8D/wDwS+Pf/nhUf8Po/wBpL/onPwP/APBL49/+eFX7l/8ADG37 J/8A0bp8HP8AwgPDv/yBR/wxt+yf/wBG6fBz/wAIDw7/APIFeX/bfCH/AES8/wDwdS/+aD9I/wCI QfSk/wCkjML/AOGrMf8A5yH4af8AD6P9pL/onPwP/wDBL49/+eFR/wAPo/2kv+ic/A//AMEvj3/5 4VfuX/wxt+yf/wBG6fBz/wAIDw7/APIFH/DG37J//Runwc/8IDw7/wDIFH9t8If9EvP/AMHUv/mg P+IQfSk/6SMwv/hqzH/5yH8bvjnxbqHj7xt4w8d6tb2dpqnjXxT4g8W6la6ck0en22oeI9Wu9YvL exjuZ7q4SzhuLySO2S4ubiZYVRZZ5ZA0jctXrXx90nTNB+O3xq0PRbC00rRtG+LXxH0nSdMsII7a x03TNO8Y6zZ2FhZW0SrFb2lnawxW9vBGqxxQxpGihVAHlVvBPdTw2ttDLcXNzLHBb28KNLNPPM6x xQxRIGeSWWRlSNEBZ3YKoJIFfrOHlCWHoThH2dKWHoThBtfu6boUZQg3e3uU3CLd7e43e2p/mHnV DF0s9znC4uu8dmFLO83w2LxMISvjcfSzjNMPisTCnyKd8ZjaeJxEIezU74uMPZqfuL93f+CL3wS8 +/8AiX+0Dq1nmOxjj+Gng2aWPKm7uVs9c8YXsG/G2S3tR4d06C5iDbo7/V7XeuJkb9/q+ev2VPgz B8Af2fvhl8LxDFHqmh+HYLvxRJHtb7R4u1t31nxPL5q5M8UWsX13aWcjszDT7a0iBCRIq/Qtfguf Zh/ambYzFp3pSqulh+yw9C9Ki12U1GVX1qn+2HgrwLHw68MeE+GKlJUsxo5dDMc8skpSz3OOTMc0 VRr4pYarXo5em27Qy3lT5bXwPFfhyw8Y+F/EfhLVZL2HS/FGh6t4e1OTTbuSw1BNP1mxn069NlfR Ay2d19muZRBdw4mt5Ss0TLIisPzw/wCHS/7G/wD0LXjb/wALzWK/S6iuPC5hjsEpxweMxOFjUalU VCrKkpuKai5cvxOKbSvsm7bs+p4i4G4N4uq4WtxVwtkPEVXA06tHBVM5yzD5hLCUq9SNWtTw7xF1 SjVqQhOooRTnKEHJvlil+aS/8EmP2OVZWXw543VlIZWXx7rIZWByGUjBBBAIIOQeRX6SWdsLO0tb NZri4FrbQWwuLuUz3U4giWITXM7AGa4lC75pSAZJGZyATVmilisfjcbyfXMXiMV7Pm9n7erKryc9 ubl5vh5uWN7b2V9i+HeCuEOEHi3wrwzkfDn19UFjv7Fy7D5esX9WdR4f6ysPZVfYe2reyc1eHtai i7SaCv57v+Cz/wAEv7P8RfDf4/6TZ7bXxBav8OvGM0SEIus6Wlzq3hO9nYAh7jUdIOtae8jldlv4 fsIhuLDb/QjXzV+198Fo/j/+zt8TfhtFbJca5f6DLrHhAkDzI/GHh1hrPh5IpDzCL+/tE0i6lXn7 BqN3GVZZGRu7h/MP7MzfB4py5aXtFRxGun1evalVb8oc0Kuu3smz47xw4FXiL4X8V8NUqKq5k8BL NcjVk5rPMl58xy6FN7qWLlRxOXOzXMsxjF6PT+LSv6R/+CKv/JDfi1/2VdP/AFENAr+buSOSGR4p UeKWJ2jkjkVkkjkRiro6MAyOjAqysAysCCARX9In/BFX/khvxa/7Kun/AKiGgV+o8b/8k9X/AOwr Bf8Ap6Z/nD9DxNeOeUJpprhzjBNNNNNZXg0000mmmmmmk0000mml+zNfkD/wWi/5Nq+Hf/ZctC/9 QH4i1+v1fkD/AMFov+Tavh3/ANly0L/1AfiLX5lwz/yUGUf9hkP/AE1iT/RD6RH/ACY7xP8A+yVx H/qyyA/mdr+gv/giL/yLn7RP/Yb+Gv8A6QeNK/n0r+gv/giL/wAi5+0T/wBhv4a/+kHjSv1LjT/k ncZ/19wf/qTA/wA3/ok/8n24V/7F/FP/AKz2JP3Vr8xv+CuP/Jnurf8AZQfA3/pVe1+nNfmN/wAF cf8Akz3Vv+yg+Bv/AEqva/J8g/5HeU/9jDDf+nGf6b+Nn/JoPE3/ALIjiH/1BifysUUVo6RYjU9W 0vTWfyl1DUbKxaQYzGLu5igL8gj5BJu5BHHINf0BJqKcntFOT9Ipyf4Jn+HVKlOvVpUaavUrVaVG mm0k6lapTpU029EnUqwTb0Sbb0TP6gP+CZP7H3hr4P8Awo8OfGbxVotte/Fv4l6Nb6/aX9/bpLce DfB2swC40TR9HEylrC+1bSpoNT1+6RYb12vU0WYiDT2Fx+p9VLCxtdMsbLTbGFLax0+0trGzt4wF jgtbSFLe3hQDgJFDGiKBwFUCrdfzrmGOr5ljK+MxE5TqVqkpJNtqnT5pezpQTdowpQ5YRiklpKVu acm/96OB+Dsm4B4VyXhTI8LRw2CynBUKE50qUKdTHY32NH6/meLlGKlWxmYYxYjFV6tWVSf7ylRU lRw1CnTKK/n4/bn/AOCkX7Qnwu/aF8ZfCj4TXmheD/DvgF9K0ya8vPDWl67rGv6le6Jp2sXt7cya 5BfWtpZRSaiLTTrextYXkt7cXlxcStdrBbfHf/D1X9tX/oo+hf8AhvPA3/yir6HC8FZzi8NQxUJY KFPEUoVqcamIkpqnUipwclGjOKbi1Ll5m1dJu90vwriT6XXhPwxn+c8OYylxZisbkeZYvKcbWwOR UamDljcBWlhsXDD1cRm2Fq1adLEU6tFVXh6UajpSnTi6bhOf9ZdFfh5/wTX/AG1/2h/2jfjv4l8D fFjxbpuveG9N+FWveKbSzs/CvhvQ5Y9ZsfFfgnS7a4a70fTbO6kjSy1rUIzbvK0DtKsjIXijZf3D rws0yzE5Ri3gsU6Uq0adKq3Rm5w5aqlKPvOEHe0HdcummrP2bw48RMh8UeGKXFvDdPMaWV1swzHL YQzXC08Hi/rGWVaFHEuVGlicXBUnPE0/ZT9s3OKk3GFkn8jft6f8meftA/8AYgXv/pbY1/GxX9k/ 7en/ACZ5+0D/ANiBe/8ApbY1/GxX6R4e/wDIux//AGHQ/wDUWJ/AP06f+S74H/7I3G/+tJXCiiiv vz+IAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvl/46+M/Nli8G2E37uBorzW2RuHm KiSysGweRErLeTqQVMj2mCHhda908beKbbwf4dvtZm2POi+Rp1uxx9q1CZWFtDjIJRSGnnK/MtvD My5YAH4DvLu4v7q5vbuVp7q7nlubiZzl5ZpnaSWRsYGWdicAADOAAABWNadlyrd7+S/4P5XOzCUu eftJL3ab0857r5RXvPz5V0K9FFFZU9n6/oeoFSp0P1/oKiqVOh+v9BVkT+H5ofRRRQ9n6P8AJmQU q9R9R/OkpV6j6j+dYLdeq/NAT0UUVs9n6P8AIAooorAAooordbL0X5ATr0H0H8qWkXoPoP5UtYvd +r/NgFFFFbrZei/JAPTqfp/UVLUSdT9P6ipaDGfxfJBRRRQSSp0P1/oKfTE6H6/0FPoAKsVXqxQA UUUUAOT7w/H+RqaoU+8Px/kamoAKKKKACoWbceOnb/H/AD7U92wMdz/L8vw7dyOlRUGc30+bCpx0 H0FQVOvQfQfypNJ6MzFooopRjy37OwBViq9JdS+XHgfffIGOw/iP5cDHOSD2NUDdtWULqXzZOPup lV68nPzH8SMA+gBB5qvRRUpqS29U+5jKXNZ9v8xyfeH4/wAjU1Qp94fj/I1aQAqc+v8AQVE1Z9du prSlbV66tfKyI6mT7o/H+ZppT0/L/wCv/n605fuj8f5moNZNOKt3+ezHU1YwWGOnVh7dvfk8fTPP GC4nAJ9OaljBCgkYJ5I9PQfUDr2zkigyaT3Q+pNgIGOOB9On6f54qOp16D6D+VXDd+n6g0nuiEgj rSVYqMp6fkf8f8fzqnBPbTy6f8AzcGttfz/4JH1oIxwaUDDAH1H86mIB6iiCaun3/QylLlaTX+e5 En3h+P8AI1NTAmGBHT9ehp9TPden6saaeqCiipU+6fr/AIUQ+L5MJOyuRVMn3R+P8zTSnp+R/wAf 8fzpyjAAPv8AzNakSacVZ9fnsxcD8+tOIIGccetJU69B9B/Kspp3v0f+RUfhX9dSCpyAetNKA9OP 5f8A1v8APFNmlWCJ5W6KOB3JPCqM45JIFQUZWpSgEQKT2eT09UXpz2c8gjCnnPGTTndpHZ3OWY5Y +/68AcAZOAAKbTbb3dzFyTeq32a3/wCD/WoUUUUi4Kyet9f69AooooNVKS639QopQCelJUyjfXZ/ gP2mu3bTqgpQCSAASSQAAMkk8AADkkngAdaStnR7XzJTcOPkhOEyOGkI/wDZAQ3TqVOeKhQbko23 6+XV/cW6qhFyT+Xd9Fb+tEzYs7P7NbqmQZD88nu57A+igBR64J71PVikIB6iuxJJJLZKyPPnHmbl f3m23fq3+X9diCnp1P0/qKChHTn+f/1/88UJ1P0/qKZmk1JXXX/MmBI5FPDBuGH4/wCeRUdFBsTg AAAdKWmp90fj/M06ocE3e7QH2RRRRXWdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfon/wS s/5PX+Gv/YE+If8A6gfiCv6j/if8T/BHwc8D698RPiJrtr4e8K+HbU3N9fXJ3SzSN8lrp+n2q5n1 DVdQnKWun6farJc3dzIkcaHJK/yNfsKfGPwd8Bv2m/AXxK8f3FzZeEdJs/GFnrF9aWs9/c2aav4P 1zTbOaOytY5Li6LajcWcDRRLuCTNKM+WVPc/tOftOfF79vX4v6J4U8KaJrTeGW1ptL+Ffws0s/aL iS4uN8I13XRC4tbvxFd2okn1C/mkGmeHdME9vb3EVlDqGo3v59n/AA/XzjiCnVqP6tltHL6E8VjJ OMYxjTqYhzpU3JqLquKbblaFGD9rUduSM/7m8EPHHJvCvwOxuX4Kks+4/wA242znDcN8KYeNatiK 2Ix2CyKnhMwx9LDQniI5ZGtKMKdOgpYvNMZFZbgoxqSxWIwjf2mv2mfi/wDt7fGHQ/C3hXQ9Zbw4 2stpXwq+Felt9onae43xf25rnlOLS68RXdqJJ9S1KeRdM8PaYs9vBcQ2EN/qF5+9X7C/7DHhb9lP wsuva8th4j+NXiSwSPxP4njQTWnh+0m2Sv4U8KPKiyQ6bDIqf2nqeyK6167iWaZYbGCxsbVn7Cv7 C3hf9lTwsviDxAlh4j+NfiSwRPEviWNBPaeHbOYJK/hPwpJKivFp8Uip/auqBIrrXbuJZJBDYQWN lb/oLXy+fZ9RqUY5Lksfq+UYf3JSheMsbKLu5zbtN0XNc/v+/iJ/vavu+ypR/o3wT8FM1y/Na/i1 4s13n3ilnzeMpUcY6dehwjh69Nxp4bDU4uphaebU8LUWEthUsJkWETyvLG67zLMsSUUUV8gf1KFF FFABRRWbrOs6T4d0jU9e13UbPSNF0awutU1bVNQnjtbHTtOsYHuby9u7mVljgt7aCN5ZZHYKiKST xTSbaSTbbSSSbbbaSSSTbbbSSSbbaSTbScznCnCdSpONOnTjKdSpOUYQhCEZTnOc5yjCEIQhOc5z lGMIQlKUoxjKUf4m/wBpP/k4v4+/9lq+Kf8A6nOu19K/8E0vgl/wub9qjwbLqFp9p8L/AAxV/iZ4 h8yMPbyS+H7i3XwzYyFwYna68VXOkTS2sgf7Tp1nqQCMkcjJ8ifF/wAU6f45+LPxQ8a6SJV0vxh8 RPG3inTVmUpMun+IPEup6tZiVCAUlFvdxiRSAVfIIBFfvr/wSbsfhN8Ivgbrvjrxf8Rfh1oPjX4r eIXuJNP1nxl4Z03V9O8JeFXutK0G0vLG91KK8s5bvU5fEGrhZEi+02F9pcxjISORv27PsZVy7hu0 I1PrVbCYXA04wjOU4VKuFoU60rQjJp0qUK93ZWk0r3sf48+CnCmX8eePyqYqvg5cPZRxPxFxljsR iMRhqWExWDy3iLNsflNGNTE1qFKrHMsyxOTOEE5Oph6dSXI4OTX7T1Dc3NvZ21xeXc0Vta2sEtzc 3E7rFDb28EbSzTTSOQkcUUaM8jsQqIpZiACa8x/4Xr8Ef+ix/Cv/AMOF4R/+W9fGv7ff7U/w88H/ ALLPxLg8C/EbwZ4g8X+NrCP4e6LZeGvFmh6xqMKeLDJZa7f+RpV/dXVvHZeGE1uaK8EarDfCyTzY 5JY2H47hMBicXisPhYUa0ZYivSoqUqNVRj7ScYucm6aSjCLlN3aVoPVXuf6ucS8Z5Bwzw7nvEWLz PLauHyPKMxzWpRpZnl06tf6jhK9enhqUKePqzlVxVeOGwtKMKdSTqYqLUJcrT/CP4vft8/tIeLfi l8QPEfgv40/EXwt4O1bxZrdz4T8PaP4i1DTtP0nwz9umi0G0is4pEjilTS47Vrsqi+bdtPMyq0hA 85/4bW/a2/6OI+LH/hYap/8AHq+X6K/eqeUZXTp06ccvwTVOEKacsJhpSahCME5SlQblJqN5Sbbl Jybd2f4n47xQ8Rcwx2Nx9Xjni6nVx2MxWNqU8NxNn+Hw1Kpi8TiMTOlh8PSzenSoYelLEOlQoU4Q p0aFKjShFRpq/wBQf8Nrftbf9HEfFj/wsNU/+PV73+y7+3l8e9A/aA+Fd58TvjL478VfD+78V2Oh eLdH8SeIrzUdH/sfxGJNBn1S6trmUxn+wH1GPXonUh0l01Nu4Exv+clFTXyfLK9GtReAwcFWpVKX PDCYaM4e0hOCnCUaMZRnByU4tSTUorVam+T+K3iHk+b5Vm0ONOLMXLK8ywGYrCYzibPsRhMX9Sxm GxUsLiqFbNq1GthsVCjUw1enVpVYTpYiopU52jF/3wUV8Rfsm/tX/DX4jfs7fCnxN4y+JvgbRPGJ 8LWmi+LNP8ReMNB0jV/+Eh8NvJ4f1PULqx1LUYLuMa1Ppx1u3ZkKSW2owujsDmvon/hevwR/6LH8 K/8Aw4XhH/5b1+CV8FisPXrUKlCtz0KtSjPlpVXFypzlBuLVJpxbjzRabTjKLvqf7Z5NxXw/nmUZ VnWCzfLPqeb5bgM0wvtcyy2nVjQzDCYfF04Vac8whKnWpxxDpVqcoxlCtRrQcVy6/wAr/wDwUc+C X/Ck/wBqjx1a2FmbXwv8QXX4l+F9kZS3S28UXF1JrljAFHlRppvim31u1t7WMjyNPFgSkaSxg/q3 /wAEVf8Akhvxa/7Kun/qIaBXP/8ABWzT/hP8Vvg14X+Ivg74ifDzX/Gfwu8QiCbT9E8Y+G9T1bUf CHi6S107UorexsNSmvb6TTdbt9BvkSOGVbOwfWboiOMzvWd/wR6+Inw/8G/Bf4pWXi/x14O8K3l3 8UEurW08SeJ9E0O6ubUeFNCiNzb2+qX1rLNAJUeLzo0aPzEdN25SB+hY7GVcx4GpucKrxOHxGDwl aLp1PaOWGquMKnK6fO1Oh7GTkotXUru9z+FuDeFcu4D+mRmFLC4rL6eQ53kfFnE2U16eNwKwdKhn 2XUcRicGq0cZ9XpywmbxzXDxoutCap1KCjTceU/cqvyB/wCC0X/JtXw7/wCy5aF/6gPxFr9Kv+F6 /BH/AKLH8K//AA4XhH/5b1+UP/BX/wCJHw78Y/s7+ANN8I+PfBfirUbf40aLfXFh4c8U6Hrl7BZR +BvH8D3k1rpl9dTxWqT3FvC9w8axLLPDGXDyorfKcNUa0c/ymUqNWMVjINuVKrFJeyxOrcqSSXm2 l5n9MfSEzPLK3gl4m0qOZZbWqz4WxEYUqOY5fVqzl/aOQvlhTpY+rUnKyb5YU5ysm7WTa/nRr+gv /giL/wAi5+0T/wBhv4a/+kHjSv59K/d//gjV498C+C/D3x9j8Y+NPCfhOTUNZ+Hj2CeJvEej6C98 ltZeL1uHs11S8tWuVt2mhE7QhxEZohIVMiZ/T+Moylw/jIxjKUnVwloxjKUnbExvZRjJu3Wy06n+ dH0Tq9HD+OXC1XEVqOHpRy/idSq161KhSi5cP4lRUqterRpxcnpFOonJ6RTeh/QDX5jf8Fcf+TPd W/7KD4G/9Kr2vuX/AIXr8Ef+ix/Cv/w4XhH/AOW9fnD/AMFUvif8NPFn7JuqaR4W+IfgbxLqreO/ BdwumaB4t0DWdQa3gurwzTrZadqFzcmGEMpllEWyMMN7DIr8qyGjWjnWVN0aySx+GbbpVUkvaPVt 0kkvNtLzP9LfGjNMrq+EfiXTpZnllSpPgniCEKdPMsuqVJylgoqMYU6eYVJzlJ6KMITk3oot6H8y NSRSyQSxzQu0csMiSxSKcMkkbB0dT2ZWAYHsRUdFfvu+j2ejP8RU3FqUW4yi1KMk2nGUWnFppppp pNNNNNJpppNf3MfB74i6X8XPhX8P/iZo00U9j418J6Lr4ELBltry9som1PTpMEhLnS9TF3pt3Fkm G6tJojyhr0iv5W/2C/8AgoZqX7LyS/Dj4hadqXir4N6nqMmoWy6Y0UviDwLqV64N/faJb3U0FvqO j6hJ/pOp6G9zasl2ZdU02dbua+tNU/oH8Cftn/srfEawgvvDXx3+HEbXEayDTfEfiOx8Ha5HkAsk mh+LJNG1UNEx2SMlo8QbBWRkZWb8Izrh3H5Vi60Vhq9bBupOWGxNKlUq03SlJyhGo6cKjp1YRahO NSMbuHPGUoyTX+0XhH478E+JHDWVV6vEGUZXxVTwWFoZ7kGZ5hgstxlPM6VGlRxVfA08fisFDH4D GV6dTFYStgquJlCGJ+rV6FGvh5Rqc18c/wBhH9mv9ofxZ/wnXxE8GXjeL5bS1sb/AF7w/r+q6Bd6 tbWMKW9iuqw2Vx9hvp7O2jjtYL2W0+3C0igtHuXtra2ih8T/AOHS/wCxv/0LXjb/AMLzWK+2v+F6 /BH/AKLH8K//AA4XhH/5b0f8L1+CP/RY/hX/AOHC8I//AC3rlpZjntCnCjRxeaUqVOKjTpwni4wh FXtGMfZtRiruyWi2SS0Ppsy4B8G85x+KzTNuFfDnMcyx1WWIxuOxeD4brYrF15qKnXxFZ46Eq1af LFzqzTqVGlKpOcrzl4r8Av2HPgD+zV4y1Dx58LNI8RWHiHU/Dd74UuptW8TahrNs2j3+paRq1zGl rdfu0na80OwZZx86IkkY4lavr6vK/wDhevwR/wCix/Cv/wAOF4R/+W9H/C9fgj/0WP4V/wDhwvCP /wAt65MRLH4uq62K+uYiq4xi6taGIqTcYJqMeaVK9optJdLux9NkWF4L4Yy+OU8OR4YyLLIVq+Jh l+VYnJsDg44jFShPEVo4ejmSpqrXnTpyqz3nKEXLZHjX7en/ACZ5+0D/ANiBe/8ApbY1/GxX9cf7 b/xf+E2u/sm/HbSNE+KHw71jVr/wLeQWOl6V428NahqN7ObuyYQ2llaanNc3MpVWIjhidyASFwDX 8jlfp/h/CcMux6nCcG8dBpThKDa+qxV0pxi2r6XSav1P86Ppw4rC4rjrgmWFxOGxUYcH4yM5YbE4 fExhJ8R1pKMpYbEYiMZOPvKMpRk46qLWoUUUV96fxOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRXkXxh8af8ACL+HWsLKXZrOurLa2pRsSWtngLe3uRyjBHFvbsCrCaXzYyfs7gJtRTb2Q4xc 5RjFXlJpL1ffySu2+iTPAPjB41/4SnxE1jZS79G0NpbW1KNmO6u9wW9vePldWdBb2zZZTBF5qFft Dg+V1XqxXDKTk3J9fw7L5HuU4KnCMI7RW/Vvdt+bd35aLoFFFFaU9n6/oWFSp0P1/oKiqVOh+v8A QVZE/h+aH0UUUPZ+j/JmQUq9R9R/OkpV6j6j+dYLdeq/NAT0UUVs9n6P8gCiiisACiiit1svRfkB OvQfQfypaReg+g/lS1i936v82AUUUVutl6L8kA9Op+n9RUtRJ1P0/qKloMZ/F8kFFFFBJKnQ/X+g p9MTofr/AEFPoAKsVXqxQAUUUUAOT7w/H+RqaoU+8Px/kamoAKOnWio3PQevJ/p2/r296BN2VxhO ST/nHYd//wBeaSiigwbu7hU69B9B/KoKnXoPoP5UALRRRQAhIAJPAAyT6AVSmPmuWOcdF68KOnB7 nqenJxnipp242Dvgt0+7noR/tYweMEZ5phQHpwf0/wDrVLu7pOzVv+GBq+5V2kEZ5GR/P9P880pT 0/KpdpyAeMnFKVI9x6/4/wCce9ON9brX8zNw7fcV1+8Px/katp0P1/oKhwM57jvUydD9f6Comm3d dhw0Tv3/AEQ+iikJwPX0HqTwB+J4qYpNu/Ysco3NjqFwT9ew/qeeOMghqtBMqD0PP06n/P8ASolX aMfievU9evb0HYcVYT7o/H+ZpWu3bW35AREEdRUy9B9B/Klo6VdPd+n6gFFFFaAIQD17UtFFBjVi m1ftv13CilUZIH+elKVI9x61nNXe+ttu/o/0Ml7uj1V91+q/XUbUqdD9f6CoqlTofr/QUoaS17MJ 6x07ofRRRWpkFTr0H0H8qgqdeg+g/lUVNl6/obQ+FfP8xawtSuN8ghU/LGcvjoZPTp/ADjg9SQeR WrdTeREWGN5wqA4+8e+CRkKMsR7VzTKck5ySST6kkkkn1JPXuSelTBXd306GdZu3Kr66u3bt31/I ZQRjg0VOQD1FOUeqXr/wxzNt2u9vvIRwR9RUpUN/iP8APNMKEdOR+v8A9emglf8AD/P/AOuszWEn 31Q7Yc47ev59aaQR1FSBwevH1/x//VT6DZT7/eRJ1P0/qKkIB6j8e9IFAOR6dKdQKW91tZWaGpC0 jrGmSXIC8dye+O2OSewBPau0t4Ft4Y4V6IuCf7zHlm/FiT7DjoKydJtvvXTj1SLP5O45+qDgY+cd 63KuLUXqt+vkS5N2v0/rUKKMd/T+tFap31QgpMDOe9Lg4z2ooAKKkCgqOx5/n3phUjr+dAlJN269 iVPuj8f5mnU1Puj8f5mnUDPsiiiiug6AooooAKKKKACiiigAooooAKKKKACiiigAooooAK9H+GXx c+I3wa1248T/AAx8U3ng/wAQ3NhLpkms6bb6fJqK2E8kcs9rBdXtndS2sVw8URuBbNCZxGiTF0RV HnFFRUp060JUqtOFWnNWnTqRjOE1dO0oSTjJXSdmmtFpodeAx+OyvGYfMMsxuLy7H4Sp7XC47A4i thMZhqqjOCq4fE0J069Coo1JxVSlUhNKckpx5nf7A/4b8/bH/wCi/wDjj/vvSf8A5WUf8N+ftj/9 F/8AHH/fek//ACsr4/ori/snKv8AoWZf/wCEWG/+Un13/ET/ABK/6OFxz/4lvEP/AM9T7A/4b8/b H/6L/wCOP++9J/8AlZR/w35+2P8A9F/8cf8Afek//Kyvj+ij+ycq/wChZl//AIRYb/5SH/ET/Er/ AKOFxz/4lvEP/wA9T7A/4b8/bH/6L/44/wC+9J/+VlH/AA35+2P/ANF/8cf996T/APKyvj+ij+yc q/6FmX/+EWG/+Uh/xE/xK/6OFxz/AOJbxD/89T7A/wCG/P2x/wDov/jj/vvSf/lZXnfxH/ak/aI+ LmjHw58RvjB448U+Hmkjlm0K81eS30a7kicSQyX2maetnZag8EgEkDXsFwYJAHiKNzXgdFXTy3Lq U41KWX4GnUg+aE4YTDxnFrZxkqKcWujTTW6aepy43xC4+zLC18DmHHHGGOwWKpypYnB4vifPsRhc RSl8VKvQq5pKlWpTWk6dWM6c17s4Ti3FlFFFdp8gFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFSRR S3EsUEEUk080iRQwxI0ksssjBI4oo0DPJJI7BERAWZiFUEkCo66LwhIkXizwxLK6Rxx+ItFkkkkY IkaJqVszu7sQqoqgszMQFAJJAFTOTjCckruMJyS7uMJSS011cUtNddNbHRg6McTi8JhpzdOGIxeF w86i5b044jFYahKouZqN4RrymuZqN4LmajzNdZ4h+CXxm8I6Vca74r+EfxO8MaJZ7Ptes+IfAPir RdKtfMdY4/tGo6lpNtaQeZIyxp5sy73ZVXLEA+Y1+7/7Wv7aXwt8A/Ef9qHwl4XvfjB8TPEPxH8A S/DX7Bq3xL0PXP2ctEi8UeDdAil8R+C/C1hDdTQ6npsDn7R/pEn2rVpNbg+0Wcd9I8fLeOvgp+z4 LP8AaH+Knhyz+Blx8M9W/ZI067+EsekeK/BM2q6f8WbbQbGfUp7DwnFq3/CRaX4n+0xXjSyS6Ykn 2p2tmYXge3T5fD8RYlUqFXMMtqYdYxUnhJUnNRq+0WDUoONdTqKUZYu8JN041qdCtOFOHLZf0dnn gPkNXM87y7gfxAwOdVeFp5nT4mw+Ywwk8RlywE+K5UsXHEZO8HgamHr0OF+XFUIRx1fKsdnGVYXE 43FLEe0l+MviHwx4k8I6nJonizw9rnhjWYoba5l0nxDpN/oupx295ClzaTyWGpW9tdJDdW8kc9tK 0QSeF0liZkZWO3rXwy+JHhqDWbrxF8PvG+gWvhy502z8Q3OteE9e0qDQrzWbeK70i11ma+sII9Lu dVtZ4bnTYL5oJb63mimtUljkRj+6n7Xtj8G/Gth+0J4r+I1h+z++gWPwW8Ly/BL4leHPGOh3Hxo8 Q/FvT/D+m29j4bn0/RfFd9qGpaFDfpLp13b6h4ds47fTIfPVri1imvbXU/aB1D9nvxr4z/aFl+IH jLwzd+EdX/aA/ZEtdWvtM8XwsLrwQnhTwTZ+L57YaTqTG406ziW6t9Y1SyhmudHiW5kjntrmBSuF LiqrUhhZ/wBnVE6lliFD2tZKTeHfLhnCnDnmoVZRnSq2qU60YU5uXM3H2sw+jXl+BxnEuF/17wbj gVVqZFPFrLcslOjCGd04VuIY4nHYhYPC1cTlmHr4XMMsdTBY/KK2Kx2FhSeGhGr/ADwUV+4CfDDw Lf8A7SllpPiPwX+xb4G+Cli3xRuPhjqPhm98E+NJ/ihpmn21qnhbR/Ea3vxa0+2i8SX+jvFq+l6h 4kl8NaemqRaqoEisnkd74t+Ef7Hdr8UPDGo2Xhj4K2HjbV/2d/iPqPhf4eeJvFXhTRvhhq/xo0HW NJi8J2fjGDwf8Q/E/hDTr2+02+vgmm23jaXTdUtkec3S6jZRSW3RLiqhGVODwOKm6mGeITozpVox 05lTqSjSgoSir+3klUjhnCpGsuaDT8Ol9GrO6+GxmKhxhw9hoYHP4ZFUp5rgsyynEYi9V0ZY7A4e vmeKqYqjXq+zWT0JTweIz+nisDXyuSoYynVp/g9B4Z8SXWgX/iq28P65c+F9LvbbTdT8SQaTfzaB p2o3i7rPT7/WI7dtOtL26X5ra1uLiOedeYo3HNYdftJ4X0L4Zf8ACvPHOh/tE6V8GPhpHf8A7Sf7 PsfiTwr8JfF2mJ4Ph8Bz2+mR6zfWUfhzxj4kg+xXFvl/FGrWmo3FzpPnXk5m06aJRF3Xiz4b/ABL u0X4oeAP2XvA8cf7WPwb0L4Et8LPE3hu7n+IXwV1D4laVY+L7r4i22k+KtaivvD7eA3nvNS1jxJa 6TLDqDTJPDYxS2kdy1xNCNSVOeCrS/ezjCVCpCpGcIwpyTpSdNLFSUpSdZ4dQhRoKNeV480TOf0e MTVwOFxmE4uyzDyeXYbEY3D5zgcVgcRhMZVxuNoSp5hh6ePqVeHcPWo0MPRyuGePFYzNM5nWyehK nX9hVPwhor9tNb0b9j7x7P8AEGPxr4M+Cnw68PfCv9svw38PtI1r4dXMvhm78UfBubXJtN1C88Qv a+IbwavpE9uYJdW8TaRb2Vtp9sWvrN9P8t5X9M8XfDj9mqy+Nvw2isfg58JfEvw9ivfiQxs/Deqf ATw9ZahZQaPDb+FtWvtRuP2jtQTxdZWUtxFdpp3i9fAlzqBle/t7WW/hfSYFLimlBxjPLcbGbp1Z yTlQUF7OlRrRhGq1GnUnUhiKbcYuLptyU7ta6UPo25jioVa+G4/4QrYWOMy3B0pww+czxc/r2Z5t lFfE4nK6U8TjsDg8HjMkx8YYitHEQzCEaVTCOlGo1D+f+ivun9vvwb4A8IfFHwcnw/v/AIYGy1T4 b6Rfar4d+GWiaDokHhfVn1jXGl0/xRF4W8c/EPw9d+JnhkhM95pniOSJ9Pi0+JIHt4bbUtS+Fq9/ A4qOOwlDFwhOnGvDnVOfxw96cXGT5YJtOD1UVFppxcotSl+H8YcNYjg7ifOuGMVi8Njq+TYz6pPG YNr6tib4fCYiNWlH6xipU1KGLipUqteValOE6deFGrGdCiUUUV1HzYUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAVry8ttPtLm+vJkgtLOCW5uZnOEiggRpJXbvhUUnABJ6AEkCvz88beKbnxh4iv tZm3pDI3kafbsc/ZdPhLC2h4JAcgtNOV+VrmaZ1wrAD3b48eNfLji8GafN88wivNcZDysQKy2Vgx B6ysFvJ1IBCLaYJWWRa+Xa5q07vkWy1fr2+X5s9HB0rJ1ZLWV1Dyj1l/281Zf3U+4VYqvVisDvCi iitaez9f0AKlTofr/QVFUqdD9f6CrIn8PzQ+iiih7P0f5MyClXqPqP50lKvUfUfzrBbr1X5oCeii itns/R/kAUUUVgAUUUVutl6L8gJ16D6D+VLSL0H0H8qWsXu/V/mwCiiit1svRfkgHp1P0/qKlqJO p+n9RUtBjP4vkgooooJJU6H6/wBBT6YnQ/X+gp9ABViq9WKACiiigByfeH4/yNTVCn3h+P8AI1NQ AHioWDZJP5jp/ntzUvUn0H6k/wCA/Dn1FLQKS5lYr08JlQeh5+nU/wCf6U4oD04/l/8AW/zxSqCA Af8APNBi4tb/AHkRBHWpl6D6D+VLR0ppN3t0EFISFBJ6AZPelqtO+SEGCBy3Q89QPYjr27e9S3ZM CEksST1JJ+noB7Ace/XqanqvVioh9r5fqAUUUVoA3auc4/w/KlAA6U5QCQD/AJ4qTYMfyP8AT/OK iV0007LbV6f0zSKTi799/wDgkVORcnd2XOBgdfXPXgZHHqfSjY2QPU4B7f48d+OxqwItoABzgd+p Pc/icn/GhNbtWez7O/8AX/BE4Nbar8f+CNqZPuj8f5moamT7o/H+ZpqKTuuxA6iiiqst+oBRRRUy bVmtupEpNWt5/oFFFFOMuZESlzW9ByfeH4/yNTVCn3h+P8jU1Zz3Xp+rJGlQfY/560KCAQfX+gp1 FEG728n6r5kuKfl+XzQUUUVsk3sZOLW/39Aqdeg+g/lTEGdwPt/Wq95N5UW1ThpMqPULj5j68DgH sSD2rKeun8ur9GjSLtFN+f5mbdz+dKdpyiZVPQ9NzdB1I4PIKgEHBqrRRUX1utDK99XuNKg9fz70 6ipSgPTg/p/9aqU35f5/5ESUdL6N9V+pFTSoPX8+9PII6ikqrKWtrP8Ar5Mhpx1W3dEJUj3HrQGI 9x6H/P8A9b2qamlQfY/561PI/IpT7/f/AMD/ACAMD9e4qeCFp5UiXq5wT/dUcsx4PQA4zwTgd6rK pB59Ov5V02lW3lxGdh88wG32jHI/77PzH1AT0pxV/dcdtb9i1PWy6rfdfNf1qaiIsaKiDCooVR6B RgfpTqKKpxT8mMkj7/h/WlKA9OD+n+fpSR9/w/rUlOKskv63AaoIBB9f8KQoD04P6f8A1v8APFPp QM8e2aYlJc3K+9v67DVBAGff+ZpamUfKAR68H600p6fl/h/9egicHdtaq79d/wASMDHSiggjrRQS pyWn57n2RRRRXQdwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzfi3xJaeE9Av9bu9rC2i220Bba13ey5W1tU 7/vJMGRlBMcKyzEFY2rpK+MPjT41/wCEi17+xLGXfpGgSSRZRsx3eqYMd3cZBw6WwzZwHBwVuZI2 KXAqJy5It9dl6/8AA3NaNJ1aihrbeTXSK3+bdorzd+h5HqWoXerX95qd/KZ7y+uJbq5lPG6WVi7b RkhEXO2OMfLHGqooCqAKVFFcW+r3Z7SSSSSSSSSS0SS0SXkgqxVerFAwooorWns/X9ACpU6H6/0F RVKnQ/X+gqyJ/D80Pooooez9H+TMgpV6j6j+dJSr1H1H86wW69V+aAnooorZ7P0f5AFFFFYAFFFF brZei/ICdeg+g/lS0i9B9B/KlrF7v1f5sAooordbL0X5IB6dT9P6ipaiTqfp/UVLQYz+L5IKKKKC SVOh+v8AQU+mJ0P1/oKfQAVYqvVigAooooAcn3h+P8jUpOBx1PA+v5jgdTjnANRJ94fj/I1KOTns OB9RwT/QcepyQaAFHH+f14wOaKKKACiiigiey9f0YUUVMACoyM8CqjLlfqZFd22KW/Iep7Djtnqe 1USckk9Sc/n9asTZZsKcqvTnJJ7njggcAd85471XpSkpPS2mn/Dkzbja3nf8AqxVerFJR3aXrYFJ PyYUUUUFDk+8Px/kamqFPvD8f5GpsFjtHfv6Duf8PcipnqreaLSvG3eSHxjJ3Eey/wBT+PQe3sal oAwMDoOBRUyVopef6M0SsrdhCAeo/HvShCFGOev16+n/AOuipk+6Px/maUHra+lhOKe+j7/1uQ0V MVB9j6/4/wCc+9RlSPp6/wCelamFSMo2a7vVenX+rDaKKKDJycrX6BRRRQklt1JHJ94fj/I1NUKf eH4/yNTVlPdPyAKKKKIfF8mAVMoyoB9/5moamT7o/H+ZrUBQoUM2cADJz2AySc+wrDuHM8hc5A6I PRe3GByep75OMkAVoXk21DCvVwC/sgJ4x/tHj6AjvkUgAVGfQfyrOo7vz0u/yuZ1NIx5bbu66N6/ cUiCOo/HtTihHTn+f/1/88VYKHtyPTv/APX/AM8UysznlJq2lt7p7feV6sU0qD1/PvTqCZSUreVw IzwajKen5f8A1/8AP1qSimm1t93QSbW33dCvRU5APUZphTuD+B/x/wAfzrRTT30/Ifuy/uv8P+AT 2Vv9pnVDnYvzyH/ZB+7nHBY/L+JI6V1oAAwBgDgAdAPSs7T7fyI+R+8kG5z3HTCZ54UenGST3rRq zSMbLzYUUUUESbUtOy9CSPv+H9akqOPv+H9akoKU099H+H9eoU9Op+n9RTKenU/T+ooJ+38/0JaK KKDUQgHqKbsHqf0/wp9FBfuNLmim0rbfqmvxPsCirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDA Wf8A+N1r7Wl/z9pf+DKf/wAsPR/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf +fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/+As//wAb o/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCA s/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8A Phe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8A Zuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDM JSoq7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx /wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/o XZh/4b8f/wDMJSoq7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s 3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp /wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/a X/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e 1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf /wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9 /wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/+As//wAbo/s3 Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A 8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/ +As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/ 8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq 7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8 wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/ 4b8f/wDMJSoq7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+ hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDy wP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gy n/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8 /aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN 0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDA Wf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/+As//wAbo/s3Uf8A nwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7/wCAs/8A8bo/ s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zuo/8APhe/+As/ /wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKirv8AZuo/8+F7 /wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f/wDMJSoq7/Zu o/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH/hvx/wD8wlKi rv8AZuo/8+F7/wCAs/8A8bo/s3Uf+fC9/wDAWf8A+N0e1pf8/aX/AIMp/wDywP7NzH/oXZh/4b8f /wDMJSoq7/Zuo/8APhe/+As//wAbo/s3Uf8Anwvf/AWf/wCN0e1pf8/aX/gyn/8ALA/s3Mf+hdmH /hvx/wD8wlKitaHQdcuFL2+jatOittLQ6deSqGwDtLJCwDYIOCc4IPQirtp4O8X6hd21hp/hTxLf 397cQ2llYWOg6reXt7d3Miw21pZ2ltaS3F1dXMzpDb21vFJNPM6RRI8jKpTq0lq6tJJK7bq00klr dt1Ekra3dlbW9tRrLcylJRjluYylJqMYxy/MJSlKTUYxjGOBlKUpSlGMYxjKUpSjGMZSkovwz4r+ NB4R8NyJaS7Na1gS2WmhTiSBSoF3fgdR9ljdRE3OLqW3JVkEmPhckkkk5J5JPUn1NfbHj/8AZK/b b8Z+JLzVT+yB+1MtjH/omlQP+z/8WR5NhCzeUWT/AIRL5Zrlme5nByVklMYYpHGBxX/DDv7av/Rn /wC1H/4j/wDFj/5kq8+pj8HOWmMwllov9rwvzf8AvPX8rH1WG4N4spU/e4U4pU52lL/jGOJbr+WP /JO/ZW/95vsfLlFfUf8Aww7+2r/0Z/8AtR/+I/8AxY/+ZKj/AIYd/bV/6M//AGo//Ef/AIsf/MlW f1zB/wDQZhP/AArwv/zSdH+qfFn/AESnFP8A4jHEv/0OHy5Vivpv/hh39tX/AKM//aj/APEf/ix/ 8yVT/wDDD37an/RoH7UX/hgPix/8yVH1zB/9BmE/8K8L/wDNIf6p8Wf9EpxT/wCIxxL/APQ4fLtF fUX/AAw9+2p/0aB+1F/4YD4sf/MlR/ww9+2p/wBGgftRf+GA+LH/AMyVaQxmDs/9swe//QXhe3/Y UH+qfFn/AESnFP8A4jHEv/0OHy7UqdD9f6Cvp3/hh79tT/o0D9qL/wAMB8WP/mSqRP2H/wBtMA5/ ZB/ahHP/AEQD4r+3/UpVf13Bf9BmD/8ACvCf/NRM+EuLOX/klOKd1/zS/Ev/ANDh8w0V9Q/8MQft pf8ARoX7UP8A4YD4r/8AzJ0f8MQftpf9GhftQ/8AhgPiv/8AMnQ8bgrP/bMHs/8AmLwnZ/8AUUZf 6pcWf9EpxV/4i/E3/wBDh8vUq9R9R/OvqD/hiD9tL/o0L9qH/wAMB8V//mTpR+xB+2lkf8YhftQ9 R/zQH4r+v/Yp1gsZg7r/AGzCbr/mLwvdf9RIf6pcWf8ARKcVf+IvxN/9Dh8y0V9Qf8MQ/to/9Gh/ tQf+GB+K/wD8ydH/AAxD+2j/ANGh/tQf+GB+K/8A8ydbPG4Oz/2zB7P/AJi8J2/7Cg/1S4s/6JTi r/xF+Jv/AKHD5for6g/4Yh/bR/6ND/ag/wDDA/Ff/wCZOj/hiH9tH/o0P9qD/wAMD8V//mTrH65g /wDoMwn/AIV4X/5pD/VLiz/olOKv/EX4m/8AocPl+ivqD/hiH9tH/o0P9qD/AMMD8V//AJk6P+GI f20f+jQ/2oP/AAwPxX/+ZOtljcHZf7Zg9l/zF4Tt/wBhQf6pcWf9EpxV/wCIvxN/9Dh8zL0H0H8q Wvp4fsRftoYH/GIn7T/Qf80C+K3/AMydL/wxF+2h/wBGiftP/wDhgvit/wDMnWLxmDu/9swm7/5i 8L3f/USH+qXFn/RKcVf+IvxN/wDQ4fMFFfT/APwxF+2h/wBGiftP/wDhgvit/wDMnR/wxF+2h/0a J+0//wCGC+K3/wAydbrG4Ky/2zB7L/mLwnZf9RQf6pcWf9EpxV/4i/E3/wBDh8xp1P0/qKlr6aT9 iP8AbPBOf2RP2nxx/wBEC+K3qP8AqU6k/wCGJP2zv+jRf2nv/DB/Fb/5k6PruC/6DMH/AOFeE/8A moynwjxbzf8AJJ8VbL/ml+Jv/ocPmGivp7/hiT9s7/o0X9p7/wAMH8Vv/mTo/wCGJP2zv+jRf2nv /DB/Fb/5k6PruC/6DMH/AOFeE/8Amoj/AFR4t/6JPiv/AMRbib/6Gz5mTofr/QU+vppP2Jf2zgDn 9kb9p0c/9ED+Kvt/1KlP/wCGJf2zf+jRv2nf/DCfFX/5lKPruC/6DMH/AOFeE/8AmoP9UeLf+iT4 r/8AEW4m/wDobPmKrFfSv/DEv7Zv/Ro37Tv/AIYT4q//ADKVP/wxP+2Z/wBGj/tOf+GE+Kn/AMyl H13Bf9BmD/8ACvCf/NQf6o8W/wDRJ8V/+ItxN/8AQ2fMdFfTn/DE/wC2Z/0aP+05/wCGE+Kn/wAy lH/DE/7Zn/Ro/wC05/4YT4qf/MpR9dwX/QZg/wDwrwn/AM1B/qjxb/0SfFf/AIi3E3/0NnzIp+YD uc/ljk9+n06kA4zU9fSqfsT/ALZe4E/skftODr1+AnxVHGP+xU7/AIds9Km/4Yo/bL/6NJ/ab/8A DC/FT/5lKPruC/6DMH/4V4T/AOag/wBUeLf+iT4r/wDEW4m/+hs+ZKK+m/8Ahij9sv8A6NJ/ab/8 ML8VP/mUo/4Yo/bL/wCjSf2m/wDwwvxU/wDmUo+u4L/oMwf/AIV4T/5qD/VHi3/ok+K//EW4m/8A obPmSivpv/hij9sv/o0n9pv/AMML8VP/AJlKP+GKP2y/+jSf2m//AAwvxU/+ZSj67gv+gzB/+FeE /wDmomfCPFtl/wAYnxXv/wBEtxN2f/VNnzJT5GKxjHUgAe2ep6g8DJ474r6Y/wCGKP2yv+jSf2m/ /DC/FT/5lKqt+xf+2Mxz/wAMm/tL4A2j/ixHxS6Dr/zKgPJ55z7UpY7BpaYzB36f7Xhf/moy/wBU OLv+iS4r/wDEW4n/APobPmakIB6j8e9fTH/DFv7Yv/Rpv7S//hiPil/8ytH/AAxb+2L/ANGm/tL/ APhiPil/8ytRDGYPX/bMJ0/5i8L5/wDUUD4Q4ue/CXFb/wC7W4n/APobPmIoR7j/AD2qavpf/hi3 9sX/AKNN/aX/APDEfFL/AOZWpT+xZ+2Gf+bT/wBpYH/shPxR/X/ilq3jjsEr3xmD1/6i8J/81Gb4 N4u6cJ8V+n+q3E/5/wCrf5nzGBkgepxSlSOv519L/wDDFv7YqkZ/ZO/aWxkc/wDCifijjr/2KvH4 1L/wxh+2H/0ah+0r/wCGK+KP/wAy1E8bgbprGYPVdMXhO/8A2FCXCXGC0/1S4sfl/qrxP/8AQ2fM i/eH4/yNWYxwW9TgfQdPzyT/APqr6QH7F37YJYf8YoftKgE8/wDFivijjHcf8isMZ6cGrP8Awxl+ 2D/0aj+0p/4Yv4of/MtWTxeEbusbg1p/0F4TXf8A6ijaPCXF3K5LhPitO6Vv9VuJ/np/q2fNdFfS n/DGX7YP/RqP7Sn/AIYv4of/ADLUf8MZftg/9Go/tKf+GL+KH/zLVEsdg2rPF4NO/wD0F4S3/qUa LhPi178JcVrz/wBVuJ7f+s3ofNdTJ90fj/M19G/8MZ/tgjr+yl+0mP8AuhfxQ/8AmWqVf2NP2v8A aP8AjFP9pLv/AM0M+J/qf+pXqfrmD/6DMJ/4V4X/AOaQnwjxbZf8YnxXv/0S3E/b/smz5vor6S/4 Y0/a/wD+jU/2kv8AwxnxP/8AmXo/4Y1/a/8A+jU/2kv/AAxnxP8A/mXpvG4RpJ4zCaf9ReF/+aTN 8JcXtJPhPivT/qluJ/8A6Gz5qKA9OD+n/wBb/PFOIB6j8e9fSX/DG37X3/Rqn7SP/hjfif8A/MvR /wAMbftff9GqftI/+GN+J/8A8y9XDG4TW+MwmlrXxeF/+ajN8HcWvbhLitP/ALJbie33f6tnzTsI I7jI/wAkf/rpSnp+X+H/ANevpX/hjb9r7/o1T9pH/wAMb8Tv/mXpD+xv+16Ov7Kv7SH/AIY74nf/ ADL03jMJusbg9On1vCa/+XRm+D+L1/zSXFny4W4n/wDobPmlQQwB9/5Gpq+kP+GN/wBrz/o1X9pD /wAMd8Tv/mXo/wCGN/2vP+jVv2kP/DHfE7/5l6axuDa1xeDXRr63hP8A5qF/qhxf/wBElxZ/4ivE /wD9DR830V9If8Mb/tef9GrftIf+GO+J3/zL0n/DHP7Xf/Rq/wC0f/4Y/wCJv/zL0li8EndYzB+n 1vCf/NQ/9UOL/wDokeLP/EV4o/8AoaPnCpNwSMu3RQSfwJ4Hueg96+i/+GOf2u/+jV/2j/8Awx/x N/8AmXrPvP2RP2tVIgP7Ln7RashDOG+CXxLU5IygIPhnPQhuR3Ug9abxuDSb+uYP/wAK8L/81Ey4 R4vim1wjxa/ThXih97bcNPqfNDO0kkjtwWIOPQcgAewAwPpU69B9B/KvoRf2Qv2seQ37L/7RA6df gp8Sh6+vhmn/APDIn7V44/4Zh/aG44/5It8Se3/ctVMMbg22/reE2X/MXhf/AJpMlwjxhKKvwhxb e7v/AMYpxT1/7tnQ+eaaVB6/n3r6I/4ZF/av/wCjYf2hv/DLfEn/AOZqj/hkX9q//o2L9ob/AMMt 8Sf/AJmqmeLwStbGYTW9/wDa8L/81CfB3F734Q4tf/dqcU//AEMnzmVI9x6/4/5x704p6fl/h/8A Xr6J/wCGRv2rv+jY/wBoX/wy3xI/+Zqj/hkb9q7/AKNj/aF/8Mt8SP8A5mqlYzBdcZhF2f1rC/j/ ALSZvgvjDpwhxb6PhTin8/8AVk+cqK+iz+yP+1Yev7Mf7Qn/AIZf4kf/ADN1Gf2Rf2rR0/Zk/aEI /wCyL/EfP/qN803i8J/0GYP5YvCf/NRH+p3GP/RH8Xf+InxT/wDQyfPFXbKHzJd5HyR4JyD8zHO0 dMcfePORheMGveU/ZF/avkdY4/2Yv2hWd2Coo+C/xIJZicBQP+Ea5JPA966y3/Y2/a0hhWP/AIZb /aK3Yy7D4I/Evlz1Of8AhGOQOgz2A7044vBt3eMwdl/1F4XX/wAui4cGcYt3/wBUOLbL/qlOKf8A 6GT54Tqfp/UVLX0Ov7Hv7Wqn/k139oojH/REviX7f9SzT/8AhkD9rT/o139or/wyfxL/APmZrX67 gv8AoMwf/hXhP/moJcIcYqWnCPFtrLT/AFU4pt/6zJ860V9Ff8Mgftaf9Gu/tFf+GT+Jf/zM0f8A DIH7Wn/Rrv7RX/hk/iX/APMzR9dwX/QZg/8Awrwn/wA1Ey4P4wbv/qhxbsv+aU4p/wDoZPnmPv8A h/WpK+hU/ZA/a0Gc/su/tEjp1+CfxKHr/wBSzT/+GQv2sv8Ao1/9oj/wynxK/wDmZo+u4L/oMwf/ AIV4T/5qF/qdxj/0SHF3/iJ8U/8A0MnzvT06n6f1FfQv/DIX7WX/AEa/+0R/4ZT4lf8AzM09P2Q/ 2sQTn9l/9ogcf9EU+JPqP+pao+u4L/oMwf8A4V4T/wCahx4O4w5l/wAYhxdv/wBEnxT5/wDVMnz5 RX0P/wAMiftYf9GwftD/APhlfiT/APM1R/wyJ+1h/wBGwftD/wDhlfiT/wDM1R9dwX/QZg//AArw n/zUbf6ncYf9Ehxb/wCIpxT/APQyfPFFfQ3/AAyL+1f/ANGw/tDf+GW+JP8A8zVH/DIv7V//AEbD +0N/4Zb4k/8AzNUfXcF/0GYP/wAK8J/81B/qdxh/0SHFv/iKcU//AEMlqiiivwA/3+CiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAruvhl8OvFPxc+IHhH4aeCbA6j4o8aa3Z6FpFsSywrNdP++vLyVEc2+nabapPqOp3ZRks9Ptb m6kHlwsa4Wv6Pv8Agjn+yh/wjXhnUP2ovGmm7Nc8X2954e+Fttdw4l07wmk5g13xTHHKu6K48SXt udK0ycLHMuiWN7NDJNYeIVJUnZX+4D9b/gD8FfC37PXwj8FfCTwjGG03wppUdvd6i0KQ3Wva5ck3 Wu+Ib5ULf6XrGqS3N60e90tYpIbKAra2sCJ7HRRWABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhIAJJw ACSfQDkmgCreS7I9gPzSccdQo+8evf7o+pI6VklQev596llkMrs57/dB7KOg6D6n3JqOgCEoR7j/ AD2ptWKaVB9j60AQ0U4qR1/Om0AFMKA9OP5f/W/zxT6KAICCOtJVioynp+X/ANf/AD9aAI6KCMcG ik0nvqAhAPUVGUI6c/z/APr1LRU8rj8Luuz/AK/yAr0VOVB6/n3qIqR7j/PWmpJ6PR9mBGUB6cf5 9P8A9VREEdR+Pap6KoCvSEA9RUxTPTj27f8A1qjII60AQlCOnP8AP/69MqxSFQev596AIKaUB6cf 59P/ANVSFSPcf5602gafR6rs/wBOqKN1MtpDJNJ0QcD++x4VR7scfQZJGAa4CWR5pHlkOXkYsx9y c8egHQDoAABwK6DW7nz5Rbof3cBJYg/elPBPuEXKjuCXz2rnipHuP89aDWKSV1111/IYQD1FRNGD 05/mP8fp+hqaijbYbSfk+63/AOD8ykyEdOf5/iKZV8qD1/PvUDxd/wBR/Uf56daq6fxL5rf5rqK7 W+q7r9V/kVSgPTj/AD6f/qqIgjqPx7VZKke49f8AH0ptDi1qtV3X69it9isVB6/n3qIqR7j1/wAf 8496tlM9OPbt/wDWp9tbSXNxFbRj55XCjuFHVnP+yigseegPepA2/DWnh5G1CVfliJjt8gjdIRh5 B6hFOwHkbmYcFK7WkgtYraCOCIbUiQKPcjqzf7THLMe7EmnFSOv59qCG5J33X9fcMKg+x9f8f859 6jKkfT1/z0qaigXuy20f9feV6KlKA9OD+n/1v88VGQR1oJcWvTuJTSgPTj/Pp/8Aqp1FAKbXmiAg jqPx7UlWKYUz049u3/1qDVST2+7qRUUpBHBpKBjCgPTj+X/1v88UzY3p+o/xqaigD+Feiiiug5wo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAoopQCSAASSQAAMkk8AADkkngAdaAPqj9jT9mvV/2pvjt4W+G9utzb+F7eQeIviFrNupB0 fwVpU8B1QxzYIh1DV5JbfQdHYrIE1PU7a5lie1trlk/tS0LQ9I8M6JpHhzQNPtdJ0LQNMsNF0bS7 KMQ2em6VplrFZafY2sS8R29paQRQQoPuxxqOcV+f/wDwTV/ZRX9mj4E2epeJdNFr8Vvimlh4p8bm eILe6JYeQ7+GfBjkgPGdDsrqa71OFhuTxBqmrQGSaC2tCn6K1jJ3fktv8wCiiipAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACqV45wIlPJwz8447L1HU8kHgge9W3YIrMeijP19B+J4rKZixLNyWOT/AIfQDAHs BQBWoqcgHqPx71GUI6cj9f8A69ADKKKKACmFAenH8v8A63+eKfRQBAQR1FJVioynp+R/x/x/OgCO igjHBooAQgHqKjKEdOR+v/16looAr0VOVB6/nURUj3H+etADaKKKTSe4DSoPsfWoypHX86moqfej t7y/FAV6CAetSlAenH8v/rf54qMgjqKpST237dQIinp+VR1YpCAeo/HvTAgqjqFwttbs4x5jfJEP VznkjuFHzH1wBnmtFlI56j+X+fWuP1Kf7VOSpHlxZSPuG5+Z8/7R6dcqF6HNBUVd+S3/AMjGYNkk 5JJyT1yT1JPXJPr1NRlQfY+v+P8AnPvVojHBFMKA9OP5f/W/zxQbFFo/bHuOn4/n3xUJUjr+daBB HBFRlAenHt2/z/nFAFKipmj9sH9P8/SoiCOooAYVB9j61A0Xtj3HT/63+etWaKabWwrdVo/wfqv6 ZQII612Ph2x8uI3si/PKCkOf4YgfmbHrIwwD/cUEHDmsWzsvtlzHCAQmd8pHQRqQWPsTkKp6BmXi u+VVRVRFCoihVUDAVVGAAOwAGBQ2n0s+ttvuJcmtGvufTuv8mOooopFJp7fcMKZ6ce3b/wCtUZBH BqeggHrQS4J7aP8AD+vQr0VIU9Py/wAP/r1HQLmlHSSuu/8AwevzIynp+X/1/wDP1phBHWp6QgHq KA5Yy1i7Pt/wOhBRTyhHTn+f/wBemUENNPXT+u4EA9ajKen5VJRQUptb6+fX/gleipyAeo/HvTdg 9T+n+FBomnsfwpUUUV0GAUUUUAFFFFABRRRQAUUUUAFFFFABRRX3D+x34V8J/Ffw3+0r8FNW8MeH 9T8ceLPg1qXjj4SeILzRtOu/FGleOfhRcf8ACVnw94Y1qW3fVdJXxjon9pWesQ2FzDb6hZ6csN7H LEAAN21A+HqK/WL9iv4O/CLVvg5ead8WvDWg6h4w/a78ZeK/gj8Dtf1/T9PubvwHd+C/AGt6q3j3 w7c3drc3VnNf/EjW/B3g6WSwaC4kuEWOWQWizwXfhHwY8C6F4B/Zw/a4+LnxH8H6Hqev2A0H9nb4 caf4s0XTtW/sj4j+LtSmvPGmq6VHqdvdRaX4s8FeFNGkvtM1axVdUsJbmcWlzaiWSVlffyaXrfT8 APhSivvL43/D/RPiD8Af2Pfi38M/B2h6VrfiSw1X9nr4gaX4T0XTdGTVPih4J1iJfDOr6rDplva2 +oeKvHnh7WYdRvtUuFa/vjawm9mkaNGHtv7bPwh+EFh8H9Ob4OeG9B03X/2T/iBpf7O3xq1vQtO0 +0vvHep6r4E0DUo/iJ4jlsrWCa5nj+IWjeOPCX2q/luLx7oBCY7Y29val9vNteltPz/MD8oKK/WD Xo/g9+z/APHn9hz4S+Lvhr8OdYtPBfgbwpdftFv4g8G+G9Un1rxP8eC9/rlt4zl1HTZrjXh8N9B1 vR9R8Lvq0k0mi7FGlR2IRd/IfCP4F+Efgl+1D+0hq/xd8J2PjL4W/siaX488RX/hnxHZWWoaN43u r++HhT4QeH9RttVgurOZvFdz4i0nWrIXlvNFusd80cwQwynN+V1562/y+8D8zqK/Vjw/+zX4C0z/ AIKI6no+paZpl7+zv4attW/aeZbjT7e68M3PwPi8LN8TtEtH02eP7Fe+HVuL3S/Bt3ZXcYs7iGO5 tbhJoSyS/mT4v12DxR4s8T+JbbR9L8PW3iHxDrWuW+gaHZWum6LocGq6jc30Oj6Rp1jBbWVjpmmx zrZWNpaW8Ftb2sMUMMMcaKgE7/cn9/QDna0tG/sj+19K/wCEg/tL+wP7Ssf7b/sYWp1f+yPtUX9p f2UL0iyOpfYvP+wi7ItftXlfaD5W+v048VXvwY/Yd8GfCnwyfgR8OPjv8f8A4h/Dfw18VPHXiT40 6feeKfAngvT/ABlDNd6D4L8P+CYbyws7y+sbONn1TWJbqKZp9kyXN5b3kNhovzj4v+JHwe+MnxF+ CuqeEvgVoPwi8UXPi3R7D4naR4T1CSb4XeJxceI9Jj02fw74K1KC6k8Nh7Nru31fT11O50y4RoFS 1aT7RcTF/LTXW66X/pAfOnxB/wCFf/8ACZ+IP+FVnxifh79u/wCKVPxBGiL4zOm+TF/yMA8OFtEF 99o8/wD5BxMHk+V/y031x1fqLrn7M3h742/8FNfiF8C9J0+28JeBIviB4m1DUtL8IWOlaKun+FPD Gif21e6R4bsUjtdI0271VraPRtOkaKOxsLvUo764ja3glVvtBv2f/j5aXn/CL6Z/wSc/Z2k+Eccp sltdX+IXw4vPjFc6MrCLzpPi5/wtU6nba5Nbgytdx6dceRcvtSaVY/Odcy09E9Wl+e7A/nqor9T7 b9mDwZ8I/wDgpp4B+BWp6JF4k+G2seL/AA5qdl4Z8Yx2GtP/AMI14t8NSaunh3xAsbXWnalc6BeT 3GkPdxS3EN8dMh1BJWM4IivP2lP2Zvhf8WNT+EGhfsg/BXxd8FNF8Z3nhHxH4y8d6Tfa78Y/EVpa 6zJpWueLtH8XS38Nr4VFwUutR0XQdM0mG3sbUWtpHPYNk27v2Tel/wCvMD8taK/Si4/Yw8JXf/BQ 3xb+zFFrWoaN8LvDGu6p4n1fVfONzq+k/Dew8HwfESbToLqaOd59Sj0u7tvDltqM0Fy63Eianc29 z5csUlS//bG/Z2stZk8IeHf2GPgPc/BCO6OnZ16z1u5+N+o6FG/kf2mvxUGrtf6Prt3bD7Z5aW2o LZ3Mn2b+0rpY/tjl+yvpfot/UD4l8Gf8Kn/sDx//AMLCPxDHij+wIv8AhVo8GL4bOgHxT9obzh4/ OtsNRXQPsuzyj4dDaj9o3bx5eK88r79+AOgfDbxT8Pv2+Nd0rwXbDRNC+Eia38N4PF8WleKPEfgy 3uPH9hDp72uvSaZbGDW4dLlWyu9V0y3sJrhTIhJR23Z/7F/h3W9aPjOfwR+x5B+1F8QbefR4tB1L xnJe3nwn8DWUkd82oDxN4fDaPoeq6xqkq2f9mrrnie1QWsF5JZ28T288l0X38rbtdV+H4gfCVFfs n+1z+zt4h/4Ze1X41fFX9lr4ffsufFnwV4/8L6JBD8Jb7w/b+CPiH4O8URXVncGXwh4e8TeJrbQN Y0HVo7OUXs93HPeW9w8Q+0IzCy848V6h8Gf2HfBfwp8LD4C/Db47fH34h/Dbw18VPHnif41abd+K /A/g2w8ZRTXeg+CvDvguK8sLS4vbCyjZ9T1hrqCd52SZbm9gu4bDRTmvtq9rXXTz2sB4V+zf4P8A CniD9nX9tzX9d8N6JrGueDfhx8NtQ8J6vqWmWd7qPhq+1H4hQWF/eaHeXEUk+mXN5ZE2lzPZvDJN bkwyM0ZK1816b/wqf/hWviP+1z8Q/wDhcP8Ab+lf8IiNNXw3/wAK1PhbYv8AbZ8RtdMPFA1/zN/9 lDTFOnFNv2shs1+ofgn4p/Bz4r/snftu+IPCnwj0H4K/FBfhz8PYPGPh/wAAz3sXw08T6KvxI0p9 P8Q+HfD2oS3k/hLU9PvZZtN1bSbe/m025trnS722LXLX4h+V/Anhjw1dfsDfHvxZdeHtDufFOk/H P4T6XpfiW40mwm8Qabpl/pOsSX+nafrMlu2o2dheyRxvd2dvcx29y8aNNG7KpCvvv8SX4L8APiGi v0q8J6f8G/2Uf2d/hR8YvHHwh8L/AB2+Nn7QH/CUa14L0D4jC6vvhr8PPAXhfVRoseoat4atpYYv FGt+I73bdQRXMyJb2LhIrjTJrG5j1v1L4A+OP2a/2n7r4txeNf2aPhf8N/it4Y+Avxd8TeF5vhlp VzpXwz8SHSPC090v2rwHqN3qkHh/xd4Znjg1rQNf0q923lumr22oJHJFpwld/J22vp3tt2v1A/Mb Tf8AhU//AArXxH/a5+If/C4f7f0r/hERpq+G/wDhWp8LbF/ts+I2umHiga/5m/8AsoaYp04pt+1k NmtG6+D3i+0+DGl/HeU6V/wg2sfEPUPhjZhb2Rta/wCEl03QYfEdyZdP+zCJNO/s6dBHdC7Z3uN0 RgVRvP0V4E8MeGrr9gb49+LLrw9odz4p0n45/CfS9L8S3Gk2E3iDTdMv9J1iS/07T9Zkt21GzsL2 SON7uzt7mO3uXjRpo3ZVI+3dR/a8Fn+wl4N+I/8Awy9+x/dfa/2lPEPgv/hA7z4KtN8N7b7D8OrH VP8AhLbTwv8A8JOhh8a3m/8As6+137ewuNLRLT7Im3zCrvovtW3X4AfiJRX33+yFpWt+LdU+Ies+ CP2MdK/aS+INxqtlcaC/iBL0/BX4c2V/JqV1qFlqvhXzdL0S8uruVrODQrXXPFUCQaba3H2OFHtZ 5bv6Y/a5/Z28Q/8ADL2q/Gr4q/stfD79lz4s+CvH/hfRIIfhLfeH7fwR8Q/B3iiK6s7gy+EPD3ib xNbaBrGg6tHZyi9nu457y3uHiH2hGYWTvrb9V+W/9bAfJnjjw34dtv2AfgX4pttA0W38T6n8fPip pepeI4NKsYte1DTLLQtHks9OvtXjgXULuxtJHeS2tJ7iS3gd2aKNGYk/D9ffXj7/AJRx/s+/9nFf F3/1H9Fr4T0vTbvWdT07SLCMS3+q39pptlEWCCW7vriO1toy7YVQ80qKWYgLnJ4FEev+J/mBRor9 WvjD48+Bf7Eni6b9n/4f/s4/B343eOPBVho9r8Vfit8e/D9/44g1/wAX6hpNlqmqWPg7wv8A2lpl n4a0fSlvY7O1nim895VkiuLe6ntX1fVPMPjb4Q+Dnxn/AGb4v2rPhB8PbP4NeJvCnxFsvhr8Zfhl od/d3vgqe41zS31Lw9438Fx3peXRbS7kRdMvNBjZLeGZ38qIGxfUtbL7aaPZ/lp0uB+elFfrZ448 TfAb9nL4DfslePtP/Z2+FvxM+MnxJ+EL3Oon4kaLLqnw/stP0fxBqEFx4k1nwlpt1pKeLfGHiSe8 j09dS1e+ddK0/wAPL5CeZeyGTlra4+DX7OXwY8C/tA+N/gb8P/i18bP2nNa8eeMvBfgbxNYzxfBf 4SeAtK8RzWUccPgiynjttYk1O9nUaNpk1wIdN0VILWC602TTbhNcL+XkttXr9224H5eUV+vnwB8c fs1/tP3Xxbi8a/s0fC/4b/Fbwx8Bfi74m8LzfDLSrnSvhn4kOkeFp7pftXgPUbvVIPD/AIu8Mzxw a1oGv6Ve7by3TV7bUEjki04S/kHQne+lrAFFFFMAooooAKKKKACiiigAooooAKKKKACv1T/4JUfs of8AC9vjQPif4t037R8Mfg1eWOrzR3MW6z8SePCRdeGdBKyL5dza6U0Y8R61GDKix2uk6fewNba4 Gr81PBPgzxH8RPF/hrwJ4Q02bV/E/i7W9O8P6Hp0AO+61HU7mO1t1d8FYLdHk826upSsFpbRzXNw 8cEUjr/bV+zF8AvDn7NHwV8G/CXw8IbiTRbEXfiXWY4vLk8SeL9RVLjxDrs24ebsur3MGnRTNJJY 6Pa6bpokeOyjNTN2Vur/AC6ge/UUUViAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMdtq5HUnCjnqfoDw Bkn2BoAqXMmW8sHheWx3b0PPYYOCOp9RVWrDJ/eGT69yTnnPqTk8/XFRFCOnI/X/AD9KAGUUUUAN Kg+x9ajKke49f8fSpqKAK9FSlAenB/T/AOtUZBHUfj2oASiiigBCAeoqMoR05/n/APX/AM8VLRQB XoqcqD1/PvURUj3HrQA2iiigBpUH2P8AnrURUjr+dT0UAV6KlKA9OD+n/wBaoyCOooASiiipcU/J 90BGU9PyP+P+P51HVimuVClnwFUEknsByTn8KV5R3V13W/8AX9XAxtUuTDAY0OJJsqDkgqn8bZBB BI+VcdCc9q5MgjqK0ruRrid5f4ScIO6ovCjoOT9499zEDjFVCOoP41ZtFWXnuyuQD1qMp6flVgp6 fl/9f/P1qOgorkdiPwNRlPT8j/j/AI/nVsgHqPx71GUI6cj9f8/SgCoR2I/A1G0ec4/I/wBD/n61 bIB6ioyhHTn+f/1/88UAUGjxnH5H+h/z9ajq+QDwRV3TrEXVyN4zDFh5M9zn5U6dHI59VDDrigDW 0iz+zW4kcYmnAds9VTqiexwdzDg7m2n7orWp5Qjpz/P/AOv/AJ4plBjK99ev5eQUUUUEhRRRQaKf fXz6hSEA9aWigvRruiIoR05H6/8A1/8APFMqxTSoPsfX/H1oJcOsXZ9v+CQ0hUHr+fenlSPcetNo FzdJL+v66ohKEe4/z2ptWKaVB9j60A4J6xfy/r9SGinFSOv502gzaa30P4T6KKK6ACiiigAooooA KKKKACiiigAooooAK9q/Zy+Ks/wQ+Ovwr+K0TyLb+DPGWk6jq6Qq7S3PhueY6d4psY1TLltQ8N3u q2IAV8m45SQZRvFaKAPvb9rr47fDq4+LXwosf2Xdamk+E/7Pek6bN8MdT/svV9GSTxfqHiy8+I/i TX4tM1vTtF1a2lHiK/s9Nk+06fZmb/hH4prfzLeSK6m7X9vP9oj4KfFHQvAXhT9n67nPh7xD4q8a fH/4t2b6VrGlJbfGT4jxaXa3+juNX0rShfzeGrSw1CAalpiX2lXMesbbTUbkROI/zUopWWnl+Pr+ YH6YfsJ/tIfBj4V+D/iD4V+PFzK2neEvF/hb9ob4Kaauk6zqkV/8aPAula1ptppBbSdN1JNOl8QQ 3OhRJqWpNpemWy6U/wBs1SBXjI4r9jT45/DLTPiN8WdA/aj1y4j+Enx60mO/+IOqvpWsa2x8ceGf GVj8QfC+tXOnaDpms6lcNNqsGs6a5ttMn8tteaWV4LZJ5B8CUUWWu+v4en5gev8A7QHxRu/jV8a/ ih8VLtpceN/Get6zp8U2fMs9De6e38Pacd3zY0zQYNN05N3Oy1XPNfcv7Uf7VXwr+Jf7OPhLT/BG p3Nz8cvjGPhhd/tRltK1iy/0r4I+Dn8K+GrebUb/AEy103VofEWqXY8TQnR9R1f7GdMihv5bSYpF N+XdFFlp5f1/XmB+o0/7VXwqk/YiGhLqlx/w1TN8ObL9l64jGlayAPgNYeO5fGkF+NaOmf2CYG0Q Q+CZNN/tttUIUXC6YtoqzJ8o69/wzL/wyt4H/sH/AISL/hqj/hZWsf8ACb+f/bf9gf8ACu/smr/2 b9n83/im9vmf8I99l+w/8T77f/b/APaf/Eu/suvmeii1u+9/+B6eQH6Vy/En9lj9qvwB8M9O/aH+ IPi74A/Gv4UeCdI+GifE3SvA2ofEnwV8QPBPhzzo/DT654c0GeHxDaeKdLt5ZLa5vInht7rzJLma 7vEmtbDRfDfHh/ZY8B+Nfg9Z/BHxX4+8djwt4p0/WfiV8V/FWkN4Y0HXoY9c0m6tYPCngD7Jd+Id Ms9FsrS7lnn1C9mv76a5eBLS5EdvKvyNRRbzdtdPX/hwP0B8WftVaL4J/b78b/tLfDYwePPBGoeO 9dufsV3aajo9r4z8DeJdHbQdf0yW01rT7XULB7/S7y8WzbUdLDWeoRWl3LZzJD5Um1e/D3/gmpqO qv4+s/2iPjJ4f8KSzf2pL8BH+Ed9qHxCgR2+0TeG9O+JQvm8ERxRsWsrO8v/ALbLHbiNrrUbudXu 5Pzkoot2bWlvkB9j/Af4r/CDwd+2r4D+LcGjyfCb4M6L8Sv7dttHmufEHjKfwl4YS3uobeK4uILf VvEGsXC70knFvbXkqzTvHArW8SEfM/jTVLHVvHvizWtPn+0aZqfi/XtUsbnypovPsb3Wbq7tp/Jn jjuI/Mt5Ek8qaKOZN2ySNHBUchRRbW/lYD9K/ix+194a8M/8FE/FX7UXwluIPiF4DudU0SE211Ya todt4w8KXnw00LwZ4u0iWy8QaXY6nYSSomq29nNqGk7IdQtbTUBbXdqsYnp3/wAPP+CamtaxJ4+s f2jfi74Q8KXFydWuPgPP8HtU1fx5bQyObmbwzpHxGhvpfBcEcZLWGn3upHUXigETXmoXkyyXb/nB RRbaza0t8vuA+3/hD8Wfg54P8J/ttaLZ3GreDtJ+K/w4/wCEc+D/AIa10al4m1m5KeN7PVrHRNT1 zRdFGmw3lro0O+fUNUGm2MjxmJbu4nIeb0f4B/GX4K+IP2Xr39mf4mfGjx/+zTqFj8TtR+Ilv8QP B3hbW/GHhvxxY6rotlpT+H/Gmg+E7ux8RXlxpstkktiGnXSzFFYySO1xaIifmzRRZee6fzSt/VwP 0r8YfEb9lLwd+yp8cfgL8JfHfjLxt4x8QeMvhL4rHj7xh4Y1bw9H8TrnSdU1lNZsfDHh+G31OPwn oXgrTBaXyS+MtZtdZ1/UPEWqR2iTw6daREm+I/7K/wC1Z4A+GVh+0N8RfFv7P/xr+FHgjSPhoPiT pngTUfiX4K+IXgrw55sfhmXWfD2gTQeIbPxTpltLJbXd2kkNtd+ZJcyXV4s1rYaL+alFFvN3ve/X awH6qQfET9ij4R/s2/tM/Br4UeO/F/jv4g/Ejwj4Qhi+JnirwbrPhqw8Z3+k+MtPv4/CXg7w5DZa jP4X0nStPhvtZ1O/8X6hp8up309tbQXN+LS0gs/mfwb8UPAulfsWfGj4S3+ufZ/iD4s+MXw18VeH /D/9maxL/aGg+H9N1S31e/8A7Vh0+TRLX7JNcwp9lvdStr2ffutbeZVdl+Q6KLeb3T+aA/Q/4ffF n9nL41/AXwJ8Af2nPEPi34WeIfg3eeIz8JfjV4X8Ny+NNOi8M+Kr9dU1bwj438LWLLrN/Da6ltn0 m40sb1t4beAXemC3u49c+n/2VNB/ZJ8A3fx80H4P+PvGXx5+IF5+y/8AHHUNS+J2reCLr4aeBvB3 hXT/AAv/AKZa6L4Z1u4vvEV1rms3tzYW17quoyw2dnp8L29lIrX11DcfDfwg+MH7Mkvw3svhN+0b 8DNW1S00XVtV1fw/8X/gzqOm+HvizanWZI5L3TfEMGvFvD/jGzQwwRaW+rSxLo9pbx21rZu7y3Dd n4q/aP8A2fPhn8MPH3ww/ZE+HPxG0W9+LWjf8Ir8RPi78Z9a0DUPHtz4HeeO4v8AwX4f0bwkp8Oa Rp2uvGsWtX0TrNeWYNtPaTzpp19paa6K+/lbdO9/07gefeDfih4F0r9iz40fCW/1z7P8QfFnxi+G virw/wCH/wCzNYl/tDQfD+m6pb6vf/2rDp8miWv2Sa5hT7Le6lbXs+/da28yq7L6h8GvGn7OHxD/ AGULv9nH43/FrXPgZrvhj42Xnxe8K+M7X4da78StG1yy1XwdaeGLvw9caN4cuLa/t9QiltprkXNz dWNmqPZGOec/a4U/POinbffV3+YH6YfBL4v/AAK1n9mzWv2YPHvxz+IH7PD6X8Wda8f6X8T/AAh4 O17xL4d+Iujajpdro8Ol+NvC3he+tvErXVsLGG7srWW7bToY1sfOmlurJFWLxh8Rv2UvB37Knxx+ Avwl8d+MvG3jHxB4y+EvisePvGHhjVvD0fxOudJ1TWU1mx8MeH4bfU4/CeheCtMFpfJL4y1m11nX 9Q8RapHaJPDp1pEfzUoot5ve9vMD688X/FDwLqn7FXwe+Eljrnn/ABC8K/Gj4jeLNe8P/wBmaxF9 g8P69o+mWuk6h/as2nx6Jdfa57eaP7LZ6lcXsGzdc20KMjNh/tNXX7N1j498D3v7J03ia28L2fw8 8H3XiO415tbS/g+JtvNfTa1NbNrv+lrNFCmkSXrWH/EiGsLfHQP+JYLevl+ihK3fdv7/AOtAP1B8 feL/ANjL9sTU7X4s/FX4teLP2X/jbqOlaRZ/FC3h+F+s/FHwB441vRtNtdLHifwtB4VurbVNBudV s7S3F5aak8dtBNEiLBdzJc6xqnlHx2+NPwV0D4J6R+y3+zP/AMJVrfgYeNV+I3xL+KfjWwg0bW/i R4uttNbStJtdJ0GItNonhHRrR/MtrS+8q9lvIoHkgEsN5qOs/CtFFvWy2XRf10uB9eftI/FDwL4+ +Fv7JPhzwlrn9raz8MfgvdeE/HFn/ZmsWH9ieIJPFWp6kmn/AGjU9Ps7XUt1lcQzfatInv7Ib/LN yJVaNfU/h98Wf2cvjX8BfAnwB/ac8Q+LfhZ4h+Dd54jPwl+NXhfw3L4006Lwz4qv11TVvCPjfwtY sus38NrqW2fSbjSxvW3ht4Bd6YLe7j1z88K+yvhB8YP2ZJfhvZfCb9o34Gatqlpourarq/h/4v8A wZ1HTfD3xZtTrMkcl7pviGDXi3h/xjZoYYItLfVpYl0e0t47a1s3d5bhi1l10d9N1e/377dgPuT9 lTQf2SfAN38fNB+D/j7xl8efiBefsv8Axx1DUvidq3gi6+Gngbwd4V0/wv8A6Za6L4Z1u4vvEV1r ms3tzYW17quoyw2dnp8L29lIrX11DcfijX374q/aP/Z8+Gfww8ffDD9kT4c/EbRb34taN/wivxE+ Lvxn1rQNQ8e3Pgd547i/8F+H9G8JKfDmkadrrxrFrV9E6zXlmDbT2k86adfaX8BUJb762332/AAo oopgFFFFABRRRQAUUUUAFFFFABRRX0V+yr+z34g/ad+N3g/4UaJ9otrHUbk6n4v1uCMOPDngzTJI pNf1liyvELhYZI9P0pJgIbnW7/TLORlW4LKbAfsR/wAEbv2T/Ig1L9qvxrpmJbgaj4X+ENvdw8x2 48zT/FnjSAMDg3DfaPCmkTqVYRR+Jt8bRXNlNX7/AFc94S8KeH/Avhfw94M8KaZb6N4a8K6Np2ga Fpdqu2Cx0vS7WKzsrdM5ZykESB5ZC0s0m+WV3ld2PQ1g3d3AKKKKQBRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAVXLb2z2UkL/JmHPcjA9hxwxqWRsDAJBbgEdh3Psew9yKiAAAA6AYH0FBM720Xr6BUZT0/L/D/ AOvUlFBmpteaKzJnqMH/AD+f+eaiKkfT1/z0q6QDwajKY6c+3f8A+vQaqSe33dSpRUrID04Pp2/+ t/nioyCOtAxKKKKAIynp+VMII61PSEA8GgCCinlMdOfbv/8AXplABRRRQA0qD7H/AD1qIqR1/PtU 9FAFeipSgPTj+X/1qjII6igBKCM8GiigCMp6fkf8f8fzqOrFIQD1oAgrG1a52qtuh5f5pCOyA/Kv B6sRk5B+Ue4rZmKwo0jH5VGT6+wHqScAepPSuSnV5ZHlJyzsWI9MngD2UYA74Az3NBcFd36L8ypS FQev596cQR1FJQakJUj3HrTCAetWaaUB9j/ntQBUKEdOf5//AF/88UyrJUjr+famlQev596AKxUH 2PrUZUj3Hr/j6VYKke49f8f8496bQBWKhjjGSeBjqT6e/pXW2NqLWBUP+sb55D/tED5ep4UfKPXB Pes3TLMTSmZh8kWNvTBl6rxj+EfMcYwdvrXQFSPcev8Aj6UGc30+bG0hUHr+felooJUmtN12f9aE JUj3Hr/j/nHvTasU0oD7H/PagLJ/C9ez/R9SGilKkdfz7UlBO24UUUUDTa2CiiigtT7/AHhTCgPT g/p/n6U+igtpNdyAgjqPx7UlWKYUHbj2P+f8aCHFrWL+X9bkVJgeg/IU4gjrSUBzr7S19F+ux/CP RRRXQZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFf1of8ABLX9lD/hn/4IxePfFmm/Zvil8YrXT9f1ZLmIre+HPB4Q3HhXwyVkUS2tzNb3 Da9rsBWGZdQv7fTL2N5NDgcfiv8A8Ex/2UD+0d8c7bxL4p037T8KvhJNp3ibxUtzEWsvEGvec8vh XwgdwMdxFe3trJqmtQMskMmh6ZdWFx5T6rZu39dHTpWc30+/9ACiiiswCiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAo6daKaw3DbnGep9vT8en0zQJtJXZDncd3r09l7fn1P1x2FFKQR1H49qSge+wUUUUEuKfk+ 6CiiigzcXH/Nf1oIQD1H496iKH6j/Pb/APXU1FA1NrfXz6/8EplPT8v8P/r0wgjrV0qD7H1/x/zn 3qJkPcZH+fyoNE09itRTyhHTn+f/ANemUDCkIB6j8e9LRQBEUI6c/wA/y/8A10yrFNKg+x9f8f8A OfegCGinFSOv502gAoIB60UUARlPT8v/AK/+frUdWKQgHrQBBRTyhHTkfr/9f/PFVriUQxM/U9FH qx4HY8DqeOgNAbmVqdxucQKflT5nx3c9F6/wjk5HU+orKqdhvJZuWJJLcAknkk445+n0xURUj3Hr /j/nHvSaT8n3W/8AXqaWlHbVf106EbIrDkfj/n/PpVd4iORyP8/5/rVqildrfVd1+q/yKU0/JmfR V1o1YdMHt/nt+H45qs0bL7j/AD/n19qrfYojphQHpx/L/wCtT6KAICCOopoiMjKqj5mIAA7knH+T x6mrJAPWtPTbTJNwegysYPr0ZvXgfKD67vwBN2TZft4Vt4UiXnaOT/eY8sfxPQdhgdqmpSCOopKD B66jCgPTg/p/9aoyCOtT0UAV6KkKen5f4f8A16YQR1oASmFAenH8v/rU+igpS6SV1+K9GQEEcGkq wQD1qMp6fl/h/wDXoDlvrF38uq+X+RHRRRQSFFFFA02tgooooNFNPfR/h/XqBAPWm7F9P1P+NOoo Ksnukz+XH/h0d+2v/wBCV4R/8OF4Y/8Akyj/AIdHftr/APQleEf/AA4Xhj/5Mr+t6ir532X4/wCZ gfyQ/wDDo79tf/oSvCP/AIcLwx/8mUf8Ojv21/8AoSvCP/hwvDH/AMmV/W9RRzvsvx/zA/kh/wCH R37a/wD0JXhH/wAOF4Y/+TKP+HR37a//AEJXhH/w4Xhj/wCTK/reoo532X4/5gfyQ/8ADo79tf8A 6Erwj/4cLwx/8mUf8Ojv21/+hK8I/wDhwvDH/wAmV/W9RRzvsvx/zA/kh/4dHftr/wDQleEf/Dhe GP8A5Mo/4dHftr/9CV4R/wDDheGP/kyv63qKOd9l+P8AmB/JD/w6O/bX/wChK8I/+HC8Mf8AyZR/ w6O/bX/6Erwj/wCHC8Mf/Jlf1vUUc77L8f8AMD+SH/h0d+2v/wBCV4R/8OF4Y/8Akyj/AIdHftr/ APQleEf/AA4Xhj/5Mr+t6ijnfZfj/mB/JD/w6O/bX/6Erwj/AOHC8Mf/ACZR/wAOjv21/wDoSvCP /hwvDH/yZX9b1FHO+y/H/MD+SH/h0d+2v/0JXhH/AMOF4Y/+TKP+HR37a/8A0JXhH/w4Xhj/AOTK /reoo532X4/5gfyQ/wDDo79tf/oSvCP/AIcLwx/8mUf8Ojv21/8AoSvCP/hwvDH/AMmV/W9RRzvs vx/zA/kh/wCHR37a/wD0JXhH/wAOF4Y/+TKP+HR37a//AEJXhH/w4Xhj/wCTK/reoo532X4/5gfy Q/8ADo79tf8A6Erwj/4cLwx/8mUf8Ojv21/+hK8I/wDhwvDH/wAmV/W9RRzvsvx/zA/kh/4dHftr /wDQleEf/DheGP8A5Mo/4dHftr/9CV4R/wDDheGP/kyv63qKOd9l+P8AmB/JD/w6O/bX/wChK8I/ +HC8Mf8AyZR/w6O/bX/6Erwj/wCHC8Mf/Jlf1vUUc77L8f8AMD+SH/h0d+2v/wBCV4R/8OF4Y/8A kyj/AIdHftr/APQleEf/AA4Xhj/5Mr+t6ijnfZfj/mB/JD/w6O/bX/6Erwj/AOHC8Mf/ACZR/wAO jv21/wDoSvCP/hwvDH/yZX9b1FHO+y/H/MD+SH/h0d+2v/0JXhH/AMOF4Y/+TKP+HR37a/8A0JXh H/w4Xhj/AOTK/reoo532X4/5gfyQ/wDDo79tf/oSvCP/AIcLwx/8mUf8Ojv21/8AoSvCP/hwvDH/ AMmV/W9RRzvsvx/zA/kh/wCHR37a/wD0JXhH/wAOF4Y/+TKP+HR37a//AEJXhH/w4Xhj/wCTK/re oo532X4/5gfyQ/8ADo79tf8A6Erwj/4cLwx/8mUf8Ojv21/+hK8I/wDhwvDH/wAmV/W9RRzvsvx/ zA/kh/4dHftr/wDQleEf/DheGP8A5Mo/4dHftr/9CV4R/wDDheGP/kyv63qKOd9l+P8AmB/JD/w6 O/bX/wChK8I/+HC8Mf8AyZR/w6O/bX/6Erwj/wCHC8Mf/Jlf1vUUc77L8f8AMD+SH/h0d+2v/wBC V4R/8OF4Y/8Akyj/AIdHftr/APQleEf/AA4Xhj/5Mr+t6ijnfZfj/mB/JD/w6O/bX/6Erwj/AOHC 8Mf/ACZR/wAOjv21/wDoSvCP/hwvDH/yZX9b1FHO+y/H/MD+SH/h0d+2v/0JXhH/AMOF4Y/+TKP+ HR37a/8A0JXhH/w4Xhj/AOTK/reoo532X4/5gfyQ/wDDo79tf/oSvCP/AIcLwx/8mUf8Ojv21/8A oSvCP/hwvDH/AMmV/W9RRzvsvx/zA/kh/wCHR37a/wD0JXhH/wAOF4Y/+TKP+HR37a//AEJXhH/w 4Xhj/wCTK/reoo532X4/5gfyQ/8ADo79tf8A6Erwj/4cLwx/8mUf8Ojv21/+hK8I/wDhwvDH/wAm V/W9RRzvsvx/zA/kh/4dHftr/wDQleEf/DheGP8A5Mo/4dHftr/9CV4R/wDDheGP/kyv63qKOd9l +P8AmB/JD/w6O/bX/wChK8I/+HC8Mf8AyZR/w6O/bX/6Erwj/wCHC8Mf/Jlf1vUUc77L8f8AMD5k /ZC/Zy0T9lz4GeE/hfpwtrnXI4jrvjvW7dMDX/G2qwwNrV6rlVd7OzENvo2j+YqyLo2l6esym485 3+m6KKjfUAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkAxn1PX+g/ClooJlHmW9gphTPTj27f/AFqf RQZ+9H+tGQEEcGkqwQD1qMp6fl/h/wDXoLU099H+H/AI6KKKCwooooIcE9tH+H/ACiiigzs4vsMK A9OP5f8A1v8APFRMnYj8f8D/AJ/OrFFBan3+9FEoR7j/AD2ptXCnp+X/ANf/AD9aiZB3GD/n8/8A PNBpvsQUU4qR1/Om0AFMKA9OP5f/AFv88U+igCAgjrSVYqMp6fl/9f8Az9aAI6KUgjrSUAFc/qE3 mzbV+5HlQR0ZujHg4OCNo74B7Gta7n8mL5Th3O1PUf3m6H7o/Ugd6waBp223K9FSlB249j/n/Goy COtBan3+9DCgPTj/AD6f/qqIgjqPx7VPRQNxUtVp5rYr0VKUz049u3/1qjII4NK3VaPy2fqv6Yry jvqv669CFog3Tg/5/wA859sVXZGXqP8AP+fw96u0EA9aV7b6efT/AIHz+8tST2+4qQxNNIka9WOC fQd2PsBk/pXUoixoqKMKihR9B/U9T71TsbTYpmwA0gwo7hPUf7x5+gB5zV6mmnszObu7dF+YEZ4N RlPT8j/j/j+dSUUyCvRU5APUVGUI6c/z/wDr/wCeKAGUhAPBpaKAIimOnPt3/wDr0yrFIQD1H496 AIKKcUI9x/ntTaAEIB61GUI6cj9f/r/54qWigq6fxL5rf59yvRUxUH6+v+etRlSPcetAOPVaruv1 7DaKKKCQooooGpNbM9QooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQQ4J7aeXT/gCEA9R+PeoyhHTkfr/wDXqWigi8o6fg9vl/wCvRUxUH2Pr/j61GVI9x60Gikn5PsN ooooKtfcKKKKDNw7fd/wf8wpCAeopaKCE3F9vIiZD25Hp3/+v/nioSg7cH07f/W/zxVukKg9fzoN FNPfT8iiQR1FJVpkI9x9P5ioSnp+R/x/x/OgsjooIxwaKAEIB6io2TGSOg9e1S1TvJdiiNT8zg59 k6HsfvHjqOAaAMa5dppCwPyj5UX/AGR36kZbr+WelVKvlQev51EyeoyP1H+FK/R6P8H6P/hmNrqt V+K9V/w6KtBAPWnlCOnP8/8A6/8AnimUxEZQ9ufY9f8AP5VHVikIB6j8e9A02tmQUEA9aeUI6cj9 f8/SmUGimno9Py/r1Iynp+VPt4TNKqcgDlz6KOv58AfXNLWtaxeXHuIw74J45AH3QfzJPuaBSSWq 0v0LIAAAAwAAAB0AHAH4UEA9R+PeloqHDrF2f9dTMiKEdOR+v+fpTKsU0qD7H1pKbWkl8/6/QCGi nFSPcev+PpTa0TT2AQqD1/PvURUj3Hr/AI/5x71NRQBXoqYoD7H/AD2qIqR1/PtQAlNKg+x9f8f8 596dRQBCVI6/nTasUwoD04/l/wDW/wA8UARUUpBHWkoGm1s7DCgPTg/p/n6VGQR1H49qnooHeL39 191t80V6KlKDtx7H/P8AjTNjen6j/GgHF9r+a1R6dRRRQSFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUA0nuFFFFBm4dvuGFAenB/T/AD9KjII6j8e1T0UCUnHR6+u5 XoqQp6flTCCOtBopJ7fd1EooooBpPdBRRRQZuDW2v5/8EKaVB9j606igSk1/k/60IGT1GR6/55FQ lCOnI/X/AOvV2mFAenB/T/61BopJ+T7FFmCAs3AUEn8P6/1rGlLSOZD1bHHoBwBjJ6exPOT71pXs mCIgMHhnP6qvTB7E88ccc1n0Dd+lvR9fn0K9FTFQfY+tRlSPcev+PpRvuClr1T7f5PqRlQfY+tQt H6j8R/n+f4VYoqbNbars/wBH+j0Lunvo+6/VfqtSiVI9x602rpQHpwf0/wDrVA0fqMH9D/n2ppp6 bPs9/wDg/ITTWu67rb/gfMhppUH2PrTypHX8+1IAScAZJ4AHUn0piH28BeTJGUTknsTnhTyMZ69x xjvWrToIvKjC/wAR5b/eP+HSnlAenB/T/wCt/nigCKilII60lABRRRSaT3VwCmFAenB/T/61PoqH FrWL+X9bgQEEdaSrFRlPT8v8P/r01Po9H+H/AAAI6KUgjrSVYDCgPTj+X/1qjII4NT0EA9aAK9FS FPT8v8P/AK9R0AFRlPT8v/r/AOfrUlFAFcjHBoqcgHqKjKEdOR+v/wBegBlFFFA7tbNr5npFFFFA gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKBNJ7oK CAetFFBm4NarX8/69CMoe3Psev8An8qjqxSEA9R+PegFNrfX8yCinlCOnP8AP8v/ANdMoNE09ncK KKKAcU9/vCo5ZBFGznsOBxyx4AGSO/vnGakrLvJC77B9xD155cjBz0Hy8gdep/AM+R3XVFRiXLM3 JYkt2yT1+nt6VEU9PyP+P+P51JRQaleipyAeoqMoR05/n/8AX/zxQJpPdEJQHpwf0/8ArVGQR1H4 9qnooFaS295dnv8AJ9fmV6CM8GpCnp+VMII60mk9xxl2evVP9URFPT8j/n+f51JbQgyeYRgJ0Hqx 6HHt19M4x0pQCSAOpq6q7VC+nX696Emut157/wDB/MptPpZ+W3/A/IdRRRTEFRlPT8v8P/r1JRQB AQR1pKnIB4NRlMdOfbv/APXoAZRRRQAUUUUnFPf7+oCEA8GoymOnPt3/APr1LRUWlHbVf10/yAr0 VOQD1H496iKEe4/z2qlNPyYDaQgHrS0VQERQjpyP1/8Ar/54plWKaVB+vr/nrQBDRTipHuPWm0AI VB6/nTPL9/0/+vUlFAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQS4p+vdBTSoPsfX/H/OfenUUGbjKOq+9fqQlSPp6/56U2rF MKA9OD+n/wBb/PFBSn3+8qzSeWhP8R4UcdfXBPIHU9azMevPrnv7n8eanncu/wDsrkL1wfVsHHJP t0A9agoNCMp6fl/h/wDXphBHWp6QgHg0AQUU8pjpz7d//r0ygBCoPX8+9RFSPcev+P8AnHvU1FAF ekIB4NTlAfY/57UwIxYL69+cUCaT9e63HQRDlzz2XPb1OR+XQcVMUI6c/wA//r1IAAAB0AxS0DXr fzK9FTlQev596iKEe4/z2oAbRRRQAUUUUAIVB6/n3qIoR7j/AD2qaigCvRUxUH2Pr/j/AJz71GVI 6/nQA2iiigAoooqXFPyfcBpUH2Pr/j/nPvUZUjr+dTUVN5R31X9fd8wK9FSlAenH8v8A63+eKjII 61Sknt9wCUwoD04P6f5+lPoqgICCOo/HtSVYpuxfT9T/AI0Ad1RRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVa5k2psH3n BHbhf4j+I+UehOe1WScAk9Byaz3PmMWPfp14A6D+p9yaCeVXT/4ZlfA6Y49KjKen5f8A1/8AP1qY oR7j/Pam0FEBBHWkqcgHqKjKEdOf5/8A16AGUhAPUfj3paKAIihHTn+f5f8A66ZVimlQfY+v+P8A nPvQBDUiDv8Al/n/AD+tJsOcdu5Hp/T0571LQAUUUUAFFFFADSoPsfX/AB/zn3qMqR1/OpqKAK9F SlAenH8v/rf54qMgjqKAEooooAKKKKAGFAenH8v/AK3+eKjII61PRQBXoqQp6fkf8f8AH86jIxwa ACiiigAoooqHBPVaP8P+B8gIynp+X/1/8/WoyMcGrFIQD1FLmlHSSv5/8HqBB16Vf/sy8/55D/v5 H/8AFVPptp5kwmYZjiORnvKMFR2+79846EKCMGuiq07q6AKKKKYBRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjMFBJzgegyfYAepN AEUhz8gPoW6dOykdfm6njkAjvUZUH2PrSjPJJySST1xz2GewGAPpnGaWgyc3fTYhKke49f8AH0qM qD7H1/x/zn3q1TCgPTg/p/8AWoLUk/XsyoVI6/nTaskEdR+PaoygPTj+X/1v88UFEJUHr+feoihH uP8APapyCOtJQBXoqYqD7H1pgQ556fz/AM/h3oAcgwM9z/L/ADz/APqoKA9OP5f/AFv88U+igCAg jrSVYqMp6fl/9f8Az9aAI6KUgjrSUAFFFFABRRRQBGU9PyP+P+P51GRjg1YpCAeooAgop5QjpyP1 /wDr0ygAooooAKQgHqKWigCIoR05H6//AF6ZVikKg9fzoAgopxUj3H+etNoAKVVLsFUZZiFAHck4 A/OkrW0y3yTcMOFysef7x+834D5R1By3cUb7galvCsESRjGQMsf7zHlj+fAzyFAHapqKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKhc7mA7Kcnoct27fw/Uc/SpGbaM9+g+p6fh3PsDUI49/U+p7n8TQG4UUUUGTg1tr+f/AAQo oooICoynp+X+H/16kooLU2t9fzK5HYj86jKen5f/AF/8/WrZAPBqMpjpz7d//r0GiaezKhGODRU5 APBFRlCOnI/X/wCvQMZRRRQAUUUUAIQD1FRlCOnI/X/69S0UAV6KnKg9fzqIqR7j/PWgBtFFFABR RRQAUhUHr+dLRQBCVI9x602rFNKg+x/z1oAhopSpHX86SgAooooAKaVB9j/nrTqKAGRwvJIkajlz jPYDqSfZRknuccZrqI0WNFjQYVAAP8T6knknuSTVGwh2qZmHL8J7IDyf+BEenQAg4atGgAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiikPTA6nj6Dueo6fzxQJuyv2IWO5s9QOB7nuen4DntkdaSnlCOnIH5//X/zxTKATT2YUUUU DCiiigTinv8Af1CiiigycWvNBRRRQTtsIQD1H496jKEdOf5/l/8ArqWig0U+/wB5WKg9fzqIqR7j /PWrhUH2Pr/j/nPvUZUjr+dBomnsVaKmKg+x9aiKkdfzoASiiigAooooAaVB9j61GVI6/nU1FAFe ipSgPTg/p/8AWqMgjqKAEooooAKKKKACmFAenB/T/wCtT6KAICCOopKsEZ4NRlPT8v8A6/8An60A R1NbwmaVU7dXPoo6/ieg9yO2ahrcsofKi3MMPJhj6hf4R7cHJHXJwelAFsAAAAYAAAA6ADgD8KWi igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACkHOT69Pp/9fr+VLRQTJNrT/hwpCoPX8+9LRQZap9UyEqR7j1/x/wA496bVimlA fY/57UFqff71/kQ0UpUjr+fakoNN9gooooAKKKKCXFPyYUUUUGTi1v8Af0CiiigE2thhQHpx/L/6 3+eKjII4I/wNT0UGimnvp59P+AVCgPTg/p/9aoyCOoq2U9Py/wDr/wCfrUZHYj/P+e9BZXoqQp6f kf8AH/H86joAKKKKACgjPBoooAjKen5H/H/H86jqxSEA9RQBBRTyhHTn+f8A9f8AzxTKACiiigAo oo69KALFtCJZBuAKphmz+g/Ejn2BrYqGCLyowv8AEfmb6n/AYH4VNQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFAmk9wooooM3BrbXy6/8ABCmFAenH8v8A61PooJTaemn9diAgjg0lWCAetRlPT8v8P/r0Gimn vo/w/wCAR0UUUFhRRRQAUUUUEOCe2nl0/wCAFFFFBm01ugpCAeopaKAUmtvu6ERQjpyP1/8Ar1GQ DwRVmkKg9fzoNVNPyZTKEdOf5/8A1/8APFMq0VI9x/nrTCoPX8+9BRBRTipHuPX/AB/zj3ptABRR RQAUhUHr+felooAhKke49f8AH/OPem1YppQH2P8AntQBDVyzi3uXYZVOme7dvyHP1xVYIxYKBkkg DHcn/PP59K2o4xGioOw5PqTyT+J7dqAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAnF Pf7+oUUUUGTg15oQgHrUZQjpyP1/+v8A54qWigSk16divRUxUH6+v+etRlSPcetBqpJ+T7DaKKKC gooooBpPfUKKKKDNw7fc/wDMKKKKDPbcKaVB9j606igpSa815kJUjr+dRlAfY/57VaphQHpx/L/6 3+eKDVST2+4plSOv59qSrJBHBFRlAenH8v8A61AyKilII4NJQAUUU5ELsFHfv6DuT9KALVtH1kP0 Xp+J+vYfjVykUBQFHQDApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig lxT8mFFFFBk4tb/eMKA9OD+n+fpUZBHUfj2qeigam15r+upXoqUoO3Hsf8/41GQR1oNVJPb7uolF FFAwooooE0nugooooM3BrbVfj/wQooooIAjPBqMp6fkf8f8AH86kooLU2t9fz/4JXI7EfnUZT0/L /D/69WyAeoqMoR05/n/9f/PFBomnsypV+2j2rvPVunThf58/yxUSx72AI4HXrx/Lr0q90oGFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFBDgntp+X/AAAo IB60UUGbTW+n9dyMp6flUdWKQgHqPx70FKbW+vn1/wCCQUU8oR05H6/5+lMoNE09mFFFFAwooooJ cU/XuFFFFBm4tea7hRRTlGT7Dr/hQJXurbj0XAz3P8u1PoooNwooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAaT31CiiigzcO33f8H/MKaVB9j606 igjVPqmQlSPcev8Aj6U2rFMKA9OD+n/1qC1Pv95FRSkEdaSg03CiiigAqZRge56/5/z3piDJz2H8 6loFZJ3S1CiiigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUCaT3CiiigzcGttV+P/BCoynp+X+H/ANepKKCU2tvuICCOtJ1qcgHg 0gQA5z9P8/8A1qDWMr6dfwFAwAPz+tLRRQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFBLinv94UUUUBGPLfq /wBAooooKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK/PX/gqL8bfid+zz+x344+K3wg8TP4R 8d6B4m+HkGma0umaNrKxW2q+M9I07UraXTdf0/VNLuYL2xuZ7aVbiykKpIXhaKVUkX8Sfgb/AMHA /wAXvD72WmftA/CTwp8RdMTZDceJvAN1ceB/FSx5Be9utJvm1vwzrFyBuAtLFPCNswK/voyjGT9E 4c8LuLeLcgrcQcP4fB4/D0MdiMBUwX12nhswdXD0sPWlOlSxMKeHrQlHEQUIxxdOq5RknH4eb4Hi HxL4U4UzyhkOf4rE4DEYjBUMdSxbwdWvgPZV62IoRjVrYZ1a1CcZ4ebm54WdNRlGXPpK39YFFfJ/ 7JP7Z/wU/bS8G6z4y+Dd14kVPDOoWWleKNB8WaDJomt6BqGoWsl5ZW900FxqOi3wuIIpnSfRdZ1O BPKZZ5IZCqN9YV8PmGXY/KcbiMuzPCYjAY/CVPZYnCYqm6VehU5YzUakG5WvCcJxalKMoTjOMpRk pP7PA47BZnhMPj8uxVDG4LFU1Vw2Lw1SNWhXptyip06kUlJc0ZxekXGUJxlGMoyiiiqeoahY6TYX 2q6peW2naZplnc6hqOoXs0dtZ2NjZQvc3d5d3EzJFb21tbxyTTzSuscUSPI7Kqkj+Kr9uD/g4M/a L8cfETxF4W/Y71fTfhD8IdD1K60zRPG8/hbQ/EPxD8fW9pNJA/iC5HjDTdZ0jwro2qbFudG0iw0S HxBZ2jJNqmtfarl9N07jOxJvY/thor/OX/4fF/8ABS7/AKOw8bf+E98PP/mOr9xv+CQf/BQj9rT4 v/CP/god8RPjN8VLv4s6x8APgjovxC+G9j4w0jRYdI07XbLwz8Y9cnjvIPCth4avbzT9VuvCuiw6 lAL+GdrW1KWd1ZSyNNQNwaV9P+H0P6oqK/nU/wCCQP8AwVr/AGk/2+v2hviB8J/jL4S+C+geHPC3 wZ1j4h6dd/Djw1400XWZdb0/xv4D8Nw215c+I/iF4tspNMaw8UahLLBDp8F013FZyLeJFHNBP/RX QJpp2YUUUUCCiiigAooooAKK/mW/4Kpf8FlP2o/2Iv2sNR+Bnwm8G/AzW/CFp4C8GeKI77x/4V8c 6v4hbUPEMN/JfRPeaB8SfC+nm0ja2jFrGulLMgL+bPMSCv8ASh4c1GfV/D2g6tcrElzqmjaXqNwk CssKT3tjBcyrCrvI6xLJKwjV5JGCABnYgsQbTST77GzRRRQIKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKAPwQ/wCC9Xj/AMd/Dr4V/s8a78PvGvi3wJrY+J3iNRrHg3xJrPhj VQqeFxIijUNEvbG7CpIA6jzsK4DABhmvzH/YC/4KhftmL+0T8D/hD4y+Kt38U/AXxI+KHgjwDrWn /EiytfEOs2dj4t8Q2Gg3Wp6X4u2WvixdTsYr43Vmuo61qOmGeFBc6dOjyK36F/8ABw5/yRb9nj/s qHib/wBRQV/Pd+wr/wAnp/sm/wDZxfwb/wDU/wBBr+zvDjIckzbwTq1MzyjLMfVo4TjKrRr4rA4W riKNXDrM61CpRxTorFUpUqtGlUpuGKioygrRs5Rl/IfiJn2eZV40YOjlub5lgaFetwbRr4fDY3E0 8LWpYiphaNenVwvtpYWpGrSrVIVObDXkpNufMoyh/Wb/AMFrv+Ue/wAUf+xq+Fv/AKsDQa/iHr+3 j/gtd/yj3+KP/Y1fC3/1YGg1/EPXqfRw/wCSCxv/AGU2Zf8AqHlZ430iv+S4y/8A7JnA/wDqfmp/ VZ/wbv8A/JK/2k/+ygeBv/Uc1ev6LK/nT/4N3/8Aklf7Sf8A2UDwN/6jmr1/RZX82eM3/JzeLP8A sMwn/qqyw/o7wj/5Nvwl/wBi2p/6sMyPzV/4LB/EbUvhd/wTb/aq8RaPcSW2oap4I0jwBHJC5jlN n8UfGvhj4cayqOuGUnQ/FOpliCDsDAEHBr+QD/giZ+zL4G/ah/bt8J+H/iXodh4q8C/DPwX4o+L+ veFNWto7zRvEknhq60PQPD+nazZzK8F9pMXirxZoWp3+nXUctlqsGnvpeoQXFhe3MEn9cP8AwWl8 G6h44/4JmftQ6bpULz3ukaD4J8ZbEUtt0/wP8T/BPizXZmUDOy38P6Rqs7NwEEfmMdqmv5ZP+Df7 4weGPhR/wUI0TS/FOpWukwfGT4XeNPhDo97fTR29ofEup6p4U8a6Fp8lxKyxx3GtXvgVNE0uMsHv dX1HT9PgD3F3FG35gfpcfglbf/gf8Of3p2WkaVp1pb2Gn6Zp9hY2cMdvaWVlZW1raWtvEoSKC3to Io4YIY1AWOKJFRFACqAMV5H+0b4r1r4cfs7/AB88f+EZrfTPFHgj4L/FHxh4cvmsrS8itNe8M+B9 d1rRruayu4ZrO9jttRsreZ7W8gmtbhVaGeKSJ3RvbK+cP2xv+TRP2qP+zcPjh/6rHxRTW69V+ZC3 XqvzPwM/4Ii/8FJP2u/2yf2m/iV8OP2gfiHo/i7wl4e+BOueNtJ0/T/AHgPwnNb+I7L4gfDnQre8 e/8ACvh3SL6eJNM8QapAbOe4ktHedJmhM0ELp4/+35/wX7+Mel/GrxN8Ef2JNG8LWug+EPEd34Ln +KGteHm8beJfHfiuwvm0m7/4QXQJ5G0G08Pf2qs+n6TLe6V4i1DxMI7bVLNtMtrqOym+NP8Ag361 DVNI/aC/au1XRGkTWtM/Ye+LGoaQ0O4TLqll42+GNzp7Rbct5gu4oSm3LbgMc4r8qf2R/Hvx0+GP x68HfEP9nDwNcfEL4y+FV1nU/CWi2vw8u/ileW08mkXllf65a+EbSy1GW5vNJ0+7urq21E2kp0ef ZqcTwXNtBcRH9f0jTlXM9Folpsru5+wS/wDBRv8A4L7yKskfgn44ujqHR0/Yq05kZGAKsrD4QkMr AgqwJBBBBIr7H/4K6f8ABT79t79kj44fA7wF8IPiLYeC9N8W/spfDH4leMNI1b4beA9avZPiBr/i v4kaP4hu5W8TeGb++01ng8OabbPpEDW1nZS2shitIZpbgv8ANP8Aw85/4Lyf9EG+JH/iGfiz/wCZ WuM/4OVMn9ur4Vk9f+GTvAefr/wtz46Z/Wj+tv8AgCWrV4xWj2afbseZX/8AwWP/AOCxWiaEni3W fE2uad4VEFne/wDCQ6r+zX4GsPDslnfND9huG1mb4d29j9lv/PgW1nS8Vbjz4vs8jNJGT/Qz/wAE ef8AgqZr37e3hb4geCPjHo3h/wAPfGv4S2Gl67qWreGoZtN8NeN/BWpzz2K+IotLurq8bQ9X0PUI IbPxLbJdnSpzqml6hpUdpFPd6bpv0f8AEe3t7r/gj/43huYIbiE/8E4PEEhinjSWPzIP2Z7qeGTY 4Zd8M0cc0T43RyxpIhV0Vh/J9/wRp1TWNEsv+Ckus+Hnmj17SP8AgnF8ftU0SS3LCdNYsItJutMe Hb83nLexQmIr828DHNHW3r2/RIWkot2SaaWnmfZX7aX/AAcL/HXWPit4g8AfsVab4U8M/DrQtbuf D2h/EXWfDUPjbxp8Rru2uzYrruiaTqpuPD2i+HtVuFLeH9Mm0LVtbvbNrTUL28sbi9fQ9P8AnC3/ AOCr/wDwW0kmg3SeP2ieSPcf+GUvCgUozLn5h8MB8pU/eBHHIPes3/g3e8HeCfFf/BQSa+8X2OnX +peCPgb4+8Y+AE1GKGf7N42h8ReBPDqX1hHMGX+0bLwp4j8VT20qKZrUJJdQmOSBZE/vAo/rp/kN tRduVPTqfyaf8FiP+Cov7aP7Jv7Zmp/CL4G/EvRfC3gS2+HHgTxBDpV98OPh54nnXVdbg1GTUZzq niXwzqupskzQRFYGuzBDtIhjQM2fv/8A4K0ftK/t+fBPwJ+y3rH7FOjeNte1fxzZeNrn4qP4L+Ct t8XGi+w6P8PLrw1Jf2z+EfFEfhxLi61bxIbUxR2C6gY54x562AWH+fr/AIOF/wDlItrf/ZHvhd/6 S6vX7g/8FWP+Cs3jX9hDw/8ABL4M/A3w/wCFtW+MHjr4YaJ471rxD4ztLzVdG8F+DJfN0HRH0/RL K+05NU1/xBq2i6+I5dRvDp+j2ejb59L1R9Xt308Fb4LJN2fz9T8fdc/4Kb/8F3fC+kaj4i8TeHfi 54f8P6LZz6jrGt67+x1o2kaNpen2qGW6vdT1O++FNtZ2FlbxK0lxdXNxDDDGGd5EAJH69f8ABHT/ AILAeOf20/GfiH9nv9ofSPDNp8WdM8M3fjDwT418KWEmiab440fSLi1g8QaNrehG5urSw8UaZHfQ atZ3WjG10vVdHi1NZNL0y60hZ9a/K3Tf+Cpf/BcLxjoFpqukfBbxd4p8LeJNMS6sdS039j7X9b0D XtG1K33RXFpeWvhm60/VNMv7WXMc0Ms9rdW8mVaSN8n5d/4IPtNF/wAFPvgjGytbs+g/GaK4gCtF jb8JPGsjQPGcFRHNEh8thlHjXI3KMH9bW6eg2rp3STW1nf8AI/0DKKKKRmFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAfzx/8ABw5/yRb9nj/sqHib/wBRQV/Pd+wr/wAnp/sm/wDZ xfwb/wDU/wBBr+hH/g4c/wCSLfs8f9lQ8Tf+ooK/nu/YV/5PT/ZN/wCzi/g3/wCp/oNf3J4T/wDJ kMT/ANgHHH/pnNz+LfFT/k9eXf8AYVwP/wCpOBP6zf8Agtd/yj3+KP8A2NXwt/8AVgaDX8Q9f28f 8Frv+Ue/xR/7Gr4W/wDqwNBr+Iep+jh/yQWN/wCymzL/ANQ8rI+kV/yXGX/9kzgf/U/NT+qz/g3f /wCSV/tJ/wDZQPA3/qOavX9Flfzp/wDBu/8A8kr/AGk/+ygeBv8A1HNXr+iyv5s8Zv8Ak5vFn/YZ hP8A1VZYf0d4R/8AJt+Ev+xbU/8AVhmRzvjDwn4e8e+EvFHgXxbplvrXhTxn4d1rwp4m0a7Ba11b w/4i0250jWdNuQpDGC+068ubWUKQ3lytgg4Nf5/v7bX/AAR9/a3/AGS/iVrknw/+HHj740fBv+1p r/wD8TfhroGp+K9Ts9INw9xp1r420bwxbXWs+FPEWkRiC2v9RuNPt/D1/eKlzompy+a1ra/6ElFf mB+kKTX+R/nEWXxr/wCCuOm2lvYWPxM/4KFWtnZwpb2ttF4l/aHEVvBEoSKGJTcnZFEgCRxjCxoq ogCqAP2o/wCCXfjD9tL4lfs1/wDBUHSf2l9f/aW8bXI/Znns/hxpvxqu/iXrlw2qat4C+OFtq1p4 MtPGjXEkl/qMkehQX9vosbXF066VFOjsLRa/rPooKcr9Ev8AgO/Y/jO/4N1PhD8UPBH7YHxh1D4g fC/x74Q0XUP2ZvE2lRXvjHwV4h0DS727uPih8J5/7Njuda0y0tLm5mtLa6m+xq7yyW8FxJ5bRRSF fmr9q/8A4Jt/tt/8E7P2ppfjX+yn4Q+I3iT4f6H4y1Dxd8F/if8ACjw9e+N9T8F6ZqL3nl+EfHnh +wsNau7KTSdMvZ/DGqz+INIn8IeM9Im2vLP/AGpqWhWP941FAud3vZaqzXQ/iGT/AIK8f8FqURVb 4bazIyqqtI/7K+sB3IABdxHoscYZiNzBERASdqKuALn/AAXr+G/xr+K/7UH7PvjHQ/hd8Q/F8t9+ xf8ACU+IdQ8K+A/Eur6faeJrnx98X9U1bTLh9J0u6t7C+t31GKaXTJHS4tYbm3LxKkkZb+22igFJ J3UUt+r6/Nn55eO9C1uf/gk/4y8MwaNqs3iSb/gnl4h0KHw/Fp13Jrkutyfs23mnx6NHpKQm/k1W S/Isk05bc3bXZFssJmISv53/APg3n+Bvj3R/2jP2iNN+K/wq8deG/Cfi39mnWvC16PGfg7xH4c0z WbfVvHXgu31DR47rVtPsYp5brTWu99vBKZ/s6zSKoVGZf7LaKd+vr+Ir2TXf9D+AL4+/8E8P2+/+ Ca/7SR+Iv7Pvhv4q+IvD3hbxBqWqfCL46/Cbw1e+M2Tw/fLdWtvp/jfS9H0vWItE1V9Iu5NE8T6H 4p0ceHNeLX0ViNZ0a6Uv6db/APBUj/guMZoEkuPimymSNXLfsj+C1LKWUNuK/CBcZGclduO2K/uv opFc/dJ+bP4df+C+Hwc+Lvjf/goFrOueC/hX8R/F2iN8JfhparrHhjwP4n1/S2ure11UXFsuoaVp d3aGeAugmhE3mRbl3qu4Z+qP+C7/AOwT8e/ifrvwN/ag+D/w98WfErRdN+CPhb4XfEbw54N0W/8A EPifwpe+Gr/WNd0fxDN4c02G51u60bVLXxVeadqF1p9jcW+hT6As2rG0j1GGZ/64qKBczVvL8bn8 MPgr/gqd/wAFmfAfg/wt4I0r4d+J7vSvCHh/SPDOl3Gq/su6rcak+maHYQaZp4vri38P2kVxcpZ2 0MctwLeN52QyyhpXd253/giR8HfjR4Y/4KV/BnxV40+E3xL8LaOmk/GGTUNc8ReAvFOg6PbT6h8K fGsMKz6hqWlWtlbm5u7iO3t0kmQyzSxwxBndVP8AeBRTuHNvaKV99WFFFFIkKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooA/nj/AODhz/ki37PH/ZUPE3/qKCv57v2Ff+T0/wBk3/s4 v4N/+p/oNf0I/wDBw5/yRb9nj/sqHib/ANRQV/Pd+wr/AMnp/sm/9nF/Bv8A9T/Qa/uTwn/5Mhif +wDjj/0zm5/Fvip/yevLv+wrgf8A9ScCf1m/8Frv+Ue/xR/7Gr4W/wDqwNBr+Iev7eP+C13/ACj3 +KP/AGNXwt/9WBoNfxD1P0cP+SCxv/ZTZl/6h5WR9Ir/AJLjL/8AsmcD/wCp+an9Vn/Bu/8A8kr/ AGk/+ygeBv8A1HNXr+iyv50/+Dd//klf7Sf/AGUDwN/6jmr1/RZX82eM3/JzeLP+wzCf+qrLD+jv CP8A5Nvwl/2Lan/qwzIK/gM/4L0atqtr/wAFLfi9Ba6nqFtCnhD4RFYYL25hiUt8NfDjMVjjkVAW YlmwBliSeSa/vzr/AD/P+C+H/KTH4wf9ih8IP/VZ+G6/Me/y/M/SofF8mfPHhr/gmx/wUe8YeGNA 8Z+GP2dPjBrXhjxToOleJ/D2sWN5YSW+raDrenwarpOpWaHXlneG/wBPure6t1MKzNHKgMYc7a5P 4N/tZftqfsBfF57bQPGPxN+HHijwVrMVr4z+DnxCfxHH4a1LymhnudB8bfDnXpoLcpfWcgWK+S0s dcsrW8XUNA1bT7iS3vR/oS/sbf8AJoP7Kn/Zt3wN/wDVYeF6/lz/AODm34Y+HtC+MP7MPxa0+xtr XxD8RvAnxD8H+I7mCNYpNTh+GOr+Er7RLq9CYFxdw2/xGu7BbuRTcNZWllaNK1vZWscIylK7s0ra /hc/aX4+ftB/Gz9r3/gldH8ff2FIvGen/Gf4l6R8OtT8LaT4F1G1Txf4d1nTviboGj/FTw1a6jcP aW8x8Pppfi/R726cW/8AaGm2ct1FAguo4xjf8EdLH9vmy+H3xpX9vV/im/iqTxl4Zb4fn4pahZah ejw+NEvRq39kvZXNzHHa/wBomD7SrlXaXYcFQDX4Wfs5/FPxvpH/AAb1/tWzeHPFHiDwxrXw8/ak 8NaJ4a1vw3rOo6Hq+l6Rr3iv9nnW7y2stT0u4tb21W6vvEXiAXSQTos8F/NFKGSaRW+xv+CF37UO teB/2Pf25vjt8cvHfjfx3onwc1LTPF0z+KPFGseJdV/s/RfAms6o+h6HPr99em2u9cvIILCyt0eK CfUrq2EvXcDv/XYlqye3xW8/vP6nqK/z39b/AGuf+Cn/APwVD+P2oeFvhF4v+LF1qupjVNd8P/Bv 4P8Aje9+HXgDwR4TsZ4Yln1a8j1zwxobWumG7srGfxj481V7291O/t7RL+ObUbLTa4X9qL4K/wDB Uf8AYy0Twp4j/aO8afGnwBo/jbVb/RPDV3D+0lD4uOoalplpFfXtu1v4K+JPiG5sxDazRyia+hto JN2yKR5AVCDk7tJ9j+yL/grLafthXn7L2mRfsQv8QU+Mo+K/hN7s/DW9tbHxD/whI0TxYNbEk15P bwnTf7QbRPtMfmF2m+zFVO0kZn/BIu0/bOsv2aPFsX7dD/ER/i83xq8TyaEfibe2d/r/APwr0+C/ h4uji2msri4iXSf+EhXxV9njZxIt0b5ioV0LfhD8Uvi/8WbX/g3u/Zu8f23xQ+Ilv471H9pXXdO1 DxrB428SxeLb7T08dfHu3SxvPEceprrF1ZpBY2MK2s968CxWdrGECW8Kp2P7Evgj9r39sX/gjl8X PCPwb+I3jXXPje/7aEj6V4l8QfFfXND1q18KaH4C+EeoappkPjLUtXF/a6eDfXEqaVFeLbzzXVww hLTSsz7Cto9tJWvbX/hj4N+Duraq3/BeGS1bU9Qa1/4eIfFSH7M15cmDyV+L/jJVi8kyeX5YUBQm 3aFAAGBX99Vf5gnhr4L/AB+1n9rk/ATQdVu4/wBpUfGrxB8OTrKeM5bO9/4WppXibU9G1q//AOE8 F2k5nfXbLUJn8RfbPNu2Zrzznabc39av7B37D/8AwUP+Dv7L/wDwUH+H3x38W6xqnxO+NfweXwv+ z7e3XxtvfGE+k+MB4E+L2jm4tNfm1a6k8Fyf274m8IS/2nDNatvt47zzM6YrRnT7/wBCprZ3Wy/4 c/omor+If/h0r/wW1/6KT4m/8Sv1T/5o6+YLD9pz/gpN/wAEqv2otN8LfF/x/wDEm91HQ5ND17xV 8KvG/wAStQ+Ivw7+I3gTVpmJn0+W61jX9HiOq2ttf2eneKNGFtr+gapbXNtM0FxZ6jpjonlvtJN9 tT9Kf+DnLUL+x8d/shCyvryzEnhL4wmQWtzNbiQrrPw/ClxE6BioJCls4ycdTX75f8EsZpZ/+CeH 7Is08sk00nwa8PNJLK7SSOxku8s7uWZmPqxJr+eL/g5R8SaZ4y1T9hvxforvJo/ir4ZfErxJpMkq hJJNM1y4+GuqWDyIGcI7Wt1EzqGYKxIDEDJ/oZ/4JWf8o6/2Qv8AsjPh3/0Zd0+j+X6jfwR9WfoB RRRSICiiigAooooAKKKKACiiigAooooAKKK+Kv2pP29fgZ+yRrnhnwx8R4/GOueIvE+mXWtQaL4F 0vRdWvtK0iC5FnbajrSaz4j8OxWlvqt2l7b6X5Mt1LcPpmoF44UhR5RJvYD7Vor8gv8Ah9Z+yh/0 Jnx5/wDCS8Cf/PMo/wCH1n7KH/QmfHn/AMJLwJ/88yq5Zdn/AF8wP19or8gv+H1n7KH/AEJnx5/8 JLwJ/wDPMo/4fWfsof8AQmfHn/wkvAn/AM8yjll2f9fMD9faK/IL/h9Z+yh/0Jnx5/8ACS8Cf/PM o/4fWfsof9CZ8ef/AAkvAn/zzKOWXZ/18wP19or8gv8Ah9Z+yh/0Jnx5/wDCS8Cf/PMo/wCH1n7K H/QmfHn/AMJLwJ/88yjll2f9fMD9faK/IL/h9Z+yh/0Jnx5/8JLwJ/8APMo/4fWfsof9CZ8ef/CS 8Cf/ADzKOWXZ/wBfMD9faK/IL/h9Z+yh/wBCZ8ef/CS8Cf8AzzKP+H1n7KH/AEJnx5/8JLwJ/wDP Mo5Zdn/XzA/X2ivyC/4fWfsof9CZ8ef/AAkvAn/zzKP+H1n7KH/QmfHn/wAJLwJ/88yjll2f9fMD 9faK/IL/AIfWfsof9CZ8ef8AwkvAn/zzKP8Ah9Z+yh/0Jnx5/wDCS8Cf/PMo5Zdn/XzA/X2ivyC/ 4fWfsof9CZ8ef/CS8Cf/ADzKP+H1n7KH/QmfHn/wkvAn/wA8yjll2f8AXzA/X2ivyC/4fWfsof8A QmfHn/wkvAn/AM8yj/h9Z+yh/wBCZ8ef/CS8Cf8AzzKOWXZ/18wP19or8gv+H1n7KH/QmfHn/wAJ LwJ/88yj/h9Z+yh/0Jnx5/8ACS8Cf/PMo5Zdn/XzA/X2ivyC/wCH1n7KH/QmfHn/AMJLwJ/88yj/ AIfWfsof9CZ8ef8AwkvAn/zzKOWXZ/18wP19or8gv+H1n7KH/QmfHn/wkvAn/wA8yj/h9Z+yh/0J nx5/8JLwJ/8APMo5Zdn/AF8wP19or8gv+H1n7KH/AEJnx5/8JLwJ/wDPMo/4fWfsof8AQmfHn/wk vAn/AM8yjll2f9fMD9faK/IL/h9Z+yh/0Jnx5/8ACS8Cf/PMo/4fWfsof9CZ8ef/AAkvAn/zzKOW XZ/18wP19or8gv8Ah9Z+yh/0Jnx5/wDCS8Cf/PMo/wCH1n7KH/QmfHn/AMJLwJ/88yjll2f9fMD9 faK/IL/h9Z+yh/0Jnx5/8JLwJ/8APMo/4fWfsof9CZ8ef/CS8Cf/ADzKOWXZ/wBfMD9faK/IL/h9 Z+yh/wBCZ8ef/CS8Cf8AzzKP+H1n7KH/AEJnx5/8JLwJ/wDPMo5Zdn/XzA/X2ivyC/4fWfsof9CZ 8ef/AAkvAn/zzKP+H1n7KH/QmfHn/wAJLwJ/88yjll2f9fMD9faK/IL/AIfWfsof9CZ8ef8AwkvA n/zzKP8Ah9Z+yh/0Jnx5/wDCS8Cf/PMo5Zdn/XzA/X2ivyC/4fWfsof9CZ8ef/CS8Cf/ADzKP+H1 n7KH/QmfHn/wkvAn/wA8yjll2f8AXzA/X2ivyC/4fWfsof8AQmfHn/wkvAn/AM8yj/h9Z+yh/wBC Z8ef/CS8Cf8AzzKOWXZ/18wP19or8gv+H1n7KH/QmfHn/wAJLwJ/88yj/h9Z+yh/0Jnx5/8ACS8C f/PMo5Zdn/XzA/X2ivyC/wCH1n7KH/QmfHn/AMJLwJ/88yj/AIfWfsof9CZ8ef8AwkvAn/zzKOWX Z/18wP19or8gv+H1n7KH/QmfHn/wkvAn/wA8yj/h9Z+yh/0Jnx5/8JLwJ/8APMo5Zdn/AF8wP19o r8gv+H1n7KH/AEJnx5/8JLwJ/wDPMo/4fWfsof8AQmfHn/wkvAn/AM8yjll2f9fMD9faK/IL/h9Z +yh/0Jnx5/8ACS8Cf/PMo/4fWfsof9CZ8ef/AAkvAn/zzKOWXZ/18wP19or8gv8Ah9Z+yh/0Jnx5 /wDCS8Cf/PMo/wCH1n7KH/QmfHn/AMJLwJ/88yjll2f9fMD9faK/IL/h9Z+yh/0Jnx5/8JLwJ/8A PMo/4fWfsof9CZ8ef/CS8Cf/ADzKOWXZ/wBfMD9faK/IL/h9Z+yh/wBCZ8ef/CS8Cf8AzzKP+H1n 7KH/AEJnx5/8JLwJ/wDPMo5Zdn/XzA/X2ivyC/4fWfsof9CZ8ef/AAkvAn/zzKP+H1n7KH/QmfHn /wAJLwJ/88yjll2f9fMD9faK/IL/AIfWfsof9CZ8ef8AwkvAn/zzKP8Ah9Z+yh/0Jnx5/wDCS8Cf /PMo5Zdn/XzA/X2ivyC/4fWfsof9CZ8ef/CS8Cf/ADzKP+H1n7KH/QmfHn/wkvAn/wA8yjll2f8A XzA/X2ivyC/4fWfsof8AQmfHn/wkvAn/AM8yj/h9Z+yh/wBCZ8ef/CS8Cf8AzzKOWXZ/18wP19or 8gv+H1n7KH/QmfHn/wAJLwJ/88yj/h9Z+yh/0Jnx5/8ACS8Cf/PMo5Zdn/XzA/X2ivyC/wCH1n7K H/QmfHn/AMJLwJ/88yj/AIfWfsof9CZ8ef8AwkvAn/zzKOWXZ/18wP19or8gv+H1n7KH/QmfHn/w kvAn/wA8yj/h9Z+yh/0Jnx5/8JLwJ/8APMo5Zdn/AF8wP19or8gv+H1n7KH/AEJnx5/8JLwJ/wDP Mo/4fWfsof8AQmfHn/wkvAn/AM8yjll2f9fMD9faK/IL/h9Z+yh/0Jnx5/8ACS8Cf/PMo/4fWfso f9CZ8ef/AAkvAn/zzKOWXZ/18wP19or8gv8Ah9Z+yh/0Jnx5/wDCS8Cf/PMo/wCH1n7KH/QmfHn/ AMJLwJ/88yjll2f9fMD9faK/IL/h9Z+yh/0Jnx5/8JLwJ/8APMo/4fWfsof9CZ8ef/CS8Cf/ADzK OWXZ/wBfMD9faK/IL/h9Z+yh/wBCZ8ef/CS8Cf8AzzKP+H1n7KH/AEJnx5/8JLwJ/wDPMo5Zdn/X zA/X2ivyC/4fWfsof9CZ8ef/AAkvAn/zzKP+H1n7KH/QmfHn/wAJLwJ/88yjll2f9fMD9faK/IL/ AIfWfsof9CZ8ef8AwkvAn/zzKP8Ah9Z+yh/0Jnx5/wDCS8Cf/PMo5Zdn/XzA/X2ivyC/4fWfsof9 CZ8ef/CS8Cf/ADzKP+H1n7KH/QmfHn/wkvAn/wA8yjll2f8AXzA/X2ivyC/4fWfsof8AQmfHn/wk vAn/AM8yj/h9Z+yh/wBCZ8ef/CS8Cf8AzzKOWXZ/18wP19or8gv+H1n7KH/QmfHn/wAJLwJ/88yj /h9Z+yh/0Jnx5/8ACS8Cf/PMo5Zdn/XzA/X2ivyC/wCH1n7KH/QmfHn/AMJLwJ/88yj/AIfWfsof 9CZ8ef8AwkvAn/zzKOWXZ/18wP19or8gv+H1n7KH/QmfHn/wkvAn/wA8yj/h9Z+yh/0Jnx5/8JLw J/8APMo5Zdn/AF8wP19or8gv+H1n7KH/AEJnx5/8JLwJ/wDPMo/4fWfsof8AQmfHn/wkvAn/AM8y jll2f9fMD9faK/IL/h9Z+yh/0Jnx5/8ACS8Cf/PMo/4fWfsof9CZ8ef/AAkvAn/zzKOWXZ/18wP1 9or8gv8Ah9Z+yh/0Jnx5/wDCS8Cf/PMo/wCH1n7KH/QmfHn/AMJLwJ/88yjll2f9fMD9faK/IL/h 9Z+yh/0Jnx5/8JLwJ/8APMo/4fWfsof9CZ8ef/CS8Cf/ADzKOWXZ/wBfMD9faK/IL/h9Z+yh/wBC Z8ef/CS8Cf8AzzKP+H1n7KH/AEJnx5/8JLwJ/wDPMo5Zdn/XzA/X2ivyC/4fWfsof9CZ8ef/AAkv An/zzKP+H1n7KH/QmfHn/wAJLwJ/88yjll2f9fMD9faKKKkAooooAKKKKACiiigAooooA/nj/wCD hz/ki37PH/ZUPE3/AKigr+e79hX/AJPT/ZN/7OL+Df8A6n+g1/Qj/wAHDn/JFv2eP+yoeJv/AFFB X8937Cv/ACen+yb/ANnF/Bv/ANT/AEGv7k8J/wDkyGJ/7AOOP/TObn8W+Kn/ACevLv8AsK4H/wDU nAn9Zv8AwWu/5R7/ABR/7Gr4W/8AqwNBr+Iev7nv+CwHgvxj8QP2EviV4Z8B+E/E3jbxJdeJPhxc 23h/wjoOqeJNbuLaw8caLd31xBpWjWt7fzQWdpFLdXcsdu0dvbxSTTMkaMw/iX8TfDT4jeC93/CY +APG3hPYSr/8JN4V13QdrA4Kt/alha7SCQCDg5OK5vo5YnDR4IxmHlicNHEPiTMJrDyxGHjiHCWE yxRmqEq8a7jJxkoyVFxk4yUZScZJbfSHwmLqcY4HE08Ji6mGhw3gozxNPC4qph4Sjjs0lKM8RDDT w8JRjKMpRnXjKMZRlKMVJN/07f8ABu//AMkr/aT/AOygeBv/AFHNXr+iyv4p/wDglr/wUl8G/sON 478G/Eb4fa/4l8F/ErXtB1i+8U+FNQsn17wvPo9leacoXwzqSWdprtlcJeCado9f0u7s1gcwW+pP KkCf1t/AP9qL4CftPeHD4l+CHxL8PeOLaCGKXVNKtJ3sfE+gGXAWLxD4V1OOz8QaKxkJiilvtPit btlZ7K4uYdsrfiPjfwvxBg+Nc+4gr5TjFkmY4nDVMJmlOk62Cko4HA4dxq1qDqxwtT21GpBU8WsN Kdk6cqilFP8AavBjiXIcbwXkGR4bNcHPOctwVWljMslVVLG05LGY2tzU6Fb2U8RS9lWpzdXC/Wac U2p+zcZHvtf5/n/BfD/lJj8YP+xQ+EH/AKrPw3X+gHX8h3/BWz/glT+3J+1L+3B8RvjN8EfhHp3i 34d+IPDnw50/StbuPiT8M/Dktxd+H/BGi6NqsTaT4l8XaRq8AttRs7iFXnsY451QSwNJE6ufxPv/ AF1P2SGj17M/oU/ZE+NPwc0v9kr9mCz1P4s/DPTrvTv2dPgrbaha33jzwtaXFjc2nw08NRXVveQX Gqxy209tLHJHcRTKkkMiOkiqysB/Jr/wX/8A2xfhh+01+0T8NPAHwe8V6P488G/AXwl4g07UvGPh 2/g1Tw5qXjrxzqem3fiOw0HVbNpbDWdP0fSvDPhe2l1fTrq4sp9Vk1Kxhdv7Oaabwv8A4cRf8FPv +jftI/8ADy/BT/54FfUv7Mv/AAbp/tX+OPGujz/tL6n4S+Cfw0tL2CfxJa6N4p0fxx8RdYsYpVeb TPDdt4bbV/CmnXF9Eslsdb1jXpF0hpY72PQtd8p7BzuUlFO/Mnv+J1XgL4Zan4C/4Nt/jv4k1O2m tv8Ahb/x78OfEXTBOjRySaPafGH4NfDa1lVHAYW8918Pb+5tnICzQ3C3EZeGaN28j/YS03V9V/4I 1/8ABVa10RZWvItW+FWpTCHcX/sjRtS0TV9fZtvPlLoNjqTT5+UQCQt8ua/pg/4KOfsheJ/iX/wT b8Yfsl/sseA9PudS07Tfg74b+HXgePWtF8O2UHh7wD8QfBWpzW51rxRqemaasln4f0K7u5rjUtSF 3qVzFIzSXWoXWJflD/gjL/wT8+NX7N/wE/ai+EH7Xnww0zRNJ+Nms6dpz+G28WeEfF1l4m8G33g7 VvDXiW0vJvB2va1FaRXEGoyWUkV1Pa3LpM0kCkLvUX9fgK+jfXmTt9x+aX/Bsp4u8E6X8bP2mPB2 rXunWvjzxb8O/Auo+DLe6lihv9S0TwtrviFvGdppfmFXuZI5Nb8L393Z25aZrWye9MTW9hPLD9U/ 8HOf/JFf2W/+yo+Of/UT06vg79oP/g3x/bL+E/xNvde/ZL17Rvij4Ji1WbUfBGop460z4b/FPwvb PLI1tZa3Jrl34e0SXUdNhdbVde8PeIANWEbXzaRobTnTYfzd/bU/ZI/b5/Zs8P8AgbVf2x4/FUWh eKdZ1bT/AASviT4z6B8T0fV9Osra51ZrSw0jxr4pm0tks7i1E15Lb2scweOETO2Eo/yHZOSakt1p 10P0h+LP/KuD+zF/2dDr/wD6sD9oWv1f/wCDbD/kw/4kf9nUePf/AFVnwVr4n8B/srfHH9rr/ggH +zN8K/gH4Qg8Y+OIvj14z8YtpN34i8N+Foj4e0f4n/HXTNQvk1PxXq2i6XIYL3U7OEWyXjXMpdzF C6wzFP1k/wCCJ37KHx1/Y6/ZP8afC/8AaD8IW3grxrrHx78W+ONP0m18S+GPFUc3hrVPAfwx0Oxv 21Hwnq+tabE82peG9XgNnLdpeRrbLNLAkM9u8h2/rqJ7SXXmP5gvhDPDb/8ABeVpJ5Y4Ub/goz8T 4FeV1RTNc/GfxfbW8QZiAZJ7iWKCJAd0ksiRqCzAH+wz/gpl+1H4j/Y7/Yu+MPxw8EwWk/jzSrPQ vDPgVr+3ju7Gw8UeNPEOm+GbLXLu0mV7e7Tw5BqN34hisbqOW01G50uDT7uNra6lx/On/wAFC/8A giB+2J4k/a1+KPxz/ZZ0rQfHnhD4p+PtU+LFitv498PeBfGPgnxh4m1R/EfiK2nHirVPD9qy2/iq 5v8AUtA1TQ9VuJY7Ke0SaGyvLVt/1x+yT/wTa/bn+Kf7KH7bX7OP7fnjDx9Z3nxdsfg5N8DPEXjv 4yW3xuTwp4m8A6l4z8RT6lZW9h438WPomlnXF8GW3iOyjm0qfXtGea3tWlls0ktQHZ2d1okmup+N /wCzH4L/AOCwn/BQm38efEf4OftF/G7XtN8NeIINH8R6vrH7TPiTwJpkWvajaf2qNK0XQofFFjBb QW1lLDcG20rSLPR7KG4ggttjZgj+NP28fgZ+1l+z98YtC8F/tkeLNb8ZfFHUPh1o3iXR9V174l6h 8VL2HwNe+IvFemaVYx+ItS1DUp7W2i1zR/EkyaOs6xW0lzLeLErX7u/6J+HP+CP3/BZr4Dap4h0f 4Jv4h8OaZqF1ENR1z4NftO6F8P8ARPFP2HzY7K9ntZfHPgbXLtIo5ZDaf23odtdW6TOohiLutcZ8 QP8Agjl/wWJ+LOtW/iT4qeAfEXxM8RWmmwaNa6/8QP2kvhn4z1q20e2uby8ttJt9V8R/FDUr6HTb e81C/u4LGOdbWK5vryeOJZbmZ3P6/roWmr35o26LRP7z3j/gvD/ySn/gl5/2bDdf+o38H6/pq/4J Wf8AKOv9kL/sjPh3/wBGXdfj9/wVh/4JufthftQeAP2EtC+CnwwsfFmp/BP4F3Hgr4kW9x4++H3h 1dC8Rvovw4s1sYpvEnifSYdXQ3Hh/VU+16PJfWYFsrmcJPA0n7i/sDfCrxz8Dv2Nf2dPhH8S9Ij0 Dx74A+GmjeHfFWjRalpmsR6dq9o9wbi2TVNGvL/Sr1UEiYnsby5t2z8krYOB9fX9WZv4Y+rPryii ikSFFFFABRRRQAUUUUAFFFFABRRRQBwnxP8AiP4V+EPw+8XfEzxtfDTvC/gvRLzXNWuBtaaSK1T9 xY2UTMn2jUtTu3g07TLRWD3eoXVtbRnfKtfxF/Hz40eKv2hPi340+LfjCQjVPFmqyXNtp6zPNa6D otuq2uh+HrBnC/6Ho2lw21lG+xHupIpb2dTdXU7v+tv/AAWL/av/AOEo8Uaf+y/4L1LfoPgy6tdf +KFzaS5i1Pxc8Am0Pww8kTbZbbwzZXB1LU4C0sL65f2kM0cN94dNfhjWsFZX6v8AL/ggFFFFWAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/oIUUUVzgFFFFABRRR QAUUUUAFFFFAH5i/8FOv2FvHP7dPgP4YeEvA3jPwn4LuvAvi/VvEV/deLIdYmt7y21DRf7Mjgs10 ezvJBPHL+8fzljj8v7rFvlr8mPBH/BBv9qD4b+MPCvxB8E/tIfCTRfGXgjxDo/ivwvq6+H/Et5/Z XiDQL+DVNI1BbXUtEvtPuzaX1rBOLe+sLq0mKeXcW80TPG39UNFfo2QeKvGfDWSw4eyrGYCGUweM /wBmxWUYHG88cfOc8VCrPEXlVp1faVIypzTj7Oc6dnGTT+Bz3wz4P4jzh59muAxVXNXHCRjisPmm YYOVP6iksJOlHC1IRp1KLjGUakLT54xnfmjFr8mNA+F//BZHw08Tz/tM/skfEVYgu6Hxv8OfEGix 3G3r57eAfB3h6Zd/8RgkiPJ27eK9csPFv/BTvQEK+M/gh+x38U7coVnt/hv8Yfib4AmuoyCroqfE D4e+I7WNpFJzHLLLEM7GlYfNX6F0V4tfiyWLd8Vw3wbUvu6HDsMtn30qZVm2BcHfVONO66Wsj26P DccNZYfPuKqaSso1s9nj4WXeOZ5ZjXL1lVbet273Pyb8efDj4f8AxKtp/wDho3/gk7fzTXOTc+KP hdN+z/8AEDU4y2TKf7f8K+OPh78VthyXxp+hTPK+1vKEgXHw34n/AOCe37G2l+JrHxz+zx+0H8ef 2C/ipp8j3egH4teHviL4F8OWN0cGPTtN174oab4G1G9W4kAtLiTS/iZ4os7uBnhFnqAEkUn9JFNd EkVkdVdHVkdHUMrowIZWUghlYEhlIIIJBGK9XLfETOMri6eBrZngKE4yhUweGzzH4/LKtOS5ZUqu TcTU+Ictq0ZRbjOi/ZwlBuOi0POzHgbJs0kquYYTLsdiIzVSnjK2U4PBZnRqRs4VKOb5DLJMypVo SSnGuqtSrzKOtlY/Kb4b/tIftc/s2Wtjov7b/gXT/in8LRBAdN/bB/Z9tJfFOgW2nSBHh1X4t+At H0+013Q9OW2lWW+8Z6B4bg0G2xFH9hv0NzrQ/ULw74j8P+L9C0nxP4V1vSvEnhvXbGDU9F17Q9Qt dV0fVtOukElte6dqNlLNaXlrOhDRzwSvG46Nwabofhrw74Ztp7Pw3oOjeH7O5uZby4s9E0yy0q0n vJzunu5bawgghkupzzPcOhmmIXzHbauOS8I/Crwh8P8AWta1XwLY/wDCJ2HiW5n1HxD4U0ci28H3 2uXD+bN4ls/DqgafoPiG8kMjazqGgRaaniR55bvxJbatqcOn6hY/PZvmOV5tKpiqeWUsox/M5TWX U1RyvHXavOWWKrWhlOKd5Sf9nYirllV3SweBlKNvcy3A47LYxw08wr5ng0lGm8wn7bMcKktIPMFT pSzKgklFSx1CGPgrc2KxiUpP0iiiivnz2AooooA/ii8T+B/+DiV/EviFtFvf2qBo7a5qzaSIPiF4 RSAaab+4Nh5KP4lV1i+ymLy1ZQyptDAEEV5B4h/4Jwf8Fo/21PG3grRv2itH+I19p2gy3Npp/jP4 5/Evw3P4V8BadrM1o2taja6bZeIdW1WWS8+wWP2+Hwz4f1LVtRFjp8dxG1vaQyW/93lFO5SlbZR9 bHgn7LvwA8M/ss/s+fCf9n7wjdS6hovww8JWegDVp4EtZ9d1eWa41TxJ4intInkjtJ/EXiTUNW1u a0jllS2kv2gWWVYxI3t+o6hY6Tp99qup3UNjpumWd1qGoXtw4jt7OxsoHubu6nkPCQ28EUksrnhU RmPSrlfnl/wUj+Lfjf4bfCP4beEvBet2ngdP2gPjr8PfgD4w+KmpWFjqGnfC7wN8Qm1S38TeKZIt USbSIbtrCzfTLS61iH+zbVL26uGuLS9isbhPTyXK6udZtgMqozhTqY3EKm6lRtQp0oU6+JxFR8sK k5OnhcJi6kKdOnVq1qkKVClSqVa1OEvNzXMaWU5djMyrxnOnhKXtHCnFSnUnOrQw9GnHmlCMfaYj F4aEqlSdOlShOpWrVKdGjVnHsvgb+2z4Z+Nlr8OfE0fgTxD4K+Hnxx8X+MfB3wJ8UeJdU0Y6t8Qr vwRo/ifXtU1W98IWUsupeE9E1HTPBniefQry/uruS5bS0h1S30aXV9ATVcn4z/t1+GPhd8Y/h98L PCfgHxd8c/8AhKfBeoeLtfk+DcVp4u13REv/ABnpfgXwLbafZJdWugX413WovGkuszat4l8PwaFp Xg/UL4T3syiwf470H9krx34M/Z4+IP7Nfw28OeJ9C1XxhbeDPEUngvVP2hb34ma98OvhS3xFs9B8 eeCNC1XVNJ8M+CPhv4p+K3w2uvGw0+fwvew6N4ouE8WaFqesLbeHdP1q7888XfsJftVX3ivxb428 E+C/h94F1K48Y/Ez4ieEdE8MeJtE0nQ9I8Q/DrwHZ+CP2RNGtodOh0pYdF8C2GueNfF+n3yRWUmo fGC/ub/xrolr4bez1g/ptDh/gOpmuMrVMywmHy1fX8Pl+CxmZSoKtCapwyzHYmvCtiMdCUI1ZOrL Czq4fEV8HisZTdPC1cLgz4irm3GFPLsJS+o1q2YcuArY/FYLB06ypzjGtPMcLhaNaFHDVFOpSiqU a8KVahRxOGws/aYmNfGH6IfAL9tZPja3izU7j4R+LPBPg2y+JfjLwT4M8W694j+HUVr4j0f4e6fa J411yXT/APhM/wC1L+48P+IbTxZplzbeAbPx3pz2miQ36asI7i4+ye/SfHvwDeeG/hr4s8Hy6r8S NF+KviPwLoHhmbwFZR61c29r8QNIh8R6V4o16wuLrT73RfDOmeFriLxX4iu7yBb/AEjw839oS6ZI MRn87v2fP2EfiJ4D+I1yfEN1L4S8K+DtJ+Geg/Cvxf4Z1jw5qus6H8N/DXw117Ttc+H+nWOuab4h k0Txd4o+L3i7V/il8SfF9nZ2llrXiXRNC1XQrmZ7v7N4e+cNZ/4J7/tYRX3jnXPAVv4Y8E63NL+0 V448D/2X4s02ystJ+IniyJPhZ8OWsfJjupraDQf2frUeFfhq9wIrvw14h1/xD4+1/wASaJra2nhu bjrcP8C43NMVDC5/g8swlKng6mHjVxFaeFqwxNKpRVOpiKk6uJ9vRn9VxmMnh7+yn9fw7w0Kf1ap Prp5txXhcuw06+T4jMMXKWMhifZQw9PEQlQqqqqlKlFU8M6VWCr4XCUqqTqwWBxDxHNUxEKX7QfF b49fDr4VfC34ofFG/wDEugapp3wt8JeI/E2s2Gna3p9zdvPoUVzFForR201xLBqOpa3DD4etYZIv NOr3MVl5ZuD5Vdl8MvEfiDxh8N/h/wCLfFnhpvBninxT4J8LeIvEng97qS+fwprut6HY6lq3hyS9 ltbGS6k0S/uZ9MkuJLO1eV7ZnaCItsH4w3H/AAT9+MGqfFOC+034eeC/Bnwj/wCEv+CvhS08JPrm iXPlfAz4NeBT4r8I2Xja00a8ig8W6jq/x0tNC1f42WM0mp6j4il8LeG9M8KeIb/w7Dd+Ij+5Wn2s ljYWNlLe3epS2dnbWsmo35ga+v5LeFInvb1raC2tjd3TIZ7g29tbwGaRzFBFHtjX5biDLsiyvBYC jleY082xmKrVMXicRGVNTwWGWFoUqWXVKeGq1cL7V4mpWxNaopzlzQjRpylTpVKlb3MoxmbY7FYu rjsHPLsLQpww1DDyTksVXeIrVKuOjUqwhXVJUKdLD0acowXLOVapFVKkIUblFFFfJn0AUUUUAFFF FABRRRQAUUUUAFfKf7Z37Suk/ssfAjxR8RpntZ/FV0n/AAjnw70a4Kt/a/jTVIJxpvmQEgzado8M Vzr2rrujEmnabPaxyrdXVsr/AFWzKqlmIVVBZmYgKqgZJJPAAHJJ4A5NfyA/8FJ/2rm/aY+O97Y+ GtRNz8Kfhc9/4V8DCCUvZa1eCdF8S+M0AJST+3r61httNmUlX8P6Xo8wjhuLi7V6irvy6/15gfAO t61q3iTWdW8Q69qFzq2ua9qd9rOs6peyGa81LVdTupb3UL+7mb5pbm7u55bieQ8vJIzHrWZRRWwB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/oIUUUVzgFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVheJvC3hnxroWo+F/GX hzQvFvhrV4Rb6t4d8TaRp+vaFqlusiSrBqOkarb3en3sIljjlEVzbyoJERwu5VI3aKqE505xqU5z p1ISjOFSnOVOcJxalGcJwlCcJxklKM4ThKMknGUWk1MoxnGUJxjOE4uM4TjGcJRknGUZRlGUZRlF uMoyjKMk2pRkm0+W8IeBvBXw+0kaD4C8H+F/BOhiXzxo3hHQNJ8N6UJ/JhtzP/Z+j2lnaecbe3gg Mvk+YYoIYy2yNAvU0UU6lSpVnKrVqVKtScnKdSrUnVqTk95TqVJ1Kk5OyvKdScn1kwhCFOMYU4Qh CKUYwhGMIRitoxhCMIRiukYxil0SCiiioKCiiigAooooAKKKKACiiigAooooAKKK5Xxx408N/Dnw d4m8eeMNSi0jwx4R0XUNf1zUZiNttp+m273M5jTIae4kVPJtLWPdNd3UkNtAjzSxowB+aP8AwVa/ av8A+FGfBg/CzwjqX2f4mfGWyvtKWS1mKXvhvwCAbTxLrgaM+Za3WsCQ+HNGkPlOxuNY1CynW60T Ffyj173+018e/En7Svxo8Z/FrxGZYF12+Nt4d0aSXzY/DfhLT2e38PaDDgmLdZ2O2W/lhWOO+1e5 1HUjGkl7IK8EraKsvPqAUUUVQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQB/oIUUUVzgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX89P8AwWR/aw+1XWnfsp+CtSzb 2T6b4o+LtxaTArLeFY9Q8KeC59p5W0RrbxXq0LBlNxL4Z2OstpeQ1/QtX8Jfx/vr3Uvjr8Zr3Uby 6v724+KnxAae7vbiW6up2HirVUDTXE7ySysEVUBd2IVVUHAAq4K79API6KKK1AKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/image020.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAt0AAADlCAYAAACPgUsbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAALEgAACxIB0t1+/AAAABx0RVh0U29mdHdhcmUAQWRvYmUgRmlyZXdvcmtzIENTNXG14zYAAAAW dEVYdENyZWF0aW9uIFRpbWUAMTAvMTUvMjDq/1z+AAACw3ByVld4nO3cO2gUQRwG8FGMFgFBQdRC fGFhZbSxEUGwsVBUFKJgEUTEGDQWIhGbiEJE0CqoUUglpJOUihFB8MWBDxS5iEVi4wOJGlGRuxu/ Mf8hc5O5WfMwI+z3hy83O3O5387OwgWWyePKnSHVqlq1qYJegJ8/9GgVECXZI32HkUe6ujqQu15f o/xeqM4iTdK+Zo1KZUr9loh/UsarfGRSPs5fm0i1R/yjNfwlSMl538ssX7wOvPp+Z8Q/gJyeCl8q dP27I/5e5ELAX+W9780k/J6IvwPpcv3pLpjXE/u9if3bif2+xP7DxH5/Yv9tYv9jYv9TYv9XYl/T p0+fPn369OnTp0+fPn369OnT/3flPCvI5fz16HMFRZ8+ffr0c+X/F9+/SC791NefPn369OnTp0+f Pn369BP4V+nTz7HfRT/X/pWc+5dz7l+in9TvzLl/DplNP5l/Cpmb2pf2V2nb51IbpN/sN2yUdrOM FZHPyCw5Luix9V7GWgJjtsze24XS/lLDf4bsC/mViq6T43sR/0TEN3tBF0n7Az5vjuOvk/7nAf8V 8hOpl+ObEb894u9Hllsfmah/I+KfNwfOMy93n6xZ1xUZflHO0/X962/3c47X34qslPZguaxnOv5q 6e+v5SPWt/tZQ353YMzWJmSNnNMA2lW+098s7T8+XouI61/05+j4PRF/PdIg7aJjm9j7YlDmPWb+ zvU/E5l/b2DMlln7jRn+O+RYhm/XJ+j7ay8xV2meHlmD8fr+/b8t4t+qMffhUknPwOtmOX7q+YuR snxO0MccrN+gwxW7/i9kfGfEN/vRh5A2z/ev/1I519D8s7JL1uOB1z8ffd/lPm/z7v8niPm+qHPe /9pb37/1t8j59nn99TL3YT3yPwNM7Zax+8g3zz8+wfnnPtvVgDqoDqkjqkktU2vNXwjJz4mZvvwG Z2NwcO6vARIAAABIbWtCRvreyv4AAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmkM6EAADr0bWtUU3ic7X3bdttGljY6aZ9k +ZT0pC/6RmvN/PNfJY0zyUtRFCUlOrBJypFz4wWChK2JbLklWWm3Fh62H2FWv8DsvasKBAoFEAAp SooQdwsgjoVv7/r2oXYBez+1L69e9wfHV174ur93fGWE3f5GbNH/2/7xlWV7njVuuOHR7kZwpYdv 2OLnnU5w1bCscHtnGFyZZivsbw5gixn2B4fHcEB7C64R0H9hb3f38qrdgz8b68PzK+2JNtJ87a3W 0ybaR1g71k7Cnf092PNn2PMR9hja97D3WPsHHHGirWnrsPUCfn8Payew9LRz2DMO+52DEd5sfZ/u uQ4PY02aYbuzgw/Q3oOnCmBBz9gebNJBgy7tG2zTor1LG9s/0WJjn19gs0u/+0M6qNtmiz5t3Gcb B73jq5Ybtodt2jpkVx8O2E322PXYYmd9BGfsY6v0sHNgHF81YWHiZToHFi26sNGEhckWFi7CQpit qDBbJjL6nMjo14XMU47MlnYGGvNJew/7LrRJLjY2w2aSg42uxMb3E9joOVrjNxk2lllabwybweMx eDwGT5PB02TwNMNB7xe4yygcDPiydwCoOR5s4CvFAHzFAdzQTqHbnQKM0OmgO8aPjIMJFyY0TScP Ta8AmpKm5aEpaZq3WE0jCF1XAeGg12Z7BmwZh/Qxh7RNTHWs+RzQFxzQAYAZgC6uaX1Y+wzbxjP5 TImlEdiLZTTLr8hoXtl+m4XRKsdoG7afkbrtwt6P19VvS3BaCWz068Vmqj+VsZE1pww6t1RzXqQ0 Z87etWCbuDz9EZTeIYTe09MzjJ5wjDqAzAVaw6WxTi6H+3ZF5dEZNDqDRmfQ6AwanUGjF4TmRQRN tCehZHkwmbeUnI2FK5AapW1Yetql9uVOmjAj6Vw5DCaHweQxmDwGk9p1SsP0PAMmYqbyqnTjlixP kRyGkMMQcgoi9FKJUIcYewTuZr5Nu60dzlx4h1PjNAQ9OoaY5q7iZFXEaZXjtA5PfwYWvg1/PyMu HK3HHK1itI3tjsHj2gwf2j8Tn6adY98otoshNJ7T9psMIZMhZDOEbIaQzQI+lGoi4sPHoHAFNpTB UMTNQ9C1f4CP8JkFfvlIKhUtH0ijxaE0R3nBswxlqfC5MphmqxiYzzmYG6BwJ5ScehelG75wQB9y QH8GGC8SMDbGDMeGSM2oTWSeq46nJvqrOdvfquyrm81iCLZ5/qFdCa/8Tiwwa/oMs8mCDKaeZzDN awWsLEBPYgB9gPVT7TQ/48fVyrAKxzeGbpf34x2dwUQGBoEK8tIx1VTrF6RenpixjHFl5fob8Nox HpVAznYYdMZIgk5kS3UGnZ9HbPjUs6EjAxIDz+UxEGF2Lb1Shi4itqr614e9I9K/j7ld1Ggtto/e BKnFMXoaYfSePHofEPCitOmjZJamUM/kyJBazfTQDNPn8KAJLAiPO+F9E09GgChxWsxuFlSwPuiV OZnASjutV/mYCY3aIF8DWS0/lJRwo4dSmEoJt4ZfXq1snl/2uF5ZY3vRuCk6ZltkmzmblkeyR8bz YvZokIRkYBcwDoFdQQEFv3EgyY9bPI4I30B4cEhwzJUTK7228OXESr80xFUcZLVnRyMl2TD7Znl9 jdxjx2Q4sw5fDGhjUti/i0A0A2Uku0FW4wvZhiQv9mH7rzPi1iZDq8XQIlMZU0p93ryjzbBi0OAz NLnRpZgEwcKxLETLzEHL4dlHMG8sfm0xvFwOmMsRc7lush6NK6NAGlFCb7m/Tca/GJjlAt1knEvx VsUEd5EenkazgOpZpkr1XI4kBzILx6iPCxwLK+XjqC/j8LCv/VqmFxcCspg3qEaSOjMandHCjTWR JfVhAWQ/zpqMR7MRFQzZpRINHIoaYkJKkf48g86+pu3xtYl2VqTjlwHYcCZFUjJqs74gb9FNDcG3 RUYmHQPnY/cooZEfFztsVTDnoi+mzKUEVqSBg3a6PCEfLDEcsUtxynvan6VqcrLFV6aszJyoZOp4 V3Agrw29uB2Zeo8CT6M5qdBxtzmeJxGuMpqi2IOcFOJGPWGzmWuTstnKMI/8yaI5Bu9a4YxD9ZBD dRCriflW7fvxNOoxudyzkvKNioPNhfosd20CT0rFcKDsUcKvsVVIuXwgjBCz2LLL/R0a6eEjq7BM JkuZ9eiTsRgM+tx48N9oRAxcUpQxE+hXkYNzRs43QjygEQ+Pj1znGxJPGVgXQRki2Jysje8xnE3u QvqmFFePubvNIqkZxhqoVQm1z2u6fK6YflN2fXClL1bS1Un9aEX46igXEhAKhEU+g3SYrhLFSkwU xTTcq6jh5OfM0nBLct6FkyQCSqLwlOtuFAh0cGuXS6PLpEEYkxqvU6ciqLHsC9XZdgur80qUFLog HxSLUs6LeEIiZysGpwxvMu/gFMfRkXBMMioa/QGVBWdrryAKGjm32BJxtHyGIy0tWhKOhFuf08A2 p4VByrdU4fc0wm8JFGCNC1GAFHFHDJCb9c4IIQsiyHqysreTt4mdXKCM2qrq4s84vD8TjBOe3qAC zwouaMDVNEiqaeAtqLfPa/bVPd1UhUPMZ4pzahQFySMNszF8HHlSRUpjpPHTyHkqNlSPqZ6Svnyk rKTrc6WHlOXHUR5uGqNTNCRW+gcxOtAZHUhVtMUxLha8m01lCo5CzAUiLGJ3S+TfnOIAq31US6Ws VHqcVZysyn30udU51T5I3ZwVA+ZbI0uFnTQKpvTtLb2400pqn+7lI3t2Li4yRVIuDvWc0GMrFlth bitERsxtxRVyj1yd+a1EnX2hqszSF8NUjPV3MTJQIYoPEzNOgjfLWKfcuQaEoSrHqTbvHFNLhanf VDunLR40tXharuUy94jcJJEyak+9f5FCktIgsxXzDUXy+fYn2akLDV8UwjGpmSNlgaoUTCntT5aP lJUkTg4EcdjIjheGT/hKOG/joxZg1QlOn1LBaDhcHd2kOnolrLir5EZdxY0sIVylDkowY3Lmi8mp kZYWLVm/dblJke12NmhTB/3v0HU9CuvzKdGpOqhdwpiw8D0W5JQYtQXtVFIibu/y7V22Peq+ZKgb 3E43GCuKbkykuM2CSFU92SHg95Fs9WcKcYTrvhqp43sa2cW80yRVMyCj61YNIY3iuaTIGbLc8gMW whmaNRdrW9jm7bRtngWdSILgYO4xTYIslwRRpzhzq/JSwxWWMgZqNZNpkEBJkOpQXBr48dUEqbIy 8sS2aQKE62k86URmHRW24TAClfzLouB3AW6sFSqbgaoAvi5hbyixH9sJ7D1laGRMisfvsoE3m+o8 CEM0yiOl/aJZkD7gkFpap8JoeaMMdHnd30p66hJwDVWGtFjYrgRumwVBZXD6juP0mvJtPhXFn9NE aEzI4+zLtSknlFdCVi5TFEklASSR9JN+O4U+6e5fCkqLh+gWrwOHJXV/PmIZ18ge9zkTwSVZs1gq upnMRGfURGcJZGWquAD9FkWhv+WrsDJiWkD3TzqmvjJiEp0/6d0bS9XhZ1Fwfkrx5XugTl6SlA/c 4uYs5KlsU1nSizmCGHBmmaxnFnDMkR+kndFZCD6PIfgPSnCsUTKkNIZUplWiID/C0Z7t0lee6Y8+ ewH/iXJIfkNR50FD7LRBrIgO3uNREz4iG+mIhVFyOrRo1z+A7RfEv7Mm3C6i6zvFh/ikrt+aHZOK WhspmMrr+GF3t3N51Y3Pwg0ItgHl5I5jM0wDgmufXhjwgYA8zNzDYeyy5+iyvttl7e9ukpZ1+x06 pN9n+7bZ4ggXYTce2rEG8SnRGMJJTYrvOczcU61JJmsSLLaiFr2C9vjRCyjG3HJfxN6ncB5xpc9H 2NC59LVfoZ+L11V0t14D8Psb7OI7sL7Vw3ewdNkrVnT6L4ztMsQu/v4V3PcG9+nzX8eoeAmxC34T dGFCdE+56DZoRpIPHe1EIb4+BzGtUfE91cRnMfFZtfgqiO85F18fAPLhoTG18k4S4vNIVKpjDgsc U02wHhOsVwu2gmBXon6JiUR0QOJmMYglGcW+w5x91QRoMwHatQDn6JlMEBcUR54J2KSeqT7msMAx c1GuYdSSrSDZqfvl0avRpvXMAU9ji+2HGdurSc1hUnNqoc0htB65m35s1nrA07xi+2HG9mpCazCh NWqhzSG0LgEzjmARwpluP8zYXk1oTSa0Zi20CkJ7xoW2yeewfiLSi/svz7iYVEcczjyimkhbTKSt WqQVRPqIi7RNg7PnUalAEM2DOov6oLy1mrh8Ji6/FlcFcT2JgkLsOexNNXI8P90jx/PTPdVEN2ai G9eim8Pi/UyFi5OUxZtuP8zYXk1oEya0SS20OWL13nR0OgoKViI/Mr7vMGdfNQEGTIBBomGrkTZN tJHWIYm8p8FzUR4itEfefzhjf7VGGjx7jMuOEQO22zETv6zELzvxa8gEsEVJ8Sra+pJr6yYVxNB4 AxUYbFHhEZwV01lXpSimbvlJRdF/MJtirzFqNYxRcq/tRHsndgC/EntdsdP1Jr5uJHc2nOwLG3KL 5K5y95q/uB46l260qfBkQvnQsfaGCqfYwPNUNyxlE1u6PjKTGEQQsGZmkZRSgtd1kxvG+ZWEcwxh sS0L6R+mbRnppudlwTAOYHdyZ0s+MxftBd/ohhF/zhHHPSPivAuaOSljraQMXbeaaELVlKHrZstr ZFEGqKorn+vmndrIOdWQW1SI8W51829YL15wvWBMF9nAWb0wm21iXUPX8f+ZrVfJ77pucktQxqqy UyrCvdAO+GzEd7O9ZLOle04rg9MbSsMxx3VuGCsRTUQxxDSumIWTcPXzGzcbp2LXuSU43aOoqxJO TzlOWEDMRrfxpasfZtk8FemY8Z2yVbBjVsHLMRkyXek/NOOgZeKp1t871vYb1oUVrguxV7TBvpma 4LpYwK52H5p6Mw1nZJ1cV2aSGJ54YkPa2XDigCZvGydr+F9hZbjFzb8l+sC8n7TPk2EdspvFI7OC VqbIdW4YoScRe+IrWy8p+zOjv7SsFrQ/S+FsE/9lKdzIGVkjI0PhXDetyVOFG0/wnxILVPJmUfK8 1c2/JdqAez6RPY1rg62Es2G7hhQ8W1EXGI2bvpRPakZ7Xd+cGGoKmQTjkT9OS/RmmrDAvPJmt3N5 tdmNDadOSDY7VCON+co2/L2kl4symXxD0sIe+iGq92fHU2/ln5rZ7A0urzobm/jnJzjr/8PRv2oj rUv9ekL+9hn3tw/g3BPti8betfQB5HxKmnEG2za1gOa1oh91CMfvs4mFYWfjNWUZ2jRvhn08kM2b m9B18dUBYez+T8RUDrgvTvCCVvNr/EHTE0euTJ84dexXmiEd/TTRwj16gdGO1uHH/z/tSmvQXhfO hHM1U/se1n3Ygmu4bUwf9GvCtgbs0emfQ0c24K8Be/BXKD3NtI1DQOlThIj8NE9ATifUeyapI03p SdpU935BlV8Dqsq8yLzuChzxnvA8AKn+D3t+fuwDeGLM+IBcpDtsk/SZ1KPezs96pP0nIcn/SWcO aErpmO6oOlOf/pPaOX1h3DpFvyfRM30N6Fqakzj+RUKeO/AMbGbWMf9UCTvzj9yrTz7fq0jHGHrY Fzr8PUoelfVkofmMkLkgjwB71zj1jE+S6EC7kwg9p3c7/MYzKdnXiOGUusazKULRh8eQA86Bj0W7 rcQZq/QKvnPo2VnHy8+5Ce16R7r4nk28Ji06AcbIOmOq6aIm8Yx501GfbKRkONX5PaoqvuCfUDkm CyLuZEh3mmqKWmpfUw/WpXux2SIJplRq6BjwUWnoCxoZwlerA27Ajx6xwyzZ0VWQvksw9yPO3F02 sbXm6DvA0fKT1Bxdc3TN0b9/ju4TU76rOfoOcLRTc3TN0TVH3xuOfsI5+hd6zl/gTjVP3wWetmqe rnm65ul7w9MraZ7WzJqp7wBT2zVT10xdM/W9YWrhUfehxahDqM81T99+nnZrnq55uubpe8fTsdqP mqfvAE8bNU/XPF3z9O+MpxXtufU1euxbiveduY3CzF3X6NXMXTP3/WHu21CjV3N0OY6ua/Rqjq45 +v5x9E3W6NUcXY6j6xq9mqNrjr4/HH1bavRqni7H03WNXs3TNU/fH56+PTV6NVOXY+q6Rq9m6pqp 7w9T35YavZqny/F0XaNX83TN0/ePp2+6Rq/m6XI8Xdfo1Txd8/Tvjac70BJ89liPkUYRuayWxNEP 6X74hHB8Se70QLYtzYZ/Yzi/uRDuzOcSGWdX8mbn4YfniTurdQwtjKlgWnEWe4PrVIebOcfOqhqJ H5vmRgta4pTWsRdcx6bv7H6bOKrWudk650kacN069wetUULj7KVq3HOucXGOlP3Px1znsNoYfcFl MdsLeqsysyrYnjV4us9kedFrPL0G/zNdnXvbvE9LOrKuYau9z5vzPk3pDrX3uRjv00Ddq8zTfbgL Re03xtMTuvol69P3kqfNmqdrnq55+nfO0+kswYtEH1mjtrNvg57EoriV2Izs6b7lsPU3cG+MOD5o WOvMWlp9/rVcMzCLh036dmATtAXicNB95FwT/ukRD+M2PAZbJlBuEnMHFDMiG4e3gC1m9zq7dB9y U32oqF7Pq5GrCY1cfkbhRTyjMEMfZ2uZw214QNYbbXwD/tlwfHUtK5tjWJxFu+s5hmIayDTghBgm oYHaD/hvaSNeST081/7N2+St/XdJLRxpLdAEH/6i7zghn9MmCyS0ELNfqIMBMSDTGzwaORF1dwzH J7XwL3CnNjxXQE/NeshbeL4zYge0rL/B74sIE9Swf0ZP94DuvIZ/E1d9oHmSJL+COzvSMf4Mb0i2 qY8pU5OZg03oyCro0hg82M90/FqsfzHt+A6e+izyDDjTan+VmXSpuvItbxP77nC6LRPemnJaYwHy FmjBiBiJMVYL9MFIcBfuH8NVdNIs5LgW+UVj0h45UrkerXlFvUSWyVvC6JQydRcZLPKCdCmOVeZZ pbTkFXjw+DXov0IvxrjpM13/gmzIxyXrxh6/8z+l1viw7d9Ra+bRjXGkG+at040VytVOCmnDK7hm WlpFznxJ3Fxe/1bhjBM6NuI06alisXMpDXwYfyfHknTtceI9IMelvaUxaIgDmmVwTfmevKYxWCs5 N9KMrBRqFfpTY/i/Tjp5bVpVCv+nsP8zZU/WIJIUHvP50nr9Pmy75Pmvc/J1WGs+aP+ip0V9Oy8t Hx2wnsAxKAMmHwPabivkYy5fPole/47w+AB/35Jn+zmnciZ+LN53XPDId9oo48iniSPfafxb5BlH I++cEuv49IzvOZekz/yaeogjcU/W2cnnLnIui0BVLZbtZtY946io7vg8445J3OWsz5i0+KLknaZn LeK5pu2bdbcyElhVtDKpWXpB/LLPkZ9KnCP3i2zUi52hfpbycs1H+oXyrMyeUoq1V2JfCl3jnHyy JM5+yUcvWL4W7QY+51os2inL1mOyph7nXozwTKp5SOYe0G/zEiMNlE+mqoiJYqRB5JPRtxln6sI8 eYYHmaMBqozpI8D8E/dnL7Qvcna2lPyfxG31Uv30FcliV/HKk/bZjOyzU9vn2j7X9rm2z3fePj+B LYjTZYwjl8PP0zt7Fdk5mTOZRDkT69blTJ4KPaJrnfIxkPNwqweC2uoNL6+Odjfwu+Bv2CKcbjMd h23FlVDifOoDC78maONCr7k61dX5r5vQ7gegf/i+1Emkzy95rlbkTNZ4xmAd8P+EIw9L0u5XUjuO yf9FBNYo/xSUrq5FvbXgL+qtR76ID0ubRhrivohDY13F6lyuK5eTlssK4ctGh0SNwrJyN8+o8uac 8EIpjOhM4tSSMgioikgnSQSEd0CjOtPRR51kgH7+DfiDCRn8MRobZBJ4Tk8kcrBrYu9SOf8vWofs DPaDAM76O3GiiMsw/sEn/kBP/ZF6bhW74ADKTdJ5F57AJSkFPOtpU08IKHYzaAzPobE8rCBDhmrS EV4qTrseu/AneuZpXnzEZfI2Z3xNzrBnXSE97tdKRW+yjrzUtiiveU7t925MT/6coSfvpNZV049k VKdHUZ1166K6P6WeOC7hM8pEHOP+UFQA2YAH8lP2P3eGDkx/LytOT8qaWLo0LxuwLyBv347y6MIn vHGJ5uL9JOpha/RsZ0t8V4MCeeLhf1WwjHEJmHdKAqvaL9opjeTcDNv9R65V/CdvWxWma/G5WGj7 3CgaMkkqOE9rRJYQbaVLec0RWcGAMp0mxU/oPS6D6V5Gz5m0YfJ471fQJtkCqs5EDD3tJJHB/Ao1 b6aX1OesimffjD78KUMfzmItq2b3sI9aVMnF+qhJV2ySNmAdikN+EfbEgDyjMXm6NvXagHqpvxRt +DbxrAXlGjv/m8zzMzUqoRWPeJXaGdU4f4zq2A5pnpzYsxbViS5TO77j2vGJsGa4x3ibs7hXSUOS LG7fNhaPXfU7kuFUFm8p83xOs2YvCta+f5tzjcq+VcHrq/TQKaiHq8mtS/cbVrWeWvdKaptB1ZEB 5S1ZdUqLrFUjpW2ilvfmfAa1JOSty6oKkvAvibtPfRfzFlizz7IYbHZUOovRuGHcH8Czn2pszpvQ /nXyT9ame5bKvy/g/v/L2eGMrPJnjWYtV2LcCaGK9ezojfmU1dPJBn9Pe0Z8TNkCaRmU12BzKtAv m5B3h7Z6OTbZI9zfUtzNcH9LsSku5QrirDlqL5VXKcqGbKZksrpcvJtjm+53urTRi9Rcm4oza+76 W5Ns6ch6PuRtnA+ZfNvJXZkPiZ69PHo8a26WI91j9oxIeZ5ikdlc8njzfZwRqeZj8U67feJS9HiX Ve81Dyc7NSfXnLxkTr6bc9TLc3L6zVzXxcr1PHWcp7JBZ3yGO51Hs6fwSZhOn5Fm+JRRjB+5rLqI 2S0px61jymc3iDlbFEG5lLOcVuU2KYLCMd6WFp+Lif8P6NjljPY+hdaJp0xHTKgbIo9kpd4Ghb3r S85ZiBEsC+jCwxuQ+sM55BvQOK3NM0A+H7loxebIsLm2OmjAzc61Xb58v6Fqmi+8B7HZ119g3eY4 4EypzSh7naz/GJLsjqOxhGVlT/JbUbbvN4mLJyRrlslqUtVHPJPlUk2URSPD+Jf9xiWr519OJquM rOLWDsegmE1YppzyWrBcGbWul58ry+gJeT1nzCdccuVs+s7L7je4bTky+ZZqN1lFGL494leK7nDt E2W/LxJSeTytLlyqTNL3vQ6JNEAODRq9bdAoLv51yfNxyCouRyJPCXt8Fja+KmZ1MQms0bOyJz3N nikb1Tf0yPNnx+LapyVJbP52lpMwjqJOKH4NKJrH0a4JnSEk7JEf06AepvMZ2Sb3elqwB2s4qrwf KSsW/yP54n4sgjJYNBHuDUDY4S/0t7c+vLxqb+weXwX8v7DLfum6Z7T8sNuLNOMxjSS9nb7vJeLK IJUTOszc0+8cjK70sDtsH+Nis0uLwd7xlQm/hsdXRtjtd+iQfp/t22aLI1yEw6P25RW78dfwiPva OjzQT5dXP/dgv6uH23w5HPwC19JhZQeeYLjTOb5qBN5oTPo+POrOf5Fw86h3edXdozZv7PZx0dul X711And3H5vco11wkd6Q/wYEjHC9t8sWA3zY9fUN+rXeocUALjOBIzt4whZeVA9/7P3t+MryYTlA sH7sHeCtfuz18Pyt7g4ufhzAMY4Hy032c4iX+3HQJkB3e4TkPjZua7CL23YHh7josMXugJDfGOzh aZsbA7zD/psB/tod0K/t4R5eZHvIyKJDhINd7zdaUkl8eNSlY4/2qP3DPl0OzsTFUWedLt49ggto 4f6efXkFfwDvkBYBWxhsoUsLWHbxeFAbJ6QFyGJ/oLNrDQy+NPnSouXm/gYeN1zfpeb0fsbFET4I CK59SMdstEnbNtrrtLWzTr86e5dXu91hcKX/4ITDgx5b6e/wLe0DvhJuHBHE4d4+NG9vv0PXDHf2 SDi9nV22wM3/RZ0faSCgEqwRL2E2aGjcprTgiAjEItcEDYNDxVs2Da41KRgCMw0SgdaFO7tMkG9A qrvrb6A7/7SFGw77pF+7/P0K6PHgvE/BeD/D31G4u0uQ7A3o2L0NulRnhwS+sYtdfxMvu/ETbt/c xfuF4esdeMbX7KAwTN1T5/d8GLunkbiTzu5k5N9pZ28r2nB00KUZJGyRnE9CndYcj1mvnTis1zaT nXbku1bI152J0xLrdtM3xXqzYTTF+sQb62J9pDcmfH3SaEEP5Nt9y7Wjazac6NymY3nRdUaN6BhP 93CkZrhOKMo4hlv9zuXV1sERPtPWwRtaDOCX5cLyDVsKbiamDrc6YEu3OoToVuen2K6tzjb28c5r vNXBgLj2YEA6HfY6G3DbPvRQL3zd32OMuxFb9P8GPGXZnmeNG64M9k4nuGpYVriNfcA0W2F/cwBb zLA/OMTLt7c2hDEB/gIBtKcW5AmNgr+lCoeP5GEIv+LPsActBfpGPdj+Dx6brFMu8Bi2Mj/RozHl sbAi7XVi1PY6PIw1aYbtzg4+QHtvD3mkvUfP2B5s0kEDIos2mhNYtEkd2+2faLGxzy/A7FG7TzTe 7rbZgqihvc82DoBFW27YZhasPWRXHw7YTfbY9dhih6huH1sF3erAALWEhYmX6RxYtOgaSOadrskW Fi7CQpitqDBbJjL6nMjo14XMU47MFnmLn2heJY505GFjM2wmOdjoSmx8P4GNnqM1fpNhY5ml9caw GTweg8dj8DQZPE0GTzMc9ID5/FE4GPAl+ggm+AODAV8pBuArDuD09Q4TKsqJHxkHEy5MaJpOHppe ATQlTctDU9I0b7GaRhC6rgLCQa/N9gzYMg7pYw5pm5gK/O8oP8cAFWMoa1qf18SMZ/KZEksjsBfL aGDWqjGaV7bfZmG0yjHapghvTJE/ZgOuqd+W4LQS2OjXi81UfypjI2tOGXRuqea8SGnOnL1rwTZx efojKL1DCL2npxdROsOoQ3mOiyWyTi6H+3ZF5dEZNDqDRmfQ6AwanUGjF4TmRQRNtCehZHkwmbeU nI2FK5AapW0e9X+5kybMSDpXDoPJYTB5DCaPwaR2ndIwPc+AiZipvCrduCXLUySHIeQwhJyCCL1U ItQhxmaZzbvY4cyFdzg1TkPKjn+6szhZFXFa5Tit88r8NtVnAS7R2BBDqxhtY7tj8Lg2w4f2z8Sn aefYN4rtYgiN57T9JkPIZAjZDCGbIWSzgA+lmoj48DEoXIENZTAUcTOOtuA3gz+zwC8fSaWi5QNp tDiU5igveJahLBU+VwbTbBUD8zkHc4OGX9gLjUW64UtUjsMAxWTrRQLGxpjh2BCpGbWJzHPV8dRE fzVn+1uVfXWzWQzBNs8/tCvhld+JBWZNn2E2WZDB1PMMpnmtgJUF6EkMIFZPeJqf8eNqZViF4xtD t8v78Y7OYCIDg0AFeemYaqr1C1IvT8xYxriycv2N5nSdSCks22HQGSMJOpEt1Rl0fh6x4VPPho4M SAw8l8dAhNm19EoZuojYqupfn0ahUf8+5nZRo7XYPnoTpBbH6GmEEZsZ6lMtwEk0Wy2RpSnUMzky pFYzPTTD9Dk8aAILwuNOeN/EkxEgSpwWs5sFFawPemVOJrDSTutVPmZCozaigeT8UFLCjR5KYSol 3Bp+ebWyeX7Z43plje1F46bomG2RbeZsWh7Jnia+YzJjNEhCMrALGIfArqCAgt84kOTHLR5HhG8g PDgqjiBXTqz02sKXEyv90hBXcZDVnh2NlGTD7Jvl9TVyjx2T4cw6fDGgjUlh/y4C0QyUkewGWY0v ZBuSvIhvX/l1RtzaZGi1GFpkKmNKqc+bd7QZVgwafIYmN7oUkyBYOJbFypGy0XJ49hHMG4tfWwwv lwPmcsRcrpusR+PKKJBGlNBb7m+T8S8GZrlANxnnUrxVMcFdpIen0SygepapUj2XI8mBzMIx6uMC x8JK+Tjqy++pUO7XMr24EJDFvEE1ktSZ0eiMFm6siSypDwsg+3HWZDyajahgyC6VaFxQmf+x9kmR /jyDzr7Gy5l/pbqwAh2/DMCGMymSklGb9QV5i25qCL4tMjLpGDgfu0cJjfy42GGrgjkXfTFlLiWw Ig0ctNPlCflgieGI6Xy+bFWTky2+MmVl5kQlU8e7ggN5bejF7cjUexR4Gs1JhY67zfGcfqFLRlMU e5CTQtyoJ2w2c21SNlsZ5pE/WTTH4F0rnHGoHnKoDmI1Md+qfT+eRmVTSWcl5RsVB5sL9Vnu2gSe lIrhQNmjhF9jq5By+UAYIWaxZZf7OzTSw0dWYZlMljLr0SdjMRj0ufHgv9GIGLikKGMm0K8iB+eM nO9xYj5IWh9lkD1lYF0EZYhgc7I2vsdwNrkL6ZtSXD3m7jaLpGYYa6BWJdQ+r+nyuWL6Tdn1wZW+ WElXJ/WjFeGro1xIQCgQFvkM0mG6ShQrMVEU03CvooaTnzNLwy3JeRdOkggoicJTrrtRINDBrV0u jS6TBmFMarxOnYqgxrIvVGfbLazOK1FSiE1q/0jTZAt4QiJnKwanDG8y7+AUx9GRcEwyKhr9AZUF Z2uvIAoaObfYEnG0fIYjLS1aEo6EW5/TwDanhUHKt1Th9zTCbwkUYI0LUYAUcUcMkJv1zgghCyLI erKyt5O3iZ1coIzaqurizzi8P7M3f/D0RvyLIWVc0ICraZBU08BbUG+f1+yre7qpCoeYzxTn1CgK kkcaZmP4OPKkipTGSOOnkfNUbKgeUz0lfflIWUnX50oPKcuPozzcNEanaEis9A9idKAzOpCqaItj XCx4N5vKFByFmAtEWMTulsi/OcUBVvuolkpZqfQ4qzhZlfvoc6tzqn2QujkrBsy3RpYKO2kUTOnb W3pxp5XUPt3LR/bsXFxkiqRcHOo5ocdWLLbC3FaIjJjbiivkHrk681uJOvtCVZmlL4apGOvv0gun FYjiw8SMk+DNMtYpd64BYajKcarNO8fUUmHqN9XOaYsHTS2elmu5zD0iN0mkjNpT71+kkKQ0yGzF fEORfL79SXbqQsMXhXBMauZIWaAqBVNK+5PlI2UliZMDQRw2suOF4RO+EnuJEk4dRm/pWAWj4XB1 dJPq6JWw4q6SG3UVN7KEcJU6KMGMyZkvJqdGWlq0ZP3W5SZFttvZoE0ddPb+cXpjVa7mOVUHtUsY Exa+x4KcEqO2oJ1KSsTtXb69y7ZH3ZcMdYPb6QZjRdGNiRS3WRCpqifDN6d/1Kbfgheu+2qkju/Z 7Hya4S/XDMjoulVDSKN4Lilyhiy3/ICFcIZmzcXaFrZ5O22bZ0EnkiA9eoHOR0rXlYmA1CnO3Kq8 1HCFpYyBWs1kGiRQEqQ6FJcGfnw1QaqsjDyxbZoA4XoaTzqRWUeFbTiMQCX/sij4XXrj5HHpDFQF 8HUJe0OJ/dhOYO8pQyNjUjx+lw282VTnQRiiUR4p7RfNgvQBh9TSOhVGyxtloMvr/lbSU5eAa6gy pMXCdiVw2ywIKoPTdxwn9qoPn4riz/knDsVrciJOKK+ErFymKJJKAkgi6Sf9dgp90t2/FJQWD9Et XgcOS+r+fMQyrpE97nMmgkuyZrFUdDOZic6oic4SyMpUcQF68TbcXBVWRkwL6P5Jx9RXRkyi8ye9 e2OpOvwsCs5PKb58Ty+BOJ85BdtY3JyFPJVtKkt6MUcQA84sk/XMAo458oO0MzoLwecxBP9BCY41 SoaUxpDKtEoU5Ec42rNd+soz/dFnL+A/UQ7JbyjqPGiInTaIFdHBezxqwkdkIx2xMEpOhxbt+uzl rycFJtwuous7xYf4pK7fmh2TilobKZjK6/hhd7dzeXXr3gPVjYd2rEF8SjSGcFKT4nsOM/dUa5LJ mgSLrahFr6A9fvQCirEmPnk6fZ/CecSVPh9hQ+fS136Ffi5eV9Hdeg3A47uL8OI7sL6FLyCC9Q32 qhf8L4ztMsQu/v4V3PcG9+nzX8eoeAmxC34TdGFCdE+56DZoRpJP73FOiy/21TZJfPE91cRnMfFZ tfgqiO85F1+fv6SOfZY2KcTnkahUxxwWOKaaYD0mWK8WbAXBrkT9EhOJ6IDEzWIQSzKKfYc5+6oJ 0GYCtGsBztEzxev0T8m34bBJPVN9zGGBY+aiXMOoJVtBslP3y6NXo03rmQOexhbbDzO2V5Oaw6Tm 1EKbQ2g9cjf92Kz1gKd5xfbDjO3VhNZgQmvUQptDaF328ZIIFiGc6fbDjO3VhNZkQmvWQqsgtGdc aJt8Dusn/rbneHqKiUl1xOHMI6qJtMVE2qpFWkGkj7hI2zQ4ex6VCgTRPKizqA/KW6uJy2fi8mtx VRDXkygoxJ7D3lQjx/PTPXI8P91TTXRjJrpxLbo5LN7PGnuTt2zxptsPM7ZXE9qECW1SC22OWL03 HZ2OgoKVyI+M7zvM2VdNgAETYJBo2GqkTRNtRJ8juKDXWInM0GqkPfL+wxn7qzXS4NljXHaMGLDd jpn4ZSV+2YlfQyaALUqKV9HWl1xbN6kghsYbqMBgiwqP8EPjU511VYpi6pafVBT9B7Mp9hqjVsMY JffaTrR3YgfwK7HXFTtdb+LrRnJnw8m+sCG3SO4qd6/5i+uhc+lGmwpPJpQPHWtvqHCKDTxPdcNS NrGl6yMziUEEAWtmFkkpJXhdN7lhnF9JOMcQFtuykP5h2paRbnpeFgzjAHYnd7bkM3PRXvCNbhjx 5xxx3DMizrugmZMy1krK0HWriSZUTRm6bra8RhZlgKq68rlu3qmNnFMNuUWFGO9WN/+G9eIF1wvG dJENnNULs9km1jXwWxg5rVfJ77pucktQxqqyUyrCvdAO+GzEd7O9ZLOle04rg9MbSsMxx3VuGCsR TUQxxDSumIWTcPXzGzcbp2LXuSU43aOoqxJOTzlO4rN67MPiH2bZPBXpmPGdslWwY1bByzEZMl3p PzTjoGXiqdbfO9b2G9aFFa4LsVe0wb6ZmuC6WMCudh+aejMNZ2SdXFdmkhieeGJD2tlw4oAmbxsn a/hfYWW4xc2/JfrAvJ+0z5NhHbKbxSOzglamyHVuGKEnEXviK1vZ1wVn9JeW1YL2ZymcbeK/LIUb OSNrZGQonOumNXmqcOMJ/lNigUreLEqet7r5t0QbcM8nsqdxbbCVcDZs15CCZyvqAqNx05fySc1o r+ubE0NNIZNgPPLHaYneTBMWmFfe7HYur2KfA35GPstbbYdqpDFfGX06nMvkG5IW9tAPUb0/O556 K//UzHI++/scWndMnwjEjweyeXMTui6+OiD+edwnYioH3BcneEGr+TX+gJ/JjR25EvtYunws/6hu qU8FN2ivS58Fxk8A46e4fdhiRp8Kxg/6NWFbgz4VjP8cOrIBfw3Yg79C6WmmbRwCSp8iROSneQJy OqHeM0kdaUpP0qa69wuq/BpQVeZF5nVX4Ij3hOcBSPV/2PPP+ETxU3rZ2AmXetTb+VmPtP8kJPk/ 6cwBTSkd0x1VZ+rTf1I7py+MW6fod/op5a/pU+hOhY8w/5F79cnnexXpGEMP+0KHv0fJo7KeLDSf ETIX5BFg7xqnnvFJEh1odxKh5/Ruh994JiX7GjGcUtd4NkUo+vAYcsA58LFot5U4Y5VewXcOPTvr ePk5xYfV8UUeNPGatOgEGCPrjKmmi5rEM+ZNR32ykZLhVOf3qKr4gn9C5ZgsiLiTId1pqilqqX1N PViX7sVmiySYUqmh+KlwlYa+oJEhfLU64Ab86BE7zJKdrnH6LsHcjzhzd9nE1pqj7wBHy09Sc3TN 0TVH//45uk9M+a7m6DvA0U7N0TVH1xx9bzj6CefoX+g5f4E71Tx9F3jaqnm65umap+8NT6+keVoz a6a+A0xt10xdM3XN1PeGqYVH3YcWow6hPtc8fft52q15uubpmqfvHU/Haj9qnr4DPG3UPF3zdM3T vzOeVrTn1tfosW8p3nfmNgozd12jVzN3zdz3h7lvQ41ezdHlOLqu0as5uubo+8fRN1mjV3N0OY6u a/Rqjq45+v5w9G2p0at5uhxP1zV6NU/XPH1/ePr21OjVTF2OqesavZqpa6a+P0x9W2r0ap4ux9N1 jV7N0zVP3z+evukavZqny/F0XaNX83TN0783nu5AS/DZYz1GGkXksloSRz+k++ETwvEludMD2bY0 G/6N4fzmQrgzn0tknF3Jm52HH54n7qzWMbQwpoJpxVnsDa5THW7mHDuraiR+bJobLWiJU1rHXnAd m76z+23iqFrnZuucJ2nAdevcH7RGCY2zl6pxz7nGxTlS9j8fc53DamP0BZfFbC/orcrMqmB71uDp PpPlRa/x9Br8z3R17m3zPi3pyLqGrfY+b877NKU71N7nYrxPA3WvMk/34S4Utd8YT0/o6pesT99L njZrnq55uubp3zlPp7MELxJ9ZI3azr4NehKL4lZiM7Kn+5bD1t/AvTHi+KBhrTNrafX513LNwCwe NunbgU3QFojDQfeRc034p0c8jNvwGGyZQLlJzB1QzIhsHN4Ctpjd6+zSfchN9aGiej2vRq4mNHL5 GYUX8YzCDH2crWUOt+EBWW+08Q34Z8Px1bWsbI5hcRbtrucYimkg04ATYpiEBmo/4L+ljXgl9fBc +zdvk7f23yW1cKS1QBN8+Iu+44R8TpsskNBCzH6hDgbEgExv8GjkRNTdMRyf1MK/wJ3a8FwBPTXr IW/h+c6IHdCy/ga/LyJMUMP+GT3dA7rzGv5NXPWB5kmS/Aru7EjH+DO8IdmmPqZMTWYONqEjq6BL Y/BgP9Pxa7H+xbTjO3jqs8gz4Eyr/VVm0qXqyre8Tey7w+m2THhrymmNBchboAUjYiTGWC3QByPB Xbh/DFfRSbOQ41rkF41Je+RI5Xq05hX1ElkmbwmjU8rUXWSwyAvSpThWmWeV0pJX4MHj16D/Cr0Y 46bPdP0LsiEfl6wbe/zO/5Ra48O2f0etmUc3xpFumLdON1YoVzsppA2v4JppaRU58yVxc3n9W4Uz TujYiNOkp4rFzqU08GH8nRxL0rXHifeAHJf2lsagIQ5olsE15XvymsZgreTcSDOyUqhV6E+N4f86 6eS1aVUp/J/C/s+UPVmDSFJ4zOdL6/X7sO2S57/Oyddhrfmg/YueFvXtvLR8dMB6AsegDJh8DGi7 rZCPuXz5JHr9O8LjA/x9S57t55zKmfixeN9xwSPfaaOMI58mjnyn8W+RZxyNvHNKrOPTM77nXJI+ 82vqIY7EPVlnJ5+7yLksAlW1WLabWfeMo6K64/OMOyZxl7M+Y9Lii5J3mp61iOeatm/W3cpIYFXR yqRm6QXxyz5HfipxjtwvslEvdob6WcrLNR/pF8qzMntKKdZeiX0pdI1z8smSOPslH71g+Vq0G/ic a7Fopyxbj8maepx7McIzqeYhmXtAv81LjDRQPpmqIiaKkQaRT0bfZpypC/PkGR5kjgaoMqaPAPNP 3J+90L7I2dlS8n8St9VL9dNXJItdxStP2mczss9ObZ9r+1zb59o+33n7/AS2IE6XMY5cDj9P7+xV ZOdkzmQS5UysW5czeSr0iK51ysdAzsOtHghqqze8vDra3cDvgr9hi3C6zXQcthVXQonzqQ8s/Jqg jQu95upUV+e/bkK7H4D+4ftSJ5E+v+S5WpEzWeMZg3XA/xOOPCxJu19J7Tgm/xcRWKP8U1C6uhb1 1oK/qLce+SI+LG0aaYj7Ig6NdRWrc7muXE5aLiuELxsdEjUKy8rdPKPKm3PCC6UwojOJU0vKIKAq Ip0kERDeAY3qTEcfdZIB+vk34A8mZPDHaGyQSeA5PZHIwa6JvUvl/L9oHbIz2A8COOvvxIkiLsP4 B5/4Az31R+q5VeyCAyg3SeddeAKXpBTwrKdNPSGg2M2gMTyHxvKwggwZqklHeKk47Xrswp/omad5 8RGXyduc8TU5w551hfS4XysVvck68lLborzmObXfuzE9+XOGnryTWldNP5JRnR5Fddati+r+lHri uITPKBNxjPtDUQFkAx7IT9n/3Bk6MP29rDg9KWti6dK8bMC+gLx9O8qjC5/wxiWai/eTqIet0bOd LfFdDQrkiYf/VcEyxiVg3ikJrGq/aKc0knMzbPcfuVbxn7xtVZiuxedioe1zo2jIJKngPK0RWUK0 lS7lNUdkBQPKdJoUP6H3uAymexk9Z9KGyeO9X0GbZAuoOhMx9LSTRAbzK9S8mV5Sn7Mqnn0z+vCn DH04i7Wsmt3DPmpRJRfroyZdsUnagHUoDvlF2BMD8ozG5Ona1GsD6qX+UrTh28SzFpRr7PxvMs/P 1KiEVjziVWpnVOP8MapjO6R5cmLPWlQnukzt+I5rxyfCmuEe423O4l4lDUmyuH3bWDx21e9IhlNZ vKXM8znNmr0oWPv+bc41KvtWBa+v0kOnoB6uJrcu3W9Y1Xpq3SupbQZVRwaUt2TVKS2yVo2Utola 3pvzGdSSkLcuqypIwr8k7j71XcxbYM0+y2Kw2VHpLEbjhnF/AM9+qrE5b0L718k/WZvuWSr/voD7 /y9nhzOyyp81mrVciXEnhCrWs6M35lNWTycb/D3tGfExZQukZVBeg82pQL9sQt4d2url2GSPcH9L cTfD/S3FpriUK4iz5qi9VF6lGBs+1DboHp/h/POoLhSr5hnGZ8SGPvlK8SOXlfGd3ZKy/ppJPRB7 Zot0wyVvbFpv0CTdwOxVK1Fljv8P6Njl5LGeQuvEU6Z1AWsNhIW0UvPc0R5+yTkroBxrq4AuPLwB qT+cQ74BZaBsbtt8HpO1YtV/bBaBDhpws7MIli/fb2ic4AvvQWxeyRdYtzkOWAO6Gfnlycz2kGR3 HEVJy7IL+a0o2/eblJ+ekKyZjW5SPjtuo10a7bEo54V/2W9cskql5djoMrKKz5XD6JrNylymnPJa sFwZta6XnyvL6AnFtWesrmzJNQHpOy+739ip+YHXJZNvaVT6mMdwA8DzmK99Ir/+IiGVx9Nx06XK JH3f65BIA+TQoLxUg/JT+Nclz8chq7gciTwl7CdU+Yjeq6hXZRJYo2dlT3qaPQcgytz2KP/AjsW1 T0uS2PztLCdhzA9NyK8PqMYA4/gJnSEk7JEf06AepvO5Jib3elqwB7PTVWZ+Z0UZfyRf3I9FE4Yi t8Leu5Kcqyre9LdN1z1dGu+lZu5LXlTRefp3/R2stnRk/XaV2/h2leS7E+/K21VwnECuRZ31pgdH usfs96vIbz0p8m4IuXr1Pr5fRc3H4g3Z+8SlmD9f1uyReTjZqTm55uQlc/LdfONVeU5Ov+f3ulj5 3r71KuytDy+v2hu7x1cB/y/ssl+67hktP+z2It5+TKNHb6fveImYO0gx92Hmnn7nYHSlh91h+xgX m11aDPaOr0z4NTy+MsJuv0OH9Pts3zZbHOEiHB61L6/Yjb8GoPe19XBv8NPl1c892O/q4TZfDge/ wLV0WNmBJxjudI6vGoE3GlMkODzqzn+RcPOod3nV3aM2b+z2cdHbpV+9dTgcfuxjk3u0Cy7SG/Lf gIARrvd22WKAD7u+vkG/1ju0GMBlJnBkB0/Ywovq4Y+9vx1fWT4sBwjWj70DvNWPvR6ev9XdwcWP AzjG8WC5yX4O8XI/DtoE6G6PkNzHxm0NdnHb7uAQFx222B0Q8huDPTxtc2OAd9h/M8BfuwP6tT3c w4tsD1kY3aFuiOb0N1pSGXx41KVjj/ao/cM+XQ7OxMVRZ50u3j2CC2jh/p59eQV/AO+QFgFbGGyh SwtYdvF4UBsnpAXIYn+gs2sNDL40+dKi5eb+Bh43XN+l5vR+xsURPggIrn1Ix2y0Sds22uu0tbNO vzp7l1e73WFwpf/ghMODHlvp7/At7QO+Em4cEcTh3j40b2+/Q9cMe1v752wY919ADcy9WAPi2Nkj ofV2dtkCD/8vMtwODQ+aVNqM4bVLA+WsnJmVOI8orMZtFpVzBUQrFh/oBQcAJAWtDnffgJh3199A //5pC29z2GcSj4ZQPJr8ie3Z3SVk9phO7G2QZnZ2SO4bu8gAm3ixjZ9w9+YuXH5nbyvacHTQpSkd bJGc4EE9yhyPWZeaOKxLNZM9auS7VsjXnYnTEut20zfFerNhNMX6xBvrYn2kNyZ8fdJoQffg233L taNrNpzo3KZjedF1Ro3oGE/3MNgZrgN0+N/rHRDkawZBGKZwNDiOT2M4siTLz/B3lEDUYIjq+Yim 7hludcD93epsY2/tvMYjDgbEmgcD0s7w/wBRcmcY33cRagAAALxta0JTeJxdTssKgzAQzKnf0U+I Fh89anwFk7ZoSrU3LQRyKxRyWfbfm6j10IVlhpmdZWSbW6g6ZiDAQTANFMcVHrzQEEYxNlxpCJIQ u7LX4LG/G3eQ1y6lt0ExCgsiGy3kbT07+94JD+IiP0AOhJGJvN0eSYCyXywmXISVPsdaL5RCWuCy 3oXhWi2NVvjrdxtcaUqx8WR6oeqfBlKKiruPihcGEn0O0wA3HiXz9ONTeIp3HqURYqEyC7jNFwMP XtBz8AFRAAAC/21rQlT6zsr+AH55PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJzt2Y1u2zAMReG+/0O3Q1AYzRLHcSyR ouzvAAfZsqGReK2fhj8/a3x/r749KV986TpnyP93Dvl1W2q3/PmoIxn9+Ud4HnNu9mtjacm99flp ec4q5H90DJnr/jGv5bVHHlfPfy+j1v0ZaveKanN4N56/f4/P/n6dn5VKc6uU/fJ5leoTwXzzG5v9 2j1gZuaaQ2z2+/efff9/BqrO4XmdRWX/f/5V6xHFHPONz35hbz3mqNt76s+j7l3vDPtFxfFn3fNb 5y7/SMbu95/UpW4N31Nz7Dnnfa/v9WrWcB+jx/68h+as+5ixz0et8eee93vmXqs+/akwv+w+3p7v 9d79/SyMmEteH6/Pvi//mJ+Rue57cIbz/pHM+ejf16N3DSr1cK/Qv2+lZ20qZb98nuy3ya/P2OzP eo87Sm4NYrO/Yv++laga6N/PQU694rNfuFr/vpX4OtS969kvYuavfz8PcfMfu99fpX/fSszcc857 /ft2+u+hOeu+B/b/3vPPPe/179vp1//LO+/178eif48b+vfXQv/+/FTq4erfx/LpfVr/fn7a19TY 7N3j2mirWWz2+vd10L8/J8fqG5/9p+PznLSxv35173r2ixj07zF6v9e/j+N9vXLOe/37MWz/HpWz 7nvNQ/btjDrv9e8zeX326t9fga09OOe8P4r8e/C8F2ev+z3vIYq1XMZlv/U+Iojc49ez17+vRG72 N/b8fubZyCI3+3u29gH5Z5G75z/iDjCanOyP5vm4R3jt/Zp35u9hfD2u9pq77u3r1ci56y3Ivxp5 2d/Yyt+zMYJ++d/v96/ufJ9+97P8HEbZ/8x/zG4ty1f5Ipu4+75MZ6D3/Z8kSZIkSZIkSZIkSZIk SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkZ/UfdArgr9nm4JoAAAXVbWtCVPrOyv4A f0jCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAB4nO2cjW7kIAyE+/4PfT1Vq1X+MBiCmbHxJ1nt7W0T7AHjEJKf39/fn7S0 tLS0tLS0tDQiYwYdm+j24d+/Z+RLn0nf6f2pPe7nd3SMotonzpImpf+T/j1Lf7kfomMV0XyQ+ttp f82zdR3woGMWyZ70ztHrQccsih185/gR7c9/22vS8UrHv4KOXQS7xrtXEytS/7X6a2iN2VmUznP/ PevAtdqvQFt/XucndAw9G1edN3b9gY6hV6vHWsrzDP3kTOaAd/rP1NNq/bd9TnQsPdo5fnNA6P8B HUtvxpfH35A5oF//Z/y8g46pF3sSQ/8/0LH1YGvX8VZwtB8dW3Yrx827/n9kH9DrH0HvM7k/SK+/ r3v8feR1QF37fUDHmtEOVtzDw4KONZsdRM3/z30r6Jgz2Y6gY85iV6KO/zuZA8r6P2MUGXTsGWwP yn0ZHXu0ybGJP/a/oDXA678re9cAe1Ff00BrkfpjQWuB036X6707V1/ReuDHfq0GjNgv9n5WSLfG H1F3iX3uC5d8H4uZd/bMAa0Y7MVedUDL/335zIdofXLsW1J7bv0wtEZr9Nc+wx+JVs0be4/o3cdW DOIhXc/uUQf2xSgipfG/x3tDkv5+jdZsrf7x93z2EasOjL2W28te7w7JsT2K/xyQvAOtX+pvQV8u RGv4Xv/M/WV0cUFrmNpbIK0FnH8ev6O1HNf/7lvyoVYT+18PkvzYF926n/QdtJ459t/y5p02/vpA Mh+0pqk9Cl/3hWvtT+7EWgt4+pVrv+/xM/7H6txEB3cdmFjDnQfKz3Ll2LcArXWO/5Xwrwe22ssJ 47Onuv3Bf6A1L+d+ljhGha8GuLbNg/4e2qgDrf117HvFS7/9wpUDnu3yFEuP8OgvtYsb72tUPO+T vz676IXr+Dk+8+gLeuz7itUZ/75g5wG/PNfRvZP69+HXl/v8hLknVG+f5jME9XwpfZeX6z12Hv35 Y1f3yYcPqPXg0rmf7eKNn75f8/ogsXbs+3yHi65vc/sggcv7zOivk1p/z07qX+Kok+L4KD9PwKM/ ctyMv1fHB/IcZad97zMrM/UfOda1Db7zXN/zQ3ZjX6sDUv/yfUjf+t+p1952eV/TD/nqZ5t5DuHj Obb1tTabsa/xeYX+9s/NcNKKbV+tOz8Oq/aA9PWxuTlPas8q9PtW5+iPrPta52mvQdn3feTeAemc c+oA3fk17ZmNPt7z/W/1Od+1T3neRzN2X3Ht3GfJ+Fr7Gv+Zav65NTAHPfGdc1+wdVzd/6PmxA/z 9UevaWraMLbu+b7fM4x/y+tfNCPX3mN1oHy80XatZP4a2GgbWOj3l6v9vczUfmwOYIpf/3jgxr7u l2MyVoPNZezY8/xk6tt3bO5/XONSnmNL7bCl/xxzch1inUMbbzv9ufKiZg24/zqgfUwG6vcgrbT/ KZ7bH/39m8Vn+/Xed+OfJU51+vxj82n9vhdfY0RHVN9w+n/xECt5b0Dpu+va9Y4V2l/rAK/XSC2/ GLG9z/8+B2j2xbEgXyPxgp/3++PE3Ae86V/iyMGr9T9ixa1xC9/6H+D0l2DrF+V9WhH0R2j/jBeb 3nfKa6Z1/dl9+gP9/qujHWYuTqNco/rUH1P3+9Vfbp/n/I/Uvh4z9v7w5ZoDvIHWvp0DmPvBM4dy 7eOVwF3z9eUALxzx9ARac30OYEO+Fqh/hwu05vL497QW/OWuvx9qedhCX9+5n/MZtfe0xtx5396I lc7nOZaa/WNs9Oy99eITknv/rfX3KJR81vwsHUP7OSuRc0ASh5bm1n0ick4s5QC2umZmO2bkf8/0 7Flj952pfUxtkfDQRi0aXyz89ZwXWmPfo093an7Muvb/Hssb6DrKmp65zeIclud9S4/2LG1mJ16c /gPmLn6uuYgP+AAAAnJta0JU+s7K/gB/V1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHic7dyBbtowFEDR/f9HQ4UQCkkc 4mSQZz+fKx2tUleteTYJ0Kz3++1214ce83mRlr3vD3tFj6y/JEmSJEmSJEmSJEnj5D6BvNXcB1T6 /Ah7YqRjXP555Guztjy+jMf7/vjfOr6Mxy09OrO3379m677aHmi7keczwnXvU6Md76eyPydYH8e/ gd0XH+9fM7Lsg6noNWjJVL51LhU97xaN0XN/R8+6RdN8sp4DrH3dHsjc7RY945blfew/i55v66ay 7QPn/uN7YD67DEXPtgdZi55rT6aO/ry4pXPF/P2s6Jn2ZP06MHr9z74ufX5d9Dx7sz3LyEo/jy19 bl30PHt07l6hq6v73qJn2aM+2v+5ZfQce9bffSTL79e1/9r1j94r79csa///63+mq9b/07/jNd/1 e6Cla4T1H3v94+eWSV3WP6vW1nbe+j7m6HllU55zRHuvL1z3f7sHphmX1+LX7xnWvb6MnlVG8zUo fbz1d77Z/vpHzymz9VpcnXN/O+vfXtHzyW6qhce+/9MVuwcicu2Ptu7qc0H53o/ouYxkOfsWip7J SFpa91fRMxlJG7nHJ3YP/OIcsPf7a+b39rj2R67/aw1qO/u7ijznb1ULRc9gZM+i3gty7o9W17f3 h3t7WxL5+I8+dr5d/XPC6ONmbw+U3qc98/x/XfTxUrsHjhV9DAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAK35A9bKZm5UV6STAAAKtW1rQlT6zsr+AH9XugAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJztnY2R2zgM RlNIGkkhKSSNpJAUkkZSSG6Qm3fz7gtIyVmvHdt4M57V6oekCBKiAJD6+XMYhmEYhmEYhmEYhmF4 Sb5///7b78ePH/8duydVjnuX4dn58OHDb7+vX7/+qvfavmf9VzmqDMP7gbzP4vbwlv65u7aO1W8n f65HVw17Pn782NbVSv7u/2x/+vTp199v3779/PLly3/6ovYXta/yKSovzuUY55FO/Vyu2s+x2m/5 k3adW2laX9WxYc9Kzp3+Lzr5f/78+dc29U//LbmUDJA5MmI/51T+yBSZ1/5sF/RrziU/txPaAuUb 9uzkXzLy+K/o5M8x5EJ/tQyRc7UV91nkxzXgPr46hj4AymM9MezZyf+s/k/5d+8M6HnkXn+rLSDX 2rYs/cxYyd96AOj7lZ51w9BzTfkj15JVXes+SF/3mMB5+FmSx3a6IduJ9YzlX23EaQz/UnXi/nO0 H13NWJxtH6dfZ/spWVneKQ/6beZd13ksl7KsbdogeoYxyeqaYRiGYRiGYXhFGMffk0ew16f/828v 71ny3foeXOprujb1rniEy+jtagfP5mdInfCW9r67lvfznfzP2PGPfIZ5nvd1vsQuvZX8/4b+8xZc /vSzYc/Dpo5NJv136dvDF+Rr6SOdz5D6JD/OXfkDTedvpIxcj/3IvizbL+3f2qWX8rcf4lHbQMrf fjYfcz8pfYnOLLkgG2y+7Oec9AvYZ1ggI+x2BedR57QPk/Zntx3aDPdCnpkW8u7s2Zleyt919Kjj ga7/A3VoveC+bT+OfXtdjNAufsh90HZf9/9KO+t452/MZ0r26/RZXZLes+t/QLbpAy7sqymZ4W9x f0OW/L+TP33fPkDH+1ifwM7fmPInLfwA5NPJ/yi9V5E/z/b6m7KxvIv0xdsX5/re6Qb0idsJusW6 GHb+xpS/z+vkT5zKmfRS/pzX+cP+duxbSz9bQX2lPy39d/bt5bXUbdHVkf19PEfIY+VLhJW/MX2I vKd15fF45kx63qYeHlX+wzAMwzAMw1BjW+yb/Dw+v2dcPfaAGWO/H7Z98bNNvosLvRV/w/zDZ2dn 0+r84NYJ6A7HhOfcwPQtQl7r82tfZz/M8qCvRj+co7OrIP+V3dd2MHx82I7QG9h/PcenSL9Qxu7b Z+dz7LfjL8doH9iR8UkNx3T93H4X13uR8uf6bl6nfYG271rm+A+6eUSe65fzz+y38zXoiOn/51jJ f6X/V3bw9KWnTx0bKe0i+7FjMM4cy3ZZ4JPYxQsM/+da8u98fuC5XyUvzwUszvR/cFyAy8m5ec6w 51ryL9DJ6TsveIYX1uHOc/X8X+kGtzk//x2rUMzcrzXdu1ztW73jeXze2QIYw+f1xI04ndTP3fif ZwDk+7/LyrFMe+Q/DMMwDMMwDOcYX+BrM77A54Y+tJLj+AKfG9vcxhf4euQaq8n4Al+DnfzHF/j8 XFP+4wt8PK4p/2J8gY/Fyuc3vsBhGIZhGIZheG4utZV064YcYX8SP2zE915D45XfEXZrrazYvSOu 4P3cfmX7kO4p/7QzPDNe1wfbG7a5wmvwrGRs+WN/wSa3aksrm5zlb38iZfL6PC7jyp5gm8HqXigz eszyz/bodQqfwaZs2ys2u/rfdrTumzyZhtcQw6+HDb5rN13/L2zTYxtbYP1P2vb50G59vdfn8pqE q+8LkUfK3+uOsQaa18R6dJARuF523+QyKX8/O1dtxnL1NZ38HW/kY/Yfs5/+SXrsP/q+mI+RT+73 enj3jHu5JtjHIfuFZbl6Lv6p/Lv9nfzTF9TFItGv0e2kf/QNud0x/BTW8+TB8Udn1//teyvSjwO3 kn/XHmz7dzwB/T19R9297NpGxqiQXvopH/WdgbbsekkdcORHv5X8C6/jS+wArNacznvNe9nJ32XI 7wv7mkeVf5ExMunH262vz3Gvp5lpdW1mF5eTPr8uv9X+3X2srs3r8pyufp5h7D8MwzAMwzAMsJpb dbS/myvwN/hTdnGsw+/s5tat9nnOhecKHb0/3oKRf499GLah5ZwaWPnnd+3FtpHadsw/3+Ww36nw 90Tw/4GP+Vrbk/AtcS+WP9+z8T2/6jwRy8x+toybhyP939nmrf/Z5rs+ttPZRmv/jNsicf74erAB cq2/UehvCTnGxHKmLPiI7q2nbs1ZWzsc7adv5joBKX9AD7gtYNenLdg3i/woe84bsd+vm1PS7afd +rtAr8K15d/1n0vk7zkf6O781qC/ybiTfz4POp9uwTPpFecKX1v/Xyp/6210sGNt7MNDPuRxpP9T /rSNTJP4EMcIPLI/5xI8bqKP0a9uIf/CPj3359088rw2x387+ePHq/Rz/Pfo/txhGIZhGIZhGIZ7 4HjLjJlcxX/eit376nAdeOe2PzDXi7wXI/81nt/g+Hrmx9GPmYNjv12ms7KheA5e+upsh/K8oJUP 0McoE9dm+bH/On4fn6bL09mjXgFsoGkPxW7nNRo5r7OpF55Xx89+t1w7FNs/dv5ujpftu/bnkjZl zHKl39H9v/NVYlN+dvmn/qNeufdVDE83TyjpfDsr+VPP6Uf0/DR8P9hm7R+0/9D3tio/x3KOl/dX fs8yz2/FTv6W2Z/Kf6X/U/45/9d+ZI5hq+eY5/Lu1ofcyd9tFEiLNvbsbcBY/1v/3Ur+hf2Qfs5z LuMS2gN5nNH/kG2DNNm2T9zt7xV8Qh7/rWT8nvL3+C/n+NkHmP7BYjX+28m/yHn+3fjvVeQ/DMMw DMMwDMMwDMMwDMMwDMMwDMMwvC7EUBaXfg8EH/4q1s4xQEdc4p+/5NxLyvDeEN9yS1j/mLVzMn/i sSjfpfLnuo5K6+y3Fro4lI6MJz7iklhA4pa8Ds5RrPtR/Rpio+DacfSOnfJ3eIkL7GL3KZO/6+64 X8pLfJWPkXbOFyDe3DHnjtVNvDYQawhln2UtMseb7/o1+Z85l/MdP0tejkW6pH6JOfLPsVHvsa5Z rtdGuTiW638RD04/5X47Oj1KPJfv29/+oS3sdADxusSSeU5B3hvH6We7/kP+jglc4ftO/eJYykvq l3MpJ+leS/9nXH7i5zJ9mzbtfdSzv7fh7ym5HtxuXU+7+3LeHV4bzPezaod+hiK37nsfcOa54vky OXeANpQc1S/QLhyfei127Tr7K/3H/6Pzsk173leXHv2P+0pZua9a963K6rWiYCW3jA3t0qRsOY+F vBLnle2etpkc1a/PI0/PVXor6MFV/z877v0T+XOO59xkmn4edvHgTrebh0Sd5zcqLlnnqxsrdjrT eWU79Pg4y32mfun/3XyFt7Irw5HehU7+OX+j4N3AfZV7QsaeI3QGr+mY13jukOPVrXOPWMm/a6+M U6wfVu2b/C/V57t1Sj1v6gxH/b/wPIvVu0wn/6Oy80ys8joP5ERdsjbcaqxmnZnyZ0yY6wR6nS+v K9i9W3uOmd8dunLw3UP0Ta5Z13GmfuHoW7sce495i7yjrvLNeRoJYwXIekG/p970u/SR3jvT7nfv hKuxgMc5l6wTeslzele/lPtIrpzz7PNWh2F4M/8AoIL6IOC/JaMAAAR7bWtCVPrOyv4Af15ZAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAB4nO2ciW7jMAwF9/8/ulkEgZHEtiLq4qOkGeChtTdpZI7li+0+HjPx93d89490SUze ntPff6Ou46x51TRacrAf9PMflfp9QV3TmbIG3/uAuqYzZQ24Llzbv+U8oK/ljJmP+/sBdR1nzZxw vt/P//05QF2/2ROX/DlfXbsVMivquq2SGVHXbKXMAdf5+/rH/Z7+D++vr+o6rZoZUNdo5URHXZ/V EwffPq7HZ8yQcdh6Nqn3eW2zuv7q6FHMe+4pfP3njgXjfaRQ11+d8cR1P/IzZ0kUfLbv+juF6vqr EwHltqnrr44v19/dibBtagf7+P/GZ7v4PYKI/v22584/93/+/rXX+akxqeuvjjc+22F99oh/T3y2 o+S5M/7H4Hef/f68OtT1V8cDH/fnr9qxzZJxjL2/v/us3+v4+4Gx/lV9vNR8P//b/T6irr86aWL2 70vGYFmnrr867fjN+9zn5tdfzwnq+qtjI1IP13qdd3f+x3+5/0juj8+r+X9h8F/n34bW/d11Hv69 /I8dW81xPrUe/23+Ff176/H+PE789/f/jd+47P2c9Hvw39O/n/cecz+1Hv92vK7z63s57/fjv7// Fz7jKH22YwH/rf59xjHC/fF+/Nv8e/fve8Lz3971H/vZtj5t+2vwX+bfu39vea6XW85tD/7THjR/ f18P/sd4iNC/L6GkH4T/q49Z+velcP63O4nYv28F/zYvUfv3reC/xI3Wfcl1nBX8W/2MdV/bv28F /+qk6+4B/vXuUy5S9NxP8B/De6/+fSn417gf1b+v+Tm5n4v/vu5Ttc+tb32t5f349/Hf67ke/mdI fzj+z5J0nXPw/G/25Gt7rE+9prR/Wwr+/fzXgP8Z059RzwfxP9b96P59K/gf496rf98K/vu7T9Ux Ivj3cz/yOq4W/Pdxr+rft4L/fv6jOC0B/+3uU7VMEWk/wX8f76r+fSv4r3MfpX/fCv7L3adql1vf +toR4L/Of5T+fSv4L/PeC47/MyVu/74V/Nvnf8T+fSv4t/uvAf8rpJ0o5/sz+K/zH9FlDfj3mf9R wT/+z8v4v/cf+TquFvzb/Eft37eCf/v8XxH8l/tfZe4/wX/d/I96P18K/vF/XsZ/3n+qfrOBf/yf l/Gf98/xf6esC/7L/K8w5z/BP/7Py/i/+l/lfH8G/2XzfzXwj//zMv7x/71OXX/cjwL/+D8v438P 90/w/9v/ivd8n+A/P/9X3gfwv6/7J/j/7X918H/v/qgD8383/3uB/7T/1ef+E/wz/8/L+/q/rwmo vfj5T7n/vB5cJZ/bleL1b2ovvvP/136wJ2ov2rmvHxvx8J9GPTbi5f7+GKAeH/H0f90H1OMjXv4/ ee8L6vGR0e7vjvv43yEW1GMkOvePAOMko/3/ft6jHicZ7R7/u6UE9VjJCPf2Z/z/AXJufSbHkHNI AAAC721rQlT6zsr+AH+FOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJztnNGOgkAQBO//PxovxpAFYQFh2e4ZqpK6F432 TouA4r1eU4bh/ffPXH9izLE2S3Um+lfO0j+7P/4z3J7lMKhz0X+vWX6yfudX56J/5Sy98/vjPb+j s1Rno3/FLN/Zyz5BnY/+e85yeizguwZ/fGd3fJa+7wH+RO5/eT6gzkj/yln6rcUfv5nRf0/8ZnZu luVcQJ2T/lX9F9RZ6V8xS7/zAH8y9T9HnZf+e81y3O799gH+ZOh/bU0e3wv6k7X/D3Eyq6B/j8wq MvY/J2LmftC/Y+Z+5O9fuT5/Mvbv872gPxn7L+tSHwv6k6H/teuCPdboT4b+52up4ZlZTfb+y37A M7OaTP3X1zcSI3NPsve/JGLm+3ha/333A/5k6X/vHKDgk9mBLP17rtefjP3Pfxe2drtfZhUZ+/dZ sz+Z+j96DED/hSf1P+4X6L+Qqf/j6x2JkflOntb/koiZ2/HE/vu9B/jzxP6n3Hsu6M/T+4+ZuR1Z +9/7DGh+H4/MCjL2v/57sC30mVVk7P9X7puBP/Q/EjHzdej/zmuE/aH/KREzXyNz/7XrQftdJ+xP hv5rfW5dD1y/P/172ouImc9D/2tEzHwO+i+0Pw/wh/5r3J/5yGfUfVB3q+//+//Jt/le0B+2/8J0 e6R/NxVEzPwb9L9FxMy/Ean/6fW7La3P5epslo+39Xwq9d36bUut+vc4vt9D3a22//2O2mf2el2o u/Xb/keuvT9OH8MZdbe+/X9o27/T64H9/4f9js5lPnK8p0fd7fFZ9jr+bzOjOd/Ppzzmn2dRd6vf /veJmnsLdaeIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI iIiIiIiIiIiIiIh43n9b7h42SlORYAAAAwFta0JU+s7K/gB/hxgAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHic7d2NjtJQ AEThff+HpsYQwy4UubU/Z+54JpmsGsR2PopmE8vXsixf1lprrbXWhjc59DbtXZbbbUziz+Ou/noP vVNr3+39Gsr//pXeqbVz5Hajd2rt+Ps/G3qn1ubH9/8M/98OVPmdWpsf/a/zf1xvaf8uoHdq7c8k 2nv9X+efGP05/+9/H7Chd2pt/vd/vf7153dqbX7015/fqbX50V9/fqfW5kd//fmdWpsf/fXnd2pt fvTXn9+ptfnRX39+p9bmR3/9+Z1amx/99ed3am1+9Nef36m1+dFff36n1uZHf/35nVqbH/3153dq bX7015/fqbX50V9/fqfW5kd//fmdWpsf/fXnd2ptfvTXn9+ptfnRX39+p9bmR3/9+Z1amx/99ed3 GtmRPgb9R8/1+Z6Xz/e5ff7x93tRrj1ujtfo/+z/7nk///raa+H18ymOOEb913Kk/9Z73W4Lbak/ cZ5e/+cm/fqf+zOK8pNw/Y+9HmhL/f92nluv6a2/h7fUnz1P2jJ1l3052v+8z7OhLfX/dJ7nfpYR bam//vrrr7/++uuvv/7666//z+c6K7Sl/vrrr7/++uuvv/7666+//q/Pd0ZoS/2PuP7//fVBW+q/ 5zz3vy/Qlvpvuf4/eW9/PdCW+rPnSVum7rIvhP/Ie8PrY2hL/T+d57rbyJ///ueP0Jb6j/ivP/8R oS31H/U/53sAtKX+7LnSlomb7M8c/7dyhmPU3+pv9bf6W/1tfvTXn9+ptfnRX39+p9bmR3/9+Z1a mx/99ed3am1+9Nef36m1+dFff36n1uZHf/35nVqbH/3153dqbX7015/fqbX50V9/fqfW5mce/1mO U/9zt6SPQ39qy/v9Bejj0J/cUv9jM5//LMer/3lb0seiP78lfTz666//1Vs+7i1EH4/+1/YXF5Kv zA80qmMAAA7XbWtCVPrOyv4Af5KBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4nO2djZEcKQyFHYgTcSAOxIk4EAfiRBzI XunqPte7Z0lAz8/+WK9qame7aRASCNCDnpeXwWAwGAwGg8FgMBgMBoPB4D/8+vXr5efPn3984jr3 qufic6WsAGX498H/Uen5iv4zfP/+/eXTp09/fOI69zJ8+fLl388uvn379jvvsDdlBPT7R0bU+7Se lZ5P9b8CNtH+rvZf9VH6dpWmk9ft3/mdXVTyrOQEXRq9XqXLrmftvHs+cGrnq3rr7B/la991ubRv ex6aD3kFqv6veWX1jvufP3/+93voLdL9+PHj9714hrqoLwtEOr0e6TNE/p4m8oi8uRdlq15IF9f1 eeqgaSMvT0cd9Hr8jc+q/8ffr1+//n7uCjr7c01l0fIjTZTPM1mfIz33Mvu7DFGe2wibx9/QmaaJ 74xbXHM9RRqd8zi0fUU+pEcXyKnpVO74oAvassod11Qfqmctn/F91/76zBWs/H9WZtb/6X+dvIHM /upvqFNWd+wcelZ90S7igy/QPqh+gTxWcna6QD7KIT/3FVWd/fmQz8vfGf/vMRe4xf7oPPoj9e7k pf6V/X0d4sC22D3+Rlsgf/73foas9FHai0LzoU6ZLvC3LivtkbleZX9k1Oe9/ExvK1tcxS32px1r u+/kDWT2V3+H7836KH3d/Y/qNu5x3f0kviOzP3rQNpbpQtOpzWkXyO/2xz/yTPzlGc03riHjM+xP X1F90J8BdfXv6m8Z3xyaHpnpW/o9nqUPdGulyIv7+E3A/5HG7yEnfS8D9caHZLrQcjL5yV/HQ/qH /++yqPw6l6n06bodDAaDwWAwGAw6OPeX3X/N8m/BPbiEKzgt8zR9xduewmPlxKVYz2RxgXtiVf7q 2RWf1nGYj8Kpzq7ouOJt7yGrxrarZyrOqvIfVVx6t/xb+bRHQeXWPRNepytydfH8e7XrTFbl1fz+ CedVpT8p/1Y+rdKT84bOKfoeBed4kIV8nANZ6azSgcYVu2ceaX/045xcxXlp3F5j5lX60/Jv4dMq PRGjC8CzwvMh88r+xO1UFpWz01mlA7U/cmbyZ/7/yh6aE/tXnJdz1sq9VhzZbvnU9SqfVtkf7lj5 I+UUPf/MRsjc/X+qA8+rkn+XK1uhGqvgRvR+xXkFSKtcTJd+t/xb+bTOT9KHo4xoD/Q1nt21v44Z nvZUB6f2vxXqb+AalHevfFNmF6773MHTn5R/K5/W6Smzt847GRe07MxGAeUWs7Q7OngN++vYycf3 4ikviE9Tzgt5sutV+pPyb+HTMt7OZQPKKVZlMyd3rpTnkWdHZ5mOPe9K/q5eg8FgMBgMBoPBCsS+ iPmcgnUga5hVLKpLE3PbHf7nHtiRNYBuHlnmriz3BudiWHd7DH8F4h+sv3fWJt369Zn7GTOuUdeU gfhOrPBRZXbXHwmPXQeor8a3uvavZ2NIr/rLnucZ7mm9nfeKe+6X9MxBpjOe6fRJf/M4hsdos/J3 8spkzNJ113fLyPS4g1UcSffkV+dxlIPwOK3u1dfnSaM+B50rl6PxQOXslA9wmfQcUcWf4fPIR2P+ Wpeq/J3yXMaqzOr6jrzEG1XGE6zs3523BF3M0vkv+Drt/+jKzzNk5zvJqzpnQjnIUp2NyPTvfEdX fpWX7td3Gasyq+s78mZ6PEHHj5Hfimfs7F/pf+dsEfn6p8sXedD9js/S/p7F4rPyPa+ds4RVmdX1 HXkzPZ4gG/+VW/Q2X+37udr/M11V/V/L7uzvHPSq/2veXf+v5n9d/9eyqzKr6zvy3mr/gI4tPobh n3R86fgrl2k1/qvcbv+AnuGrzp9nulrNWXw89TFOecWsfEU3/mv6qszq+o6897A/9a7W/3ova5vc 1z7kPJrP/z2NzpF9Tp/N5bsYgc6F+Z4BGfw+5XXlV3mtZKzKrK6v0mR6HAwGg8FgMBgMKujcXD9X OMBHo5LL1x8fAc/iAlm7+x7M1TqC/dLPRBVnq/Zjvmc8iwvM9jIrsriA7tnV/f8n61e1FbE2vZ5x btife54Hcuh15yJ3uDzSVGv0zi6ZHvRcoHKklb5u5RtP4Pvv1T5V7I+YE35jhyNUP6PxK67rnnn2 73u8UfnCLI8sXp1xRh0vWMX7dji6LtapZxPh1zN97ci44gJPUPl/7I8Mfm4l42hVB95HNA6n5/go X/uFc258V31UZyZ4XmPr9JMsRu39hbbH+RWww9GtuA7yq/S1K+OKCzzByv8jK30v41V3OELOUmhf z8rv5NF8uzMzIQ9tlnJcN1U5jG3q3yh7xdGdcJ2ZvnZl3OUCd9DpW/us+niv6w5HqO+1zPq/jt9d /9+xP2c79Sznbt/SvQPab3c4ul2us9LXlf6vz99if/f/yO7jP/rHT1bpvD35uFrZX/POxv8d+6Mj v3Zl/D/h6Ha5zk5fV8b/nbOOFar1v3LeWUyA69pvO44Q+bCfzjGzZ7I5cFZelUe1fj6ZW1/h6Ha4 Tk+3U/cdGZ8VMxgMBoPBYDAYvH/A5+ja71G4kre+W+Me777X2MAJdmV/T1wUa144ANaUj6gDdjwB 61pierqvstsHXAGO4RQaT+xwpY6vBWIWvm4kfhbwfay+Dsdv6HqVMxjx0ZgNbUvjC+ir43ZVxs7+ XV67abROug/e5bhXHUH2uyO093iO65Sr6QKR5mrfynTE9ewcC3ELjbM6B6O/z0U90A16JdaF33H5 KUNj8dVZAbVFxdHtpHGZtK7KeVJH/S2hK3UMKA9LXA/7aKxQ0xEnpdwqXtihsr9er+yv8XHaPW0S PXl8S/Py+HbFq2X8idtc/ZhyyIqdNAG1n8cfPY6b8XtX6rj63THS+/sEnTs93bfl8ngc2usTcPs7 b0A++puUyJjpBlRc1I79Kx5DsZMGPSrvmcmrfJi/R/BKHU+4Q8rlA1dd+ZYVeI4xLrOZ77WgDzlf RZ/QsaniDb39Vv1xx/4B9X/K4yl20ijnqOOgypF9z+y/W0flBPH5HXeonJ/ux7oCHdv043st4oNv 9L0c3FMdZNeVX8ue787Xg8r++DLl1B07aVQmn3cq3853+oe3mZM6BtQGuqfHx2fXrbaTU/5PoeMH c8zs3mqP3eq67yVajVt+X8uvZOnWrrek8bIrnZzW8fS5zHdd2f83GAwGg8FgMPi7oOsYXc/cax7Z 7UmMdZC+K2WnTF2rEu/O1oLvAW9BXo/nsO47PUdSobM/nADpduyvsRbWOzz3FvR5grcgbxaPJE7u MRvntIg9Ot+lUO5W4xUBnnWfozy0xyA8Jqv8v+ozS6t5E0OpuBgvF/k0lqMccscpaT21/iovfM6O XpBdy1G5TtCdMXGOR7kIjaV3PsO5e+WV4Qs8Rqr18/ONzsFW/p9ysjK9btnebG//2I3Yp8d8sW22 b5u2AificWLsre2i04vL7nKdYGV/7OplZrH/FY/oNgowB6hsepKfc0HeX7K8qxiw7g/SeDex1uy3 oyruVX2N7q1SriXzGSu9uL9DrhOs/L/bX+cJt9qffklc/VH2136xa3/8BnmpzyNft/9qbwd+RHlV 5Q/Arl6q+p5gNf+jnnCMugflFvtrue6Hb7U/OqQc1cuu/clDxw61ue532ckHf678n8vrPj/TS3bP 5TpBtv7zfUU6t8jOX6tuHCt70f51/8M97K/zv+rccqCzm/dxzZO+zLNdPj7/y2TRfRgrvfj8z+Ua fEy8hfXi4PUw9v+7Mfz+YDAYDO6FbP23imWAt/Su+Y5nOoWu17rxtoqdnmBX1/csM8tP4z+rvZEB XZe+BVw5+1CB+Nfufs1bsKNrT/8I+1f5aexHYxV+xinjCB3ELTyeDnemvC79jzNxzH2VD+Oefyd2 qnXwdyRWsZKsbhqT0Xbh8iiycrK6wv+4rjWO7zKpvYhTO1e4i8r/a4xfz0vRz5TzrThCLwfdwZ1o +ehFz9WgH5cniznqdz9/SzvSeDryeBvwugU8lux8QLYP22OzxM+9rhWHp/lW+uB54sYVB7tjf/f/ QNuWjlMed804QgcclfJxrsPu/137oxc9j+kyB/Rsj0LTZTZWfWX297mInq2r8lL9KLfY6cPL4d4J Vv7fZcr2WlQcoeuENN37H+9hf2SirWUyB96S/Stu8Vn2z+Z/+EL1l7qPAp9UcYSuU/x/1/8Du/4O 35TpPJvD7/h/rVsmzz38f2b/jlt8hv/3D/X3c7B67lDnKRlH6OXo2cGqfXta14XOM6uzmW43xWr+ F3D7V/O/zndm5XT277hFv3fP+d9bx73XO4P3hbH/YGw/GAwGg8FgMBgMBoPBYDAYDAaDwWDw9+ER e9HZ+/SRwX4T/6z2vbPH0t9pEWBvTPZ5hD51b6nD32lccYnsS/N8ff8I7wDSD/s3nslTdnU5zUf3 7fGp7K+/Y8K+I/bZ6T63LM9qb/Ct8nd79dWG+h4Qh9Yb3bKHTPsE+T2rbVfo6vLIMnVfpPaNrP84 2K+W5emfam+eP7vaG7Jrf97LRPr439+xofZ/bbyG/f13B9Q+9MMO7COuoH2p28sW1/W3RTqs7E/b oU87PP+s/3Od/HmXm+6h1H2bAdqbvmuJfX76jO6x1Xy1TZKG7yc4GUNUF/6uoaxvK6hbV576gsz2 jL34hlWZ5Knv71GZ9f1yJ/b3ve5c53+tJ+eSdJxUWbjPd/SKzHouRPOlPajcV3zTyX5xPV+hvgB5 qr5Nu9zx59nZAc3H95av5MePa/4BdKfvYlM9Mub7fKXSsc95tE7aX31Pr+5l1/mU5pG924/24P3w dEzgnFM2n3FgQ//tzGocZv20M5Yjy+ncsLM/etUxC//p7Ujtr/5d95qT54n99Vwi7VfLzN5d5fOs yv78Tzu+MidAvuzjQH50RxvO/Dq6q/yq53vl3XWByv7qNwFtMYsV6JlRXd9QV50fVucbMvtTro7l el3PpXqf0nMfnf2RydvXM9DFXXbnFpHuqtzdeHfSnvTdOtqXPtp5isFg8KHxD4gkaqLrd70WAAAE 2m1rQlT6zsr+AH+gqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJztnAFy4yAMRXv/Qye7nTYNkSUBBluyeX/m16mNQegB ZmedPp/oPD0eX/9/ZjI6U/BfW/Dfr8cjOoJxwX9MVx8D8F9b8D9e32tE1nUiK/8j8/Wqu+foMWw9 n3EMZOWfUb3895Y7U/Dv1x6OGdl/6wr8s+buDroC/3es/u9nK7r9Gboy/9r52cq8j9+rzPzLfffM vO/Z/9fq8q5nHjNZ+WfO2Z2Ukf/nnImOZ2wNy66M/N+KjmW8H9nXsZz8o2OYxz+78vG/i68h+B/L n/V/VV9D8Id/fK7u6DLHdQ5Rgv+x/DOz/xb84R+fqzv6GoI//ONzdUfLPPscogR/+Mfn6o4uc1zn EKV8/J8JYpjHn/c/+vP2ma/oeMb4v/Occxxk5P8TVxlldExj/cjI/aWM/LV3/uTnzDm9krLyf8fX 9o6l/Dz7qMXSMgazj9OM/P14636Vm3lsjcUql1VX44/mCv5rC/5rC/5rC/5rC/5rC/5rC/5rC/5r C/5rC/5rC/5rC/5rC/5rC/7rSPt/aPivpe3fUIzmDf8zBX/0qWje8I9VNG/4xyqaN/xjFc0b/rGK 5g3/SF1t/9/y/j9u+17Cj6J5M/8j9B4T0bx1/pm/M3NF2d9di+Ztz3/GwBmK5u3zb/keHhpVNHOd PzpGn3Mpmnff+h+9j76yZV5/zkfzZv7HKpo3xhhjjDHGGGOMMcaaNUXHhOPYvxQdG4Y/hj+GP8a4 z55q5fbWO+v+nvpG6o+I71T+8nWV4vePviqvt1TzIl8rUl4xVOPqfR2xKN/F3YqvkHp/w33a+Wje bp6VuD/KVPirzCyOLePIis1S0Y7LXvbDe/WtFpPVZ6PeaN7V+aD0fdMXj7+XJ6ONal0tUnLf0081 zt/r6ryX49t79a9QNG91/mu5kPwNqXOr/GxxN+ZgNS5Lztpktq1dU85V18mWNa7h2ZRm/v/KLGOt D4bdMdfaZk0KO7Uup1xznip7l7vZG+Mqz4a9mCynPmtFW1Z9T1lejLvNdaW97nmSdD4fxl87lrkx xkBzPgt9tKm0544l8fzXYjL3bFqb2vpvlPP2AtEMh/iXquVYfK7WaewDN3U69W3qkvs2yc7jp9xj 5qC2jxBlojkO8Tf2PybLlvW/KKc+UxrnkRVf87zV7lfadMs7MZf3RbMcnv8iB+r1Qk1jSpkn0/g7 7Tyde8vzaluy3vK8Uyaa5S7+zpgf4u/cM5W/vK6xlmpZv4z1YnPu4vsAtT/y2aitp7X6yntF+Vn8 N+2dOB+tfUc0T5etlj9n7qi8RJ1uToyyw/wfyr//jGdyTea4La6rMp430cw3PGTMxbFrvirXzWek M94O46/FWenfq83NPVq/rBwoMWWxmwNZpjKWm/Mg69Tqmrj+b9Ydq9/GWFXbsMaxdj3x89/r91/f LYZafRZ/K//GM3Hm/Fdjc2KR5b6scvK81+eEz/6/fjmqldlT50gdR5WtxTeqaM57+NfKzRhbvff2 lB+NT9azR9F8McYYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMMcYYX9P/ADLL7Nel9D1RAAAE eW1rQlT6zsr+AH+iNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJztmolt6zAQBV1IGkkhKSSNpJAUkkZSiD82+GM8bEjZ sWT4mgcMdJDisctDIrXfK6WUUkoppZRSSv3X9/f3/uvra0qF34OyHpdM+xLpX1NVn91uN+Xz83P/ +vr6c37LdaceVdYtVb5/eXk52GPr9K+t9P/7+/svSnWsej+j/2n7z+D/mT4+Pn7aAHMBbaOuK4x2 wXWF1ZH4Fc69WZp1zDiztPqzdU4Z0j+kV1A+yjFKc6SKV2lW/+f8kf1fdUvwRR//ic+4iC9ynMz5 o8KIX+KaZ0uVV13XsZ6ZzUVZHvJjbMrzLFumn1ScWRtIu1S+z+D/Drab+f/t7e3wjoh9eKb3x0wj fUGbILzS4pz2R/yeVh3LN7yXkV73fT6TadKeurIt5xz46P6faeb/7Dt9nkxK+LDsWO0mx1TKUPcz /VTeI6/036gdZ/+u8EofH9b5bA4gHmXk/SfvPYrW+D+FzZhv6ef5boDtsWH26+yb9L18NxiNFfk+ mv0/x5D0VZYlyzur7xKPoq38jy/xbfa1nk5/L+jjSY612fdm81HWg/x6e8jxPNNkzOk26WSZbvk7 6K/ayv+lslG+A5Zt+3t79zXtJP3A+wRp0aZ45hT/ZzzGJPIizV6+JT3q/K+UUkoppZ5Tl9rnzXTv ZS/51pTrIJewYX0bzb5r+vfUX7X2ebU/rDnUmslszXqN0v99bSO/80ff/EtrIayb9PNrKMs56kf8 4zG7v5Te6HqW1yytUb8m7mzNaVbmv4r9stz7I1/WPPKc9sIzuc6ebST3XjlnDZd7OSawd7MmvNs6 y5nriXWP9WbWmvq6UoX3Ota9TCttV8f0GZBXXqMep8R6JfdJl73upTKfo+6XbG+j/s9aG7ZmP75r NPZXvNzHLegjrPOtCT9WL+yXY17/tyH3IRB7GXXMtcq0VabZ8xrZt/8TQZzR/ZH/R2U+R33+P8X/ GX/2/pB24py9GY74M//JWBN+ar36nJd7Avh6VKf0QbdPXs/yyrDRPhP3sz9znXmPynyutvB/30cp n1CmPC8x1jF+MpbRnteGn1Ivwhg3+I8AG9O+EHNt938fc3KP8pj/+X8i8yj1+93/szKfq2P+z7kd O/R+knUt9fEpfYO/iMs8tlX4MbtnGLbk/TrnYcZw4mLntDV7nfgz9yiPlYN/a/EhbSdtyp7ZyP+j Mp/zLsh+W9YpfUffzrpij9FYRdxMr+fX/dn7wZpwwpbqlWHUg7mk+zfn8tE3GM/350Z59TDaQN+L TBsTP/Oelbn3tUtoab1APb70v1JKKaWUUkoppZRSSl1NOxERERERERERERERERERERERERERERER ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER ERGRO+Qfh5eOatk7jpwAAAFTbWtCVPrOyv4Af6WFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4nO3W4WmDYBSGUQdxEQdx EBdxEAdxEQexvIELt6Yh/4oJ54FDm0/7601szlOSJEmSJEmSJEmSJEmSJEmSJEkf0XEc577vT+c5 y7V397+6T/dvXddzHMdzmqbHz+wY/Sz31L11FsuyPF7HMAx/vod077JjlX2zYXatzfs9tX/VN7/+ je5ftut7Vjnrn+V6nX37xtm/ul7T/ctzvu9f/9fneX7aP9fs/31l23ru1+/btv36zPfnv/2/r/oe 1/er90Cu1Xf7nEXVnx3Xa5IkSZIkSZIkSfr3BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA+EA/CvmsuFLaKmYAABFybWtCVPrOyv4Af6vRAAAAAQAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4nO1crbOs uNN+/zYkEhmLjIzEIpGRsZHIyMjYSCQSixzJm/4IcG5tFZKZX/Wztbv3HmZO8XQ6nf7MYLQZjOm7 rluO44hGAcby561BuAOwGKML+jnNedKtmd3YdW1BKA8nfNgDynfpCwWfMAzD/305Yp7LW5pedfDe 60AclF6OQPz1BlxikRGThMed9ZMqImu7VB4meFTpq3ic2OLyNr8nlLcsy2S0cp/yR0s8CovpOHoS wIRMxvIhc5EcloByULD+s7kE03X+uONtfk+Ad1xn3Y3wh6wvPV6OXAUAGyODAC7+akhFZ1Q/LLj+ 8C2mjxpRsCefffq8ze8JGd7VNg2s4xE0AVjORemJfzv4ddtzsPURCsDZrh3K3sg+2vESTKcWpJ8m /Ov4Nr8n6HRshX4zfupGZpZ2Xo8B6JsBlXxJAz7BNS7MetUMe/m5hy9f27/rcP9nNCTFQLzN7wmt njSusv/ARjaGDX1ZyD7OsPqFlD1O4ahi9ZsGBGDjjieD9W6+C6DPsyVTCZ99m98TOmUHUvMxOGsM SwD2tuphbdtCCzdJgAe4pkUC5alfUdGzO7wNp+Hou3JkTKonAajubX5PUP38IQEMdoQDmwRQyBfA g64wQZOW4UGPNq5tu773KJXDT84WGZpqOrrG7qvVrAHqbX5PgMVNjQrzJ+l8LBNJoLw6vL5rUAAz Eg30APd4W8QzhhQTG0lzCa4z5C7RNurf5veE4tIVE2ZDDjEXy7064q/x/UfaGWZG48geAAqg8NfG 62LrFgWbBASAX1R4/oXTkLzN7wm6rHpsTaE1oqN3rGlL6O0Vx9g0DHi0nh4AHGx93zbGFs1YJviA GkgAurdk/lkdvp+//XwiuX3h8trWqbz/YCv9Jh3VT2RPr/zrsgeNyaqcB8UdHlEAloT4cawP5m1+ TxiWz1a2K6jqcnNbo5vTnir9dnLRheSqB9if0sre6RaCpBCWuKa1fh8NyfAD/JcrurkFLsdmVnJt kL7CUM9YS4YRlGBIYP+TKY/ARXZ34eEv8KQPb/N7AvnqHl71c3v9fSvODbg/jXUa2RcxdCMsvMZz ECPdOJTzoEUTeX15CYsH12hLS8j72/yecOCLf/LqAy/hWmJ83MWzKq5d4+auuwSgi+WfZstWYMAD HwRwBn1pxCemKtPb/J6Qq9VbNPkzGNeBx/OBbe2bkTz+FjHs2/opH62BkEaPsAig0g0kmSsMfpvf E7qBl31b8A/bgAT0duywrS36/6cAMEdUTvczShzwyG85S3QkfTr+bRGJc19//hWq/nbwHZGPuHDm f87AHvjjR1f2bXSPfp9Wdf0/E/1YwW7p09B0X+//3VJWyRebnjjNZQNnPzzH++T2L7RFqndn6Zhr tVuWYjZmTpIpNBc9xA5v83sCajHs/N0h0UFT/Md2vdj/M7MB6b5Ah2MNE9dP3nI2JRpEx1jX4BFj xCIB8/X8cRnBvXPMs3Lo1VAcvFn7/srtdIpspDXk7FNgFMniwadq8MibxX2//1Pc3AD0LUV8cHQV bgMkNCwo+8ebmwD4mE8WnbuZT47yVVh83euhrj8IQBed+vr8dw541vvq1xWTPrnJNGN07BBPt9x+ PeY+OeRYXT42+vBfCoF4sxhIgL/N7wmcrfXl9TlibznrvyzkzW9X2nM+1ny6+JfDB8EyJXyglMJq 1Knyq/PX8+cVHYE/Ge/uqvpUl44EAD5d9ZLumFpluDhACkA+QDi2nL7e/jGdSG49vDuuf/zD0HZq sLhRFu+3v+x3jP8bRWdGX+NesI1ezeltfk84F1nzmaaaf9f/WCERoF3Mx6oLU5bAHn100aoaJJbT sS2RskUJTFgXUsvX+78nSd/jwvGxf1//veZBwB3GYM8V4v5MDv1B2FLIIe3ZuxnqBm/ze8JFc+j6 TnVM477+lAbAfI9T/0n6hpED4YmD4rf5PeGiOd9p6MvMb1gfMXTarf+96o0tzjMph/+cvwxCwLf5 PeHin/8QmvbT+OHqV7O//qcGcIacNCC4QDYx/gr/mMBcefdHAwa0ARutqj0/VY1BexcWC4cEcO4U 9yP8Yzm64nHl+wo5DF+GYueK8tsclu38lC2+ncnzMoKpUMEHxcVjFkDbu3mlnfIr658wBPq4M9/d KipzIio5+hS2SIAt2PNYdN1n4HwlP32H2RP0KudfWP/oE5Q9yxsPlz4rCmH/6DbU/yBFDAkC4jtj RsiappZCj4My6UUE6CI4P399/0uH3T62LHLl33aDL25QjeFhKbdljmuYF7QIy0b0Q89JwRLrnLlz Tp9A+0yJC4tL9Da/JyB/pabtqNUO45fEhd6a2V36S6srVk38qR2iZw3YOHuAzVSgRG/zewLzV+PG bg6s5D4NFMVyZjeaHqMbJLlSXBixZ64tLhNUw/oZ8+Zr5vKxRQVR6gf4c37Pb+o6yZcJK70d7//I MR3WgRed1rAEf7bCYOYkRsyBzFxABxF5UKG3+T0BFw9zdxv6duz47jnZefBgE46znN9nMGtbnGoP FET5PWU+sDRW9kgAAYywU3YN4nmb3xNw+fHQiuDbtcXtOT2/44DWEHd1P3Ku6Oz2w0I49gqY2hwW 9rQm/A0RE4Zv83uC4nI27OBIjMwt+EtoALD037ORW2sRvOtQCGDxhpQ573GlRzRYx5/g36N1SwF6 nhDz5c/QjkgjlDksH3G6NsLBVx3Eu2sxEawi9ZuOSoZv83sCdrLggk7U9KT+9PDGpultmPclJOuX 84ijIocpzKvrV1QEW0aqJ7Rxo9jb/J7Q4g7G3O2tu9Vsxwc28TZQA+ClENAHREutOn33B0BFzHAK znPF6G1+T+Dlp+xnTz17BZNVYVvCQMGAulcId+6QUtQzfGKbQ8gpsQGw3Cj2Nr8nKOKu9UQZXF62 lorfALByQ4CUV90T3OnU6j+58GU+9hIkci3RcqfY2/yeUNOeNnJzW6V/ZvuaGglBPn8u/2wkgBEa 41xwiUxANjbvn0zrv5b4+Df6HzlfbddwNfeBAEpk6/9J9bhlotGApZzxceV4wUJYsMxGNXcjAQ3z 2Cz0Nr8nYN/eOG9g1q4m/harN5zss8s6Q0rHGraPZOQ5W2LmsuKQBJmOv9ji4t30Nr8n5LhR19o2 Xc2N4NUPR032FQcAc5p/hkOufCFsAlO2yOQSan70y3JWyb6//+lS2FsPO3jFua6xXcrpH/aa2oBP wLMV2h5rypDCYLvRVIi9egnf5vcENNYZI/t4jXfwAAiv8QT7fnS1slf+gls9tEPiTdDx90baQ3re foh/Ku+MAnBXdys3hVBNYKCOmHMyomvBJ96yVtgia/3ItXP0pU75/AT/slIw9YSn1lz1H1nU9W87 qulaqm0rzHk5SACNeDDa/fDncBz70iDOxUdtvr7+rYY11d7XzN4vkYD2D4e5cGLuuL+dsl7u2LEs iqfeWmvH0AED/5vBH4BS4tf7P53yZf+T07ZwazP5w0UnyP7bFajb1WOzX51/Wkg7xuiTd1zzRv4w PLCWyIG6wN7m94Sup6U34xCHjshT/X5d+fx30B6b4ISEJACdjhgSwfoPuF/q9EPfwZchCorcBfU2 vyeo3iP9tqPEv+FRFpAKj39cFYDBnMdjMY8f+AInz1gACnrFtcPfCPnAX4h/HDYxkM/fQPsCKDAq xfwPf1fcQrYQYB4hNu7ZJaD5l2FMPg2oUexOf/3+t+MfHz8fS4SOT0r1UwBwxvQNTsOxACYcDuur T2TjEgP2PBe7n2JaIGP0A/NPtezR0SADWHNw9Mh/owHYMWZobl1RHWqKiBol2rNrDoKgqig5lPME 8yHff/7V7g7YrS3petnmJn3Ken5mjvAmnIfEon5LAujaKjWyBsqEqZlDxERJglFCmH4I69f7P7T+ HXt2bQOOUF7yZjW4vA2WuD3PcqIwkrd0SUCLvlExGzAMiX8bdY+ZIhRp+A3/Dxt1muns2+axhQiU u452RNAnYWAV2E1uMerBLDdOijYQIIKxSBw1/gL/DdZ4ymffNu9hsAFnJ2TuazkcMuDbeREEECd/ IKCnCP5RWnM+/cIf4A/KOuxxOPvWqfEnGSzvNlj/jbp2A2AbzDnb2tHxp4oLCdMijYnrUsSzHLPT 7RhCdu7r+x+dhS278WgraDwkPmCSgwabwCLupjYDtBnuCKnOvu5oTBZmAYszpDDpsW8lojJcSOm/ vv+7oaM+cvYLOKPl8h2V//Fvg+KwpzE8B0zjwS1lT+EaiIOUA7FT9RzKSV/v/1U7HdjGF46gANvZ DQP7X18jMKk8qi2+Hsd+zQCpwunGP5ozjfD1/M/BRbLqELNRr9/GnY4r239y9OGWnMCzzqHYPBdy LKuf4HBoz1G6eh+O1l/P/xpc5NkFaOaZF6jrBezjyzzgoK/MRkT+AeJfanddsRWm6Rxe+QIWEs2D 1sPX539P534b6g0/FOQN9R6bZR04JAZSKK8tLd77rBse/JzZPOAeMXHhIYB53v3b/J7gMtdvDrr8 4sqB1qLfqjpzDnxxD9RnNuwB09UodTyOxDDiHBAI8PP1/GM6JzqwrKVvAmANcNPE1xkYPWFid5to xLEAvx3Puhn9VK/FLOBp6N7m9wTj7bUF0mbPyVaoevJlBsdq6/0eE7R371PfVaoNNIXsA5dN+Kfq LIzOb/N7QqfUeBt8d9rcJHBJxg91tGtaj7m/qDYN3ncycksMN0TWL+5fH//DKU1DvVizGvStyqFu UxAbXZIBU//r0P/RdjCBH7ryCLfBrV8gfH3+R3Gl41gw5+HqFNitDSZHnI89peJrFpgl0KP4Bg4h 0O2hUfKc09fXv/vas7StuP69NvU2t66j9c9k46peqMnwQvMmaMkn4LMDM6KkUTrbX+Bvbw1/muYg uQ8AaHx25+ETa5157/3wZyaecgb1zO/P2tmxr4v5ev5dN94G+kJ73twFaW5IDTssfu5ng5vup8H8 FQDdoXerng71901f7/9yxzMhTXiTH7d3koczYlw8Yw8sScCfnRIkgW6mXXL1j52N4uHr6z/e2bCC BqQYZlU8N1VDHZ4ExOxmO7qZCyN6Xqfh1ilR+JMDNZ3rj8ufF+gX+v77b7w7PAw0WtWXxR5DsWQk AO34+jNYbKjswAFo4C6wONxbRWobXP7jNmScFvJf7//1ZqQ+LzrK0BVaQh771h0rCMBAcX/aV9M4 3zv0aj/eXE5y13P8EE/PCcwmdAnHPHx9/9M55oS6fp0EC9S/PQz+7XHB/TyZlJnq7q+7cE1tdcm6 jpDjfalFR4af6P9XpwTa6XaLVaQGQErq5BVdoPPhJ/KNl8afznNSHCZTSiFnGBP4ev+XLisi/iW6 /YQcmNFwFf+WQvbP8A8MSITk4tXtvienFQ7Rz5HUZMXt8Da/J+DpxsHslIIF/46MwFjTf7SZ/73g DBp+r59FigD70S/sL7I9eJvfE/iqUzzrI19fFcgAnOlfrAj6sND4R4j15tNaGY5hPDvHPQxIoVzQ Yfh6/ujKUa3DrNC1UGc4dn9WPAqX1UFWDNuE5lrb8vz/qPvrOLhaxeNP3H8Ik37l9SHvm+iO13OG 434kbANShMvQP20z0o8aujss6/6WNTLVnV7RX3qb3xMgqYGNOx26sQ7+atHW7Wf++7iiP7zuvoOc zwo9rzgSc6aHSQDXMPTwA/ffCwQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKB QCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFA IBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFA8L+A/wc0fwg0gtSyLQAA ArRta0JU+s7K/gB/sH4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHic7dvZbupAEEXR/P9Hh/sQRQw2YHNjn6rutaWtkEGR qNPuma/L5fJFkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJklx4uXx/ 1/OX2+8fX9+TrmNX6/LYDp69XraF25+l61vd5TNV5esrPv+bdL2rOT7P2srPz9P1T9uP1/39vt9d Secg/z08zgnX5o57/9cP6TzOzz89zn8y/n/Ks75jue5I53Ju/tVMsL7GSOdzfP64Z9kfpTOSf4rx 2wC2MO54gK2M2QbwCeOMB9jKco2Szk7+Z7O+R5HOUP5Hse3cMZ2h/FP0bwPYw+u9yXSW8j+LcfaK sYf3Z8/pPOV/JNvuGaQzlf9f8+5ccrkuTOcq/6MZYy7Yn9R9gWf02h+sz1/dBz6DfnPB2mwdd+uS zrdO/nvveu25C5a8N7bG9f2l862T/0z0uTd0HO+e8Qp3Po+m/jzwOLb27/+T/6u2VYd0xvr/POmc e+Y/ztiQzrlX/re5vz9z6UA65y5e2Ztx1b6ixzqwqvvqvPa6DuladnYE0jUcwXVqPu/3GAOObQPV qb8X1MnbmnYiXbeR7EG/M+FO9qDPeVA3e9DrTlA3azPOZ8WqWpv7fex0rUZ1We8qmP+dm39FzP/O yb/qGdCVdJ1G9f2ZcQ3SdRrVH+rm/ku6TqNaG+u/ufO/kq7TiF6p3v/Xm//3pXrW66TzXubfoY5b PwNY/72k8+73/G/Nt2r2tff/+vFsj6f+2t/4Pzvynxv5z43850b+cyP/uZH/3Mh/buQ/N/KfG/nP jfznRv5zUy//fwFtzIdw6cigAAADb21rQlT6zsr+AH+8YwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJzt3Qlu2zAQQFHf /9BxEBiE7YiShttwlv8AoU1r1Ya+tRKVHs/n8zFhgk/zev/8vKbye3jQ113at3wnmKxOfev753rO uu5ZW3t6R9O/3iOCtu5nP8Oreedy7Bs84jw+N9l5/eevV6+BN+fH+bWfzzrT3yu2/bm92/ee23Hc 51nfdV1E8b3uS/E9iYL9Pl56rvGxHfCPa/q5fY4HS1/f8ufwgX4o+C4AebH+51E79qM/AMTHth7/ 8Z3Ijf650T83+udG/9zonxv9c6N/bvTPjf650T83+udG/9zonxv9c6N/bvTPjf650T83+udG/9zo nxv9c6N/bvT3b6Qh/XOjfyzc3y+vnpb0z43+udE/ps+uPM8hu/N7/9I/uutnPtA/nnfT+2d+0D8q 2fO+6B+R/Fl/9PfteE9H+XPcy/yIQv5834L+/r0atj3f+XteeHJs1vZs9+t/C9p6G8jWe/pH0bfe 09+Tux71azv0j2Bde/rH0dOe/jH0tqe/N8fx+5H29PdttD39/ZrRnv6ejB3n0z+Gme3p78vs9vS3 Sj5+T//4dNv/of9+c87v29u/3xuaxsbx6G+Nzvj93O6jnx3t9Nb7u/eV/R3arR3DbWtf3ov+Oiy1 L+8n/0zQYad9eR20rG3P/T/smD9+L+vP/X8sWt++oL81tvb3tfkwl9Zx/ox29F9l7/Ze2pX+K+js 70fbt74WR7vH72d8fsyiu7+fcX2H/uM0x/HOjvP/X2+4+vlsPshYGr+Xfl76n/M8fj+K/nLWxu85 /5/P0hiuZPx+FP3fLLUv77e6D/1b7W0vva+3FP1brG3feq5O/3W8jN+Por/E+vaF9rgN/e/YPdab sb2g/5GX8Xv6r7R3e681hkv/Gp39/azrevTv53n8nu3/bLr7ewv/P4P+/sbvZzbL2N/b+P1KEfrb HL+vt7865jtb72vT1fzSea4+T0S6672PbUC0/vvHcK1OfcvLE9rn7i+zuwP999ndgP5adMfvPUz3 yymu3cvewlQXv//u5W5lqovYP/dxPv1fdi9va1NdzP67l7XFqc57f73xe+/TL3fQqLK6z656AAAC qm1rQlT6zsr+AH/DZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJzt2+FugjAUQOG9/0PP/TALoqUFBG7p/U5y4kayBHpo BZw/j8fjh8P4ePz+Tr5T2paN+dhE9zq+/97xGNkc/efHWOqcpf9y7+nn5/boZtf1z0brPHhui26m /Vlk7V869oxk7o9M/VEiU//S9W12cvTHEvrnJlt/6/6c8fujhv65Gbs/WmTo7z1/mXH7Yw3650b/ 3IzZH2vJ0t81YJnx+mMLI/avzXXrwJyx+i8fV2t7Vkbtv/Z4szNa/9q81/6TcfpjD6P19z9e2xij //K+o85I/d+PybnQ5v79l48FbUbqj+3cu3/9eKwHbUbo71nf2UR3bs//ta2dE3uI7rx+/cc+6vMi urP2Z1P/zDS6tfZnc6/57xnP0Zj/eWnNob76r9tnHEl0c3M/gmmORTfXPornORDdfer//3zS+n8l 0d3N/QimeRbd/rO/+X8spfGc7rGj25v/Z9P385+t+4tjie/ved819PfZP6Lo49oPW9i6Pra/L9NX f+v/MkeOjfb3Z8/3oOfb++mv/X72jV0/7Y87JtTo5z2/3f9/f/Edr/fV/Xze97l/rW1X8P4MIvr1 W8rflYhuv27uRxDdu/S69bPQ+t9Edy/3L69RWMu6MYtuvm/uv57PZ3p36u8d0c37X/tHoq/3+nu0 v2qd2bsuvf5eW6/6ub+r9x9hzT2brdd98X3vO/97Zvk8iO65rf3a8/n6tSF6bDL42bV27V26Bz7P 6LHJYq9EjwtJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkmRv/gH9 UpBeqd0J9AAABE9ta0JU+s7K/gB/6tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHic7Z2LbqswEETz/x/dVJVVJQY/8WNm vXOkUZqWm8AebEMwua/3+/1SFEVRFEVRlM2xBrpe1tLGz0/88/9zxOM11/XD15Q1eeL6xbUtLb/7 scZnOXStmZKqT/p5jtbleEDXnCEx9hyOgK49j/dvnrZ/e6Ad4N3Xxs7UcVQrqeOwHSltTwzaA8b9 0/Z8Qj/g9xzAJ7n+IYB2gnPfe85kFflP16Olbi2/a/kbL2g3GP9POcW/n89/rtvbW585+wvj539h WbSfPe1+5Nxu5LM/Vv8f0I7Wu39WFy+gPe3xL3KgPa11r3ZfA+1qj3/tBznQrtT2saB9rfMvWkD7 knssaGfyjwXtTP6xoJ3JPRa0N/nHgvYm/1jQ3uQfC9rbXP/6zKcXtDc+/772IbS3ee4twLdvod3N bftP5ugzsHOdz5v/Wdo+TkrXJXvmpvbeE/L978+Z/3UOuXmHpXleNdfX5WLQ7uS/Nqc45Xr0fcLr oL3N82+hz08Rt1l0Ha3GJn7m4Mv/P/H4ja7bCbGBz/vu5D937oWv2ynh537Ohq7ZSbnWlptzzrlY Ygv59+lf5/hr/bP3/xr71/pnRed8vv3HoGt1Yj4wjwEa+9f6t3GfL7pWJ8YK6DqdGm503L/HP3e/ /we6TqcmIP9eE8O2H6j/9+0/Bl2rE2OD3LzNJ/O4e3Ndh3l9UnkbV25TbvtSP7NSm/c76/XLdRl3 n7+3QOQozdHP/a73sY31/e7T9X+6nSz7Hst6lJnnH7W9Nj77ZR2r7Ptnef+nIMbL8WPA1GvhYVqX HC3Hfd/7xIxxMb/M+va/e/xnp3W9Z5wT1ddj7fHfzvM/8YQx/6q/deb7V7u0hPz7Rv59I/++kX/f yL9v5N838u8b+feN/PtG/n0j/76Rf9/Iv2/m+xdpWubn5P6+Yl1mzP9IzVMSZVKur7VbXcsV/kWa lvrsruHM+X/yX6alv0e0o1nz/3aPXWImc/t/+ecndqT+fxcMx8n3957nn2U/YFkPVsaP/e7+2fYB djjqNOL/dXs1rn6NkdF6K7V9kIk5x1lKi3/+9o+u06nhRe3ft/8YdJ1OjQ30/7749o+v06kJ8F+H RNfp1AR2Xz/vB12nUxOQf68JyL/XBOTfawLy7zUB+feagPx7TUD+vSYg/14TkH+vCci/1wTk/6T0 I/+W8yHnsXZ9T/6tJVC6f6jlPtnUsqXlcKDrzZK+ewVar+vLP3PWI/+MaWOGO/lny52VTuSfJXd2 fZ/N7vfsA+1lj3vsd1nkn+NBu9nT7lF1l3+8+z9qdV/VN8g/3v0sdPxvJf20tH/5t5CYns/yVowB 8s/T7mvfd5dbZgT55/F/JXWNR/6tJpByWLo2t87HL54DiR9W8k7sAAAGIW1rQlT6zsr+AH/rdAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAeJztm4Fy4yAMRPv/H13fZHJpbXlXCAyI2rszO5dcbBB6CEiTbNtL39/bQfZ5vr5u 4Lf2uWWPZ0v85/F/ieU3K+/iP4/9ihL/+/F/MfxwLPEU//HsUU5H5nnPP3Kt9zxf2Qz/Vu3XSvzH 1/4qZ30k8X9W7Zd4i3//+kePR6r0HtOLSfz71/7snNb0J/5j+K+XRyzxH1//VjXvz0ZL/OeyX03i P45/JJcZ+db5byz/z/oe5Z95PhT/MfxXF/t8YL3Ys3nW8/dUszaMlPjn8F9N4j+P/3q5Ff8R7L0c emt/9lkQPc9XNtM+te9pPnc+V8U/j/+MefDuQ/yfwJ9/70j8R/FfKX88FvFfqf5HiZ8zxf8J/LnE fyT/9XJoJf5P5q/Pf57Nfy/x789/dan+xR89Rs/zlc20nv8Kn+9+xP4GpM9/n7EG6Pefefyzf/cV WYfEfw7/yP+PkPjn8I/mcWS+W75/LP796p/JO3/NlvjnzAGkjDkh/mP4r7D3RyT+69R/hsR/PP/s 94GexP/Za4D4j+Xf+l3wWRL/8fW/yns9JPGfswasl9e3xH/+OrCSxD+Xf/bvgcV/Hv+XVsuv+M+f Ay/x3+bMlfjPnwMr5Xw93lbZ3MatAS1an1dvZXMbuwa0rAXZZ8a5ymbWfw7Y3/vWcnwG94+yec1Z Bzyt9H2R2Xr/VvWOjow9nqd7K5vVnHWg9nPimjUhcu26Z4psTmPnQObavibvX913/T+vA63nwCsM V+efz2b+OhDVqPUavT+ZZRtHPpf568Dv2M+PS2qZDyuuAb8xZTPJmwOl3PSo/3XPfG89Y/9vmwuR NWJlthE9bw/w50Hkc8O/zFxngPhcsHlafS2vldiX50Gk9vGc8NvI9jFOuWZOxNRyT4ayc3pHK6+y LMuyLMuyLMuy/Dz3UHasvdvMZpKdz1bdhf9W8fpfNlXpoyTykdPUeHf9i39n/i+xj4b2r5GvowyL 1867/4/FvzP/0tdLbO1PWgfEP4F/6bldC0bGC/q62h/TI/kH99Sfa/f/TsgP7HNw/d/ZUMEzFboH 5Q+pJh63z+BXnq7wv9qm14ZtJ6Iv87iF9eH/SB578Ici88vTzzVg7z/0b/elwD4BzxQoLnNNaC6R 8wpqx73PjrFi//Nih+0Fz1SneM1zes0V/ixeG4Pz1TLab4R/KX6H80kmz1ClObBziBHqs5U/q8X/ +rkGxV6K1ejQpx0TGweK0bTH6mOzr9v4TX5oTEikHfdetM5FxwX+jfB34yhdtxleYB5c4h+JMbBe Hl6/sP679c7y69U/WLfgOL1xoevRdYU6PtwbjCUSR/P67/TL+jpdi/LeuP7DvipUWmfdfcaMy619 0Ke9/yC299S0z9ZkNi6i2r3YXVNtrmrqn8VEcljLtmkOoLpz1g537+sg2n7v/Z/se6E9cF//ZJ6H +QdzXcUW9BfZY+icJ/Ec2u2gU/toH7ta/5V53tB9KFeN+/8w9mxPdvZnmEenTmD7jQrlHuxV1fUf aMttF527ovWP9lpS/13q3tYPmgeGLxsvism+zuJvGc8pFnJGrK7/T1sk1mgMNAeR+t+/3qH+obwz GaqDb/A3F9NWK/9Ww9hJ+56itRiqfdRmzf7P6t+J+0qeQs93/Z1iBXtWGn+nfU+QVYR/4PwBz1ko LnB+iMZdXf9mj6LXl8YE9o0U/qXzS0GUPxMaE1u/SbvVubbXRWJkfeziLeaV7WksdnT2mcHfWSdL gvzR+PaPnfMSXCPMdXQMJqbqcQIWp9e9MbK5jeIh18/iT2s2UsMsXnYfajOwL7N2out/1bwE44c5 Ks1h0gcdFzkHwD5AW13WACfuktwxof3dmV+n+Fr2/1I7aP8lDq0hbJwk5ujc9dSLf6mfiHq0Uxtb 9PWr4xyRp1KbNePv7StjunJvTTw98rO/rjbGVtXEJMuyLMuyLMuyLMuyLMuyLMuyLMuyLMuyLMuy LMuyLMuyLMuyLMuyLK/nfyACQu/BSHfJAAAyIWlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPD94 cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4KPHg6eG1w bWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS4w LWMwNjAgNjEuMTM0Nzc3LCAyMDEwLzAyLzEyLTE3OjMyOjAwICAgICAgICAiPgogICA8cmRmOlJE RiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMi PgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp4 bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iPgogICAgICAgICA8eG1wOkNyZWF0b3JU b29sPkFkb2JlIEZpcmV3b3JrcyBDUzUgMTEuMC4wLjQ4NCBXaW5kb3dzPC94bXA6Q3JlYXRvclRv b2w+CiAgICAgICAgIDx4bXA6Q3JlYXRlRGF0ZT4yMDIwLTEwLTE1VDE2OjI2OjU5WjwveG1wOkNy ZWF0ZURhdGU+CiAgICAgICAgIDx4bXA6TW9kaWZ5RGF0ZT4yMDIwLTEwLTE5VDE2OjE2OjA1Wjwv eG1wOk1vZGlmeURhdGU+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICAgICA8cmRmOkRlc2Ny aXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpkYz0iaHR0cDovL3B1cmwub3Jn L2RjL2VsZW1lbnRzLzEuMS8iPgogICAgICAgICA8ZGM6Zm9ybWF0PmltYWdlL3BuZzwvZGM6Zm9y bWF0PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg IAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg IAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg ICAgICAgICAgICAgICAgICAgICAKPD94cGFja2V0IGVuZD0idyI/Ps3Idf8AACAASURBVHic7Z3t kqysDkbxrXP/t+z50dsRIXwpYIJrVU11T7etiAEfYgjbvu+uE912BCCy785t2/HfltsUAAAAQBP/ Pfjtfvnb958ocu58BbiDbz9pW9qDPwAAAAC1bDc83XvgccxsiRaCG5RsK29/eMABAABAHf9r2DZW 0IeoTgmgGmEOIJGzLf+zWIDvDuENAAAAyqj1dP82KolsgDeIhTcGCgAAAKqo8XRfVfm2lR7vA7wJ hrkemuPUsLd3wCbWQvP1lOAawy1yEynPCWp4uOFNSk9jyGiyMrt4/Wue0IUTu2tfa/f7e29NLNin ts7vXv+nr0zulggnvscT4cMJ9G9dv+PY/l9YPq4v3CQlumPvdu5/567GCdCTMIZbeo/gXo99z0/a Dvub0f1P2vlAx/cGWu83Wss1j7KoPv73P/Pb1ZsOvm2L//wyXQdXAE1IMd0YEuiGGO6voL8vOm0R G5yHFbv4mk2c4jo/2T3xa5Nhq+YKDO9SztNd8+iVkT2MJuURodNblT3zVEMPpy0qLeCCaLUFH3vi 8QlXb3bNk3GJb9UZfJRQdMePgfyJkxY6O1iD0NbkDpleemVSYWzwbbSLs+/YaBy7LumE79QHQJEw vITWAVZQfueFB+QH/1V7eNCVpcS+NLcg3ha7HE/bRMo3WD/k6OrZTrXNOudJ4ggvXb+2vmblawwD OFMG7vt+Kx0gmU1gPhjb6khP18I+Jhc7Sn8Eb9nA6p7dQys4V25vqUnwNbw9mVLCZtw5KML3dNcv 7w4wk6tdYqDr0+7JHNlvScfxbfLqeMA+x3NeEL/u9d2/VBWmA4uPJgSkgQJziuABv5juQ3nPeHQL 0AKC+2vUdy5hSq/uJQme4uVSmp1eeTrH2WgT3GveH68n1ZrbHgCcc4fobu2stHRusC5xZ47RfQGL N3NCWt6Dup/B9clCTRiX1H4tZkBL5ewGuMl/Lpe4voTWhgL2uXbq9HTfID2vJLX41sg+6M5iHXi7 30XDIm2rC7Oa81u5Dt62LzDNf0kD+nrDAi1gZF8iFSaQ8jLl+qC7y0CDbnLXybeTmcuGS69rcM2X X7vIjfQ+99tc5hON122tawwTOWK663+R2hYjhCfI9jNScMc5ZgGegiMC1iHfPx5PFcKnC3fagCX9 QJgJPGDbj0mUmiaigH3u2tP5u9GC+wCj14Cfhsw6c2z4y+hWaGtc/2sc9yptsz9UDDRxrkj5JJ8m QMjdTDgzBDf2rY+V+h8ECqwE9gzQjXAZ+B80MuhJKQbz+v0o4zvDSbBvbRhX2UlWPS9YGzm5AgA8 RhbdNDboRenR5Jw83Bi0Zlbrb1Y7H/g22DNAN/5TkWIJ1qXkVZ4puLF1jexRtgnrXJ/eLHJS8BHi OV48GQToxn/iTFwaGcxljoebWec6ya38aBFpiXgAS1hvgwBKkcNLAEYg5299u3dHFb3JigLVPx/E C9hhkQYIoJf04jgAvYlX+BufFhD71swu2MQ6nOeDEQIAwL/wkhCECoxnfJaS5BZTsqVALcTaAwDA ByC8BOYwLy3gldzS4Qi9N7lO2IpTR9rGH0j8Xhc6OVgQ7BNgAohumMPsLCVgg1XDS/xJuyudFwAA 3AbRDTMZrz6YvGYBeYC08mAJbzcAwOdBdEN/5BjdcR7u3TtYi+BGnL/PV67BV84TAACSILqhP3E+ 7JGC+xoPvLK3dHVWEqbYIVgDmwUYDqIbxjA+D/fvAIfgDuNnwxsINxQt7OK1WO36pAcQi50ogMdq 7RigM4hu6EPY2Y7Pw32GsaQETukGwA3iHXIZZVYGewOdnA6Mp4xsx7QfWABEN8i0dnCxh3l8Hu7U su5+GjrQxHfumtK8BhbLAa0c9qpZ2N51rvREc/2ACf73dgFAKbWCNfQ0j/VwX7Ne5AS3+Gsym8Ak sDOwhKW1C/x5PKFzpaaPD+cB1eCHLx6/o43DDfB0Q5lc5xR3XmMFd6mjtHTz+Bbx9fvSNfrSuYJd LAjJVP57X3BL/Uz6yVP8efjnPwXgKSo8AE835Cl5Dq7fz1lpEo+1XfybYuqm+Y3ru7sZeesBVkaa RH+8lzzS8pPZOkJBv63fSUF/EN2Qp9SvvLHSZMnDQV+oj/Da5a7RitcvZ7MAb2LVFn0PthTWGJ7T k3NcdeVcmA6iG3owPg+3c+0x3KCFvSrucvXrGNsy3m54H4vtbs4TVoDuENMN9cjxuHOWdk8heTOI n9XLlwdJ2CbAfWTP9kc7E7AKohvqmZelxLk7uWOZVa4RVKaPHwaFAIf30W+E4XoMM9aAABgE4SVw l/diuFOQzkk3X/Ny59Janu93JmQBCNRMhAQwBp5uqGNWWkD/OKRmWocaAboi0vn5dn3GdgOATyi2 z8+4KYBZEN1Qx6wsJbm41xqBhlDXxP75Jw+SPX+9TkAXmge+8aI0NBowDaIbWpgzaZIsJevw9WsW 2q1mgQPf5OttFGAixHRDjOyJm7PwTW6VsKq9Ic6VUKcuV71W7WkRSR8IIMGTIVgIPN0QE4dozInh dq7OE1iTQhCPom5Wz97RKhBWrgvQjQXbQ3DDIiC6QWZ8Hu5rDHdqprr/3t8mFG3hjYNO+l38nLoS X4q9r52LwIRKeAOt7TC+JygtKEA9iG74IYvWOZ1cSoCFecG13hzgyu4ZE9esLTQKAH7Qd8CCILpX pfUGHodljPRwP1cXhwgPF06At9kZIN2EOoO30Dzg01w2gEYQ3aty17s21sMdL3xTKk+JlMCjowYt tNkihgtzOZwWWvtMBqOwEIjuL1CaeDhr4ZtSWY7ygG203rzfgsm9oJnrQk1aUV04gFoQ3atTCr24 fj8nLSDhIKuyc20TSIJbmmz6e486B2CQCguC6F6dkgCaKbhT+VZzWUjAFnh162nL4w0wBq1tlbYA C4LoBudm5eGW4q/xjK5CfK2/TIuQ8QcqWgUQAAA8BtH9JWSP8pyl3VOE4uzrYs0yeLnz1Dx1OudY UIkwB63tVlt5ADqA6P4SYd7rsYL7XPym+hd0skvAwOnZYJL6gzno7nCv7UB3WQEq+d/bBYDXeC+G O4WfSQXhYQluiD05Q652R9aGr3NmfZJW6/W91KHHWupP/fSAVp4ynucgT8gf6ayRngL0mweVvld+ 2QFVsmM5JFWp8cYgur/CrCwl/nG0duIwFuL009TUDXUHP64ru6b61hoBHYYW5ubWaGu/qXUYUveZ HuUPByey2HsyKL4OpiSh+WVS9pgaXIYDmPFa5zaEl3yFWVlKcp6HmtH7Na4V9HPNv851y1NzM6UO 4aBmcnLYX4ZhhNKftI/ScbSQEtWSYA37pdpXSdCPqBdpsNSj/NZfU/Ueer1Ttny2hz34e51t34Ue XttIF3oxPoY71yG2xnc/scHS49hzGwz9Cfu+F+sZ7nHaMJV5RcXNM0m/6zbmPHN9q5Z7v5ZylHnm 6f77z8z52qKsR6ZXOp7uFZFTj430cF8fg0rUdihH2emALLAXPTXQA90iE8ZR+9Sj9elIjYfxTUrh MdJ7WB/pet+xgdO+pnvAEd0rEgufsTHcl08q7De3DaLNDtLNj5tgP2gH0DIJ3ae2j7ViY7kwj9l9 Ts/jaRvsaMcPHfGdi7KjsVyvcRjKcBDdq3Ia05wY7lw83fE+nIGMx8I20o2Qm8dzaAvgXJsdPPVY W5lHE5ZRmoQYirE7r9IxR9RPKVvJ27HVb73m8O81pbkKPrk69sW3FHLdEWK6V0G+ZuNjuG//Org5 9LY5YrpHc15/K/2FX04tZW6Lr1VQYBXoVofaY7otU9tun+im2v0/u8blAloYBI3gjX45fW/oXhhS BmqlVRTEBjPWw/0UUiTZ5rAzLeK1Bo0ZGnLlsFa/MAZs4ORuuM1b5chRuq5c83mE+ul83Xs75ggv 0UrLxMP4d+MFd+lxWC3EcFtkN/M42jk75ZS4tg3DJwK3QHB/i1RsMszBD13xhXdHEN0WKE2KuX4/ VnCX7I8bxPr4TycsXG9p4pWlG5ulsgIArEDs8OjSESO6tVPydAyOPzqO0lQmWBtp4pIlrAwWAADg XeLFdh6B6NZOSRzMFNyp+GuykHyJ+AJrF7ChTVrzdPsMnlkPAAAB1wQMj/pgJlKuwdg83Ll0cHi9 v4Xf39i87pvbtj0S3prPReMEUACArxDr7N3d1F14ui0he5TH34VLMeW5/2ElfoZgLTwjfhq0Rble LdDxEScAAFQiOx5vxXkjui0Re7zG5+FuESQ8+V4fKwLVJ2WX1s7FWnkBAKwSOjlTC/81gui2y8gY 7jNTSUv4iLTSJMDbjB+gjiNsT7QtAIDxpML6jqejN588IrqtMCstYBjnincNfsgdS27Z5LfJl+Nq 2FrKHBIuc30ObJUWGABgQeQ1Uf6+rd0NotsKs7KU5BY9qbnPx6NAWJ18Z/QedxeY0g6DYQCAuYSp csP3lSC6bTFn0iRZSuDKXoyL1i1cU4b7+9zKQDFuf8oLDACwCKmUyd4WNbtBdGtEjoseH8PtXNqg WryGCPT1KIlSy9cbmwUAgFZip1NReCO6NRI/Pp4Tw+1cnbevJL4QLyvRb0A2i9b5D6HNavd4AwDA HEpOGX+uzb9PcrtDdGtlfB7uawy39OgkjF3ytyGrAminzibj9qVtEOGcvKrmv3eziwIA8BkkR6K0 sFrlfQPRrQV5Mtqcu3/KOy2lyQFI8ebASxo4rmavVlbQhH5YmGsA/eA+28ZbbSPn9f6VKVkwRPco Wo0hjg2aE8N9F3/yGfGwa9KSlq535/e8/ThX34b0Ga90/g8n8IBBavrWL4jy4xxLKUpn1EXPtShy 5wXletE0KD3aaqG9IrpHcTdd2VgP93mwJ2kBfRiZr4umDi3Hih7gVdMdQhs5OyhnU1iHVEYtaTuL beIL17CV0nXUZv+V2aUQ3TMoTTyctfBNqSxHeQDuLIbT03Za9iWHk/Q35Ddu5v6TpPzxDSoNKJLz 4ubiTFchd85vTuzucYwv3WuPfiz8y23vXL6O/Kebmmy/cH6I7tGUHg9evx/v4a4pE4BzrSEOYxnf qdZlOXmTGq8nrEWNyKz9fhWkgchM+x/lTV+5DR9PxMO/0vYt+9ZEpjyI7tHUd5TzQkpyHpKVGz7U cma2qYknndXhzbLNp2kze1LyZl69/DTer1LzKN5i3147wX+26OpxPIvXo5aSN7vW422Rq21EJ4fo 1sGcPNyp1DfaRonwLq2doAbh3SdE6/e72olrs24YNWEEq9244EetjeXyzFdO8IIKeraz8HqseH1G nlOveWmjSJw7onsmskd5fEsrxZTn/oevsZsMY5jZufsCZvbErXJ6T6UXCG7TGru9Yp+uIcvHSOeC 1n71LrXhI08Gg2/G9LdxubiI7pnE8XkjreMMEaj+xWINH+7ROkgb0cnlwyhy9C9MqXOfcf6lz2Ft ZmXo0WpfI9taSxlGJD2omyj9PVYMPXGI7jcZGcN9ZippGZ37ebfhu9TYy2g7KcVyhmXpeOSeO3tE 7URW2uuqbNPFpj4vYcyb9t6vfs5QtuO+a6HuZ1DSLcb7u/+9XYDPMCtLiX8cGjG0UZ/lJuWZ0ZY7 9Slv3Qz9+m0vw+40DR7gCeOfhtoRfHVzLuxwnsg65/SU/dL31TpftN53hHLh6Z7FrCwlucdUtRNy eNQFzt3rwGZP2BozmNV1M2yJsafdQj16RWxsxwoLCQPY3O8Jz+Zar/lhx5r6wPN++FcoRPdc5kya TI0ENXauoIVrSFJ2S0VeBS0DxBFlqKnfcJCj4ZqALTS0nxDsGH7UiW9DfSCiewSycBkfw+3c8xm9 rXHgsAa+kK7PLa+D0ZOSNYqSHL/yGis0vIa29uycvTYHo0mLbwu24pUR0T2CWLiMjeG+fPJwYQ/y uX4Tzdf8nU51+zv223XTev5vlxfgKdgwyMSGYcdWducQ3eMYn4f7GsMtPfIP84L724TeeAujRRhF PHi7fPuybbydN/zttnI/VpFGDfZ5u/8BbZwOESswkXIAcl7hOUOw8oIZeLAhT42wm9nJlUTunLJs 4gIOLekMe+F73MnhDV+C+xbEbCbsQuiTEd0p7j7SnePhfn539bOUaHiEDm9xTqB0Li8oZ9pIybt9 LdP68dw1E4Xkz5WcAKiFtRnAJvpFS5j61SG607RMPIx/NzakRDpu6fMUeMDBuXRY0pukBoSaxD/A Cmhs/wCr4N3HEN01lCYejlgaVihFsSxHeQDuoumpR105Rhc2PWNeSz2VQUUBwIro7oRZHOcGpZvr rJUmW8oEUEcsxrTkvT7QaucaF2JIYaGMAAArEtxTEd0l6nMWzwspCctEFhLoha0B3ayCbsm4Vwvi 2871BABo5ezgtPbDeLq7MycPtxR/bUskgR7kcCUttqQtQ0fY9rR27hIslgMAX0DL/euAiZQPkT3K c5Z2T/HmJDOwi6al3FsY/2SpDqndaRXi1q4xAEArWrPwBNm/EN0txGm7Rt7NzsVvqn+h0OBAJ5pF onOy3b/bqZYXZNAvbhVfcACAm4QL/ykG0X2f8Xm4W3NoSytNAsTsJsOSNKS3TB1fW5sLy0O/AACr UrOOgRIQ3bXMSgtYiuEG6IFtu3qr8OkJO9rrU3v5AACeoLWPC+4ViO5aZmUpyT0eqfFU+StNAoTs +570elqwGQtl1EC6D6ACAQBmEQwGEN1tzJk0mYpn1TqSAyvsf4Mya7ZkdeLnW7y9kicAwBzqFg58 m3/l+9/LxdCJfIOfs/BN6sbYuiw9N1hIkRrAabYZLVlLfsff1afuzMWeb9vu3q9HABiDcvXZAYtO BbKXZIg9gXNiuJ2rG62VMihoNz54F+yjD+H8i/AzbWgbGABAD37JF/b9TMLg3DU/tLZ1D1qoXZTM wrk4RHea8Xm4rzHckoc6NKgwLY5Bg4PXiAd4ztnIajEzJ34dv3JYfVrAYjkA1tn/zc+R23E4wE7N 8dDcXzl3PY+S+NZ4LkKZt126aFpPYCTyOY/Pww1v8w1D3/c4JMIemk7gjCPUXq9SGX+fKS94Et19 51nfFuo3Th+q06bVFegVjn685hqtGGqaOqejPnTa7o9/fe66Md2tlR+PmOYJ7tzkyYOax9eSIX4R f1Sfj22dV6a3KXkEvlYfvZA6em11qaksANDKeSMPVjfMsmK7L815M3DO64rulomHc1ea9PefX3Xy 6eNrAwY4jNK5f6lufC/304m673LcfDbhMyd81+NY0j7zk5811WXKA/R7z4RKAL2UvWbaB/wQsa7o 9skZYnxDmmmxtA4Yz3qdcO6ReJ/0Udc62y9PTizd2HiqAWCRuqfhmgf8ILK+6C7dYN4T3AAzsBN7 HFIaLPvb5b7vQewltoWFMBgAkMU27XQZ1s9eUh9mgFXD2ljLXlJ7o8ndlPy0WS2v0j5qP9fOVYAb PQmAxZBWC0ZsL8f6nu46sGxYG8kzbMGD8tQbG8ay175K+6j9XCtpbz2x3QDvkp/fBcuwvqfbR85r jZXDqsi5ubVT8vSMPifN3v+nSLn/Vz1XABvUNUDa6hJ8S3TPz1IC8C4pz63k+bbSobd4g+6El1h4 AlBLeE2ZeAWgiTgdYIqafslKH/5hviW6r3C3gZWp7321Ca9SfPadfT0JL+lVltmUQnPiEBMAmEdb m8PTvQTfEd1XY1WmMgAG0dJJaxPfPi0rsPU+rrRvzXVVg38Dt34uAPY4O5SafksOjY2hLavnOxMp yVIC36FPrmpNlLzf0qPXu+dvPT1gDf6qrSdMqAQYT3pxLcm5IKX6BLN8R3T/4IYC32FVwXiQ8373 ykHdGuOtJfd12/oEAKCBkuMAwW2eNcNL5Ngn7jDwBdozlljtyOvjlfsco6aetAjZ+vUJ7F5/AHvE ubidq2+DK03y/ihrerpjo8RK4RuEWTjC72o+g5MvLFRxnNfPFggxARjDfulva/reVfucD7Om6HbO N+hRVhsPTf340qfeIxrbGOLJY2tVdKv3FzvLc3fypsV6tVhmAEv4q8GGc0dwgHyCdUR3aLCzBfd5 zLMsT1Kc8ci3H9/pyM4JlHi05/DG4j0jwdsNMIJyPm7650+gN6a79cYVi9XxgltK42NtoZEVObwI qQHMMSD60jWiQ5+H5bru8ZQOAN7Fv7+t0J5XOId/6PV0380WMMvDLR83fn8XyzduDYSP8MKwkvXE RdrLDZACewEYzf7q08cV2vdC4Td6Pd0+pWTwcxa+qct9vIBRgGHWG0zASNL9FUYE0IvZ82lWzHKy yPnoF91t+WbnxHAvMuKCRcE24QnYD0Av4hSBOEXGYSBsVL/ork+pMy+GO5fAXvkFhyXB6KAP15sW dgXwFClTyZvMXHAnNdct95oTzqXPj7pWrMP0i+46xgnuME8vWSFAGwz6oAf+PAjsCKAPb/TPOXEa tu/RYS6tr3fKY0iD2RLdsvGOr+1STHnuf4Cx7Kq8KGAX2XZQ3wD3+LUdX+S+3T+HIlcrucxjJZQ7 Qm2J7nlZSpzzG0z1L7g/AYBhtIgDAOu8uZrt3eNp0zALer1tie4rI2O4z0wlLaOmL+Z/Bh1gc9AD eb4KxgXQSikBhMY+O+Vhfrusbx+/I3ZE96y0gKUYbgA9lFc5AwCA2eRVojVtMXul7HBQYqmuCtgR 3bOylOQmEdUYHBORAGAF6MMAnlHTht5oZ5In2//rtVT9newlx3FyWeJSxzLQZ+ldkVJmzqRJybCU B+fD59Dfu4B9zj5vdzP6X4AVaBV/b+qLkce+k72ktK+73ytBp+iWJ/PMWfjm6QiPiUgwCwaCMJKF ll4GmE7LXLDZpJ/GW2zsphxQOsNL4kcLc2K4nXv+OMharBZYpD2zDsAdrjZm6uYG8Bo1kyg1hEJc 9YrVG8qv3BrqswKdotu5GXm4rzHckoc6zAvub8PSrgCwKmGMJQD04RC6bztNrmLbquA+ebs+K9Ej uuUk6HNqMdUAwrzgRi4qABhAs6ANYyy1eOYALKOvDSFqJjNOdLcaV5ySZnwe7if4WUqIe4R5qOu1 QeCuSNV3Uz759XGKCwiggjhs9aC0lgeD2/sYqbdxort14uH1d+MnTT5JC+iDBxzexEhHc8Fime/g T1aSzjn1dO0r9QOwKqUsHFI6vMN5N09PrCVcjOiwOeElpYmHsxa+KZXlKA+ATmLjXcFeVxWZx000 l4ZUQuM1ZUIlwHhmeLrxpr/KeNFdCr24fj8nLSDhIGCRXEdpqRMN296KbdH3WPVaaAIAoAVLA/se GLgPjs/TXZ/QfF5IifRox48pX9UgwTK7qbzJd8oZtkOrWLg+z2GxHACJO33fzD5j1f7JyL1Ry+I4 Y/Nw5zxORi4UgHPOjq2mylm7xLCV82whPHdLfY+lsgK8iYV2Qnt+jbkpA+W81uOvfCmmPPc/gAZK s90t2K2Vco6iRnBr9fDLk0KVFhYAnHPfCm0zck5zPd2xJ2tkLV0Xv6n6xcdFAWhlN9d5Sm1p01rY KfjhGPGkbikv9pvVJV+/8/Xt8gFohvYBCd5cHGd8Hu5WL2AphybAW1hb/ZQbTsh2eV+aaPl2/ZVi 698uHwDc59euDdxIbqD8/jhPdM9KCxh6j7g5gG3ihRZs2rTJQg/kVx8WryVLxAPYxmK/swjzRPes LCW5cJKam4S/0iSABkKbtGSblsr6BtqfrJUW+VjVWwbwBO2iVnOf8wQDYT2zw0vmTJokSwmswTX2 t5T3WRtnmzNS4OlsJp/GxeVd9A4OsDzrtF0jA4kxolv23oyP4Xbu+WxdS9kg4BtYtUWeGJVZoX5W OAeAnmh6glXKfHVqKCUFvon/RFhL3QuMEd2x92ZODLdzdZVdSiFoVeTASsSrqErvtfPtjCVlNC8G VFsmLjGAj/4nWEf5YseIwo6oEt9hqrjux6UMHP9oOY7hDitbWuEuNDQtKboAQkoLO2mG9lTL5sKU kFrqruXp4LaxQiVAyNurXZcGzv48obOcu6ibtGOhjC7l6b5TeDnDwpxaSI1swrzgRi4KdEDKMWxt IaRUeIaFRVW0161mNNZd7pEtYUQAZcKB9exj5rbxwzJyukl64tr79Xjf+nTXSB/Uz9Mdj+bGerif YnEkB9+jJce8PlQWSiE/b7dzZ/9Z6xWb5T2rOwbeboCDXNuc9WSrtO94wcLrb1P7HE2NY0lyoml5 SpjhueiWRkYzBHevLCXKLxA8xEAjFLAxZA+RVliEOrQO/m22H4D3ybWbWe39yf5bHT69XnuURTF1 EylLEw9nLXxTKstRHoAadD6O0lGoOzPA50yeXpPwMW5tyMbb/Z3yTAEAL5FvmH57l8I3aFPLEotu KRtIacR2fj8npATvC/RAow1p6XSlR401MXbMnbjLFl17DfVYKkMsHFALAM7dC8+wOnEeqvmJbmkG 60FtpzsrpOR6zOvn4XuAHBptRVOnK02o0SQIV0PTtW8hLq/ChgUwmZp4bvgcV0/3fWMYJ7jDOFFJ cGPEIGHPNuK881aYE2K2OtvfEwVrdmCtvAAzwTEI//iJ7pZ8rPH78TfYmscxqf/hu9Q/pdGDxjL5 3A07gTFoEehvpEMD0M3ZKHJZQuBTXMNLSszLUuKcv/hN9S/o7KECnXaislBVXNOFckd5wvE0z/Js fY1lAniL3P1Gy6AZpnH1dLdd/JEx3GemkpYQAT/BO0AKjYt5WAgrKC3Ug9jqQX0lzo6vr7HPcxvF hgwwEf9+I+Wapt/8FNc83RqylPjHwRhhFLpsa1dWHhkLZYQx+Iv25MBGAHw2Fy58BZ+mLk+3c/Oy lOQ69tq8tRo9maAHzR5lreUqMT7c7Evoq8dWRwjeboCDDV0CB6forjOGOZMme6w0CeBcPp+0xg4Q GwfnbCyMk0Nz2QA0YSG0ELqR9nTHBjA+htu557ktW+PA4XvoCl+KF37SjrSAlkbvrGW0DgprOctu +CQAOiO169bJ02CaU3TnL/icPNzO1d1oSikEMV440G4LGlchhAu3/gAAC5ZJREFU9JE8MGF6OG1l XoMtmuAuXQstK5iGYBMAPnH6QKnNamvH0J3/XCio53q444wjqXyv4TbkB4YWdHpnd2Ve93asltsi Ul3Prv+UUMj3v3TOAP79JnRWaHW6QHfi8JKrCJhjASnvtLQMNcAd8M6OhMocw69er3nQE1t2vgSt TozU8XGG2IO+cTxPFvWjTeknc40O0b39bTh+pclrHu7o24aFesgR/B1aO5onGXDeQGu5nENQaWFm H9ci7nPlol/WD9doJldvt/8afp7cg/eknz5YJ5k5Of9FG471cJ+lwNsItdyxlbIQeNv4bLQF/fX4 DezfXM2fAEAntkhw++27ZTFArfcNSOKL7s37G0Hau+2DEUFIaBOlZXVzn2uzL82C+84kZ+jNNcTE GtgMQMy2bRfRXGrfvldb8z0DThIhRNs+p1O8evWkAl22xqiggvt28rZxpRudNtsvl0dRYZclTiup yUba6FHwfPtxTkv9qChEAf2jop+9W6jLO+Tr33Zbh5itfkXK+1yNKlyZCU8I3KU1d/u/X40qThe0 5WfOZwrSXZfrkM56oJlU9qmRaHjkrqn9rsDveq5aqde2HbaZGg+4/9prWxjGaNGdDik5buZvd5Cw JnrzX5cnEesp6w8mLb+PVtvI4Q/YLJX7yzA57w02sY3UtJmWlLPW09MuwkjRXY7hLs2QT0024HXt 16eEHdj5Xk9voyHnMtjBqm3EcasoOm2Ek/i02dqvfMoK1Zm74TN4r80xPrzkTv5JDOjbHN6WFjvw f6NdcB/49m7B5q9l1Fefa7OZsBGA3mgbBIzjvvD+Th3Z5V//PWIi5dXDzaIkMIp6e9JidPWN7U2B lVop7dqmtdTpl9ib+lAtNnRwLfsT+znvMbkwxffP30IbkSvp/bo7y2GnLntxte/wffHXnXQWg/x7 FBIP9Bbd+Z0huqE3pRuvrs7aRi9Wbqea6vRr2LAhiV6ie993I/cRC4WMBZ4W+g3SLFKnpSzO9fga gR33DC95djNgVAV38ONF4/AHTT2RHQOnA9eNhb5SKuPVru6fBCuk9kVrvYVzu75Fft0UKYQyVU+l +vtm/Y6jEC7az9N97Cg3+ip7JePt4ZuEHUnJbvQ/htTrUaqB0BItlDtF7Tb2vK22hdm8h/oCOgvO AP19+yzS95Dws9b2YaM9rUC38BI5Bul3iOv/qc/8z+Hb3Itf0248+m9uKa6DZe31vD52witK9BPd mkSDnT7JOY39UvraWqjPWcTXTdJY1XurdG7BY3rGdJ87enLxAQ7yjd+OYdWKJM2d3dkpKy3gp9An lCTqhHG7PaXak777jopCFNBtSwjuEnUDUM33lpWJ6737REoACAlFQm7ySzhB5g3S5aLX1kPa06Uh FrbeVO7YVOzg0XDOB/Ym/8nC7W0CsfJWMQzSfvFSQh3uEWad8ZxWiG6AOVhvaNz09GHdppx7EmKi F4ttRXN9OmezTrWj/ZqvCKIbAAAAAGA041ekBAAAAAD4OIhuAAAAAIDBILoBAAAAAAaD6AYAAAAA GAyiGwAAAABgMIhuAAAAAIDBILoBAAAAAAbzv7cLAAAAAK/TY9GOWYvYpMr65PjSPlmUB7qC6AYA APg2vVbJO/aziljd3XkuI4S+FRiQdILwEgAAAIgoLVi97+ffW7x9/A+Qql1q/QaIbgAAAIjYtljQ hiJ328TvdjdQlPli/zg+whssgOgGAACACEnUblsstP3/N4IOAJIgugEAACCL5PU+PnfuFN+zPM6h 0EfsgwWYSAkAAAB/+F5t502YC4Xttrm94On2JyIOJSzHAL4q67963kPYdgKhAAAAvkwkBDwRWxJd f79NCN9c9o/UvkvbXo7pXLXgzm1Vyk5yJ3uJ/5sts49wPzXCzN9fizCuFX2l8typy56/b9nfk/1L +71dPsJLAAAAPk5ugmSP3UvHkz5PfHb5PJWx5PjM/y7YNjnBM8zEkvJH1mwTHuffb3b/d5n9ROcZ ns+/173mvC5FD8oQHluoq79XoSypaxcNiISyZ8tcWcfh9lV1UFO+0u9rfyddV0Q3AAAAXOiRii8n jJ8QxpEfseT+a3isQDRGpWiJCw+PExCJa7/M/rFKMfB+mfz9hOfo/WUHLOG+wmNLZaq1A0nQh8cK J+D6ZQvLIf0mRbDfbB2EmW+kgWbinHcpY064n9T5HiC6AQAA4BYpT6xz49L5+WLb/z8sQyikhXjz aL+t5Qg/Oo7jl/E4bkJ0FvdbEujB/sOtdkkIhmXLHdvfPoeU1aYwQPnbPCxDyyAoHHAJwvvv/1q7 8f8Pf5/z4JfKzERKAAAASCGKU0lclARHreeylpQX2T+W/1rjna49bk58HeWQvO41wjs1WAnFe815 SdunMs6kxH1FSsg9HGj45UqdT3CNdhfET0t1lkIa7B1fScfOie3UvqXBk7+/wvn9tmMiJQAAwKfZ fWGREiGSiAi/D36XnITo7SPcU06UiPurEU2ZMI3LPoVzvPX9DVp/tafOyy9T6ZpVlCdX15vzbEfc yRYJ6T1TnqS95JA81uF1rdgue4jEPpqvNJ5uAAAA+CMXqpEQLllR1+KxbCEMl3AJEbR5qQ1LoQW1 5AYd0uZte68sQpCyMRUqUhC4WSQPcu76J8S/v4/NpQcw0bGDz6Uy7ylPeu6c/tlC83W5OYD5A9EN AAAAIqG4SP2fE3V+uEFi2yYa44XF34bv/bLeLVNnRM95KoxCELx7uI1H01lKoRPhdw2hPGLZ/7E7 57bW6yuF9fx9FQwG/G19r7tfjuB8NuHpiPj7zDn+vWMiJQAAAPREjM3ttvNMCEzyJ3lx/SdQa8oq CbjEfp275+WO4pClGGnpeKnv7l4Df1AVlkfaVipjCn8gJu3HP35NGVPlCoV7bdn8cw+PEQp9af/e dn9b4+kGAACAXkghBc65OAThLpL4q/VQJ0IRolCNmjJUhkS0Enm4c+fbErN9t2xSHee87C3HSYUs pY5bW77w89ITDqlc/r9O8JqnxH4iBGt3zm2IbgAAAEjhy489+L9tR+0e6uR+nOsrIv3vWr2rNZ9X 8ifdcueY8hDnzuvJYCcXwy1tU+tJDl+fhh2FhGFNYf2k7DHx+WVgJoVLhYMkqb4R3QAAAFBDZ1n0 nEoRH8mfJ6K50Zt7a6AiebSP/3NiMdzHEy90ah/SsVrpLbBzxwnPv1QOr47Cb48wpUu8vDQASQ1O EN0AAAAwjR6CqyVURRJaiRCAasJ9jPTSblsyJv0SihKcw+ZcnO7P+11ViSs8wOJEykx9RGXy9tdb im/OxdlNMqLaL0t2vxWefSkcZUd0AwAAwHAScbWPp1l6oicn6P4+k0Rha8hKSbRLWS4K+9nCzzzh vW+F9Ha5SZ2JsIe9cM6b/5uMmP6Ld/aP68cxe2Xcg+8fhb2kSIXkJOKsSxy/Sm0bDW5yxyV7CQAA AEwhJXrvUjOZLeXpdoHQvSu4/+3zsi//NRXCIL33y+cLU/cTdvs/4brvu7ssaFQqdyiKJa91KMrD fYexzGGZw3IfA4ajzP4+BE/x0ICTlqciwnZ/TxT8bY56Cn8jXZfD3hDdAAAAMJI/QSWJ5DuezlR8 bilmNxUOUiNcw32kJjMe+5K2C0Wp5JGV9il5nCvCY6J6z9V5bnAgDAL830VecWm/Nefag+A4Wzig StV7LvY7Z1eSxz4coBzbI7oBAABgOKH4qoj/Le7P9zqWhFL484Ztk8ev3WfKGxocN4rdFkJNxN9n PLmXPUox2uF+c2XIkPw25R2v+e0dBIG8SZ+Hn4WiPDWoC+03/N7fb7TNfsfSAAAAYBVyQqCnIHoq OErxtS37CMnF7NZ8X7OvHP5+etWTz90ytdpG63Fa9jFq2xylOqjdh3OO7CUAAABfp4ewqD3OQQ9x Nvq3PX63e5/VnnOPwUVqn7X73bxXaftU3dSWvddg7k69uobftB4jdTznnHP/B5lHIKuxVeB+AAAA AElFTkSuQmCC ------=_NextPart_01DBECCC.EE8A5BD0 Content-Location: file:///C:/093AA224/07-3Lainteligenciaartificialenlaeducacion.Transformandolosentornosdigitalesparaelaprend_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DBECCC.EE8A5BD0--